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M A T E R I A L S  S C I E N C E

Disordered hyperuniformity in two-dimensional 
amorphous silica
Yu Zheng1*, Lei Liu2*, Hanqing Nan2*, Zhen-Xiong Shen3,4*, Ge Zhang5, Duyu Chen6, Lixin He3,4, 
Wenxiang Xu2,7†, Mohan Chen8†, Yang Jiao1,2†, Houlong Zhuang1,2†

Disordered hyperuniformity (DHU) is a recently proposed new state of matter, which has been observed in a variety 
of classical and quantum many-body systems. DHU systems are characterized by vanishing infinite-wavelength 
normalized density fluctuations and are endowed with unique novel physical properties. Here, we report the 
discovery of disordered hyperuniformity in atomic-scale two-dimensional materials, i.e., amorphous silica com-
posed of a single layer of atoms, based on spectral-density analysis of high-resolution transmission electron 
microscopy images. Moreover, we show via large-scale density functional theory calculations that DHU leads to 
almost complete closure of the electronic bandgap compared to the crystalline counterpart, making the material 
effectively a metal. This is in contrast to the conventional wisdom that disorder generally diminishes electronic 
transport and is due to the unique electron wave localization induced by the topological defects in the DHU state.

INTRODUCTION
Disordered hyperuniform (DHU) systems are a unique class of dis-
ordered systems that suppress large-scale density fluctuations such 
as crystals and yet have no Bragg peaks (1, 2). For a point configu-
ration (e.g., a collection of particle centers of a many-body system), 
hyperuniformity is manifested as the vanishing structure factor in the 
infinite-wavelength (or zero–wave number) limit, i.e.,   lim  k→0   S(k ) = 0 , 
where k = 2/ is the wave number. In this case of a random field, 
the hyperuniform condition is given by   lim  k→0   ̂   (k ) = 0 , where   ̂   (k)  
is the spectral density (2). It has been suggested that hyperuniformity 
can be considered as a new state of matter (1), which has a hidden 
order in between of that of a perfect crystal and a totally disordered 
system (e.g., a Poisson distribution of points).

Recently, a wide spectrum of physical and biological systems have 
been identified to have the remarkable property of hyperuniformity, 
which include the density fluctuations in early universe (3), disordered 
jammed packing of hard particles (4, 5), certain exotic classical ground 
states of many-particle systems (6, 7), jammed colloidal systems (8, 9), 
driven nonequilibrium systems (10, 11, 12, 13), certain quantum 
ground states (14), avian photoreceptor patterns (15), organization 
of adapted immune systems (16), amorphous silicon (17), a wide class 
of disordered cellular materials (18), dynamic random organizing 
systems (19–21), and even the distribution of primes on the number 
axis (22). In addition, it has been shown that hyperuniform materials 
can be designed to have superior physical properties including large 
isotropic photonic bandgaps (23).

In this paper, we report the discovery of hyperuniformity in 
amorphous two-dimensional (2D) silica [conventionally modeled 
as “continuous random networks” (24)], based on the analysis of 
aberration-corrected transmission electron microscopy (TEM) 
images of the material. To the best of our knowledge, this is the 
first discovery of disordered hyperuniformity in atomic-scale 2D 
materials (i.e., those composed of a single layer of atoms), which can 
have unique novel electronic, magnetic, and optical properties com-
pared to their bulk counterparts.

We show via simulations that the observed DHU in amorphous 
silica is closely related to the strong topological and geometrical con-
straints induced by the local chemical order in the system. In addition, 
our density functional theory (DFT) calculations show that DHU 
significantly reduces the electronic bandgap in 2D amorphous silica, 
leading to almost complete closure of the bandgap compared to the 
crystalline counterpart. This is in contrast to the conventional wisdom 
that disorder generally diminishes electronic transport and is due to 
the unique electron wave localization induced by DHU.

RESULTS AND DISCUSSION
Hyperuniformity in 2D amorphous silica
We first analyze the high-resolution TEM images of 2D amorphous 
silica, see Fig. 1A and fig. S1 for a large-field image. The material 
samples were fabricated using chemical vapor deposition, and the 
procedure for obtaining the imaging dataset was reported in detail in 
(25) and briefly described in the Supplementary Materials. As shown 
in Fig. 1A, the black spots (with diffusive boundaries) represent the 
silicon atoms. The micrographs are processed to retain the distribu-
tion information of the silicon atoms by thresholding and fitting the 
grayness intensity distribution associated with each silicon atom using 
a Gaussian function, i.e., G(x) = I0e−∣x − xi∣

2/2
, where I0 is the maximal 

intensity, xi is the center of the silicon atom, and  is an effective radius.
The associated spectral density   ̂   (k)  (where k is the wave vector) 

is computed following (26) and shown in the inset of Fig. 1C. The 
angularly averaged   ̂   (k)  (with k =∣k∣) is shown in Fig. 1C. We 
note that the spectral density analysis (instead of structure factor) is 
used here to efficiently use all of the information on Si atom distribu-
tions contained in the TEM micrographs and minimize the possible 
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systematic errors induced by converting the intensity map into cen-
ter distributions. In addition, we note that spectral density would be 
a more natural indicator of hyperuniformity in quantum systems. 
The TEM images can be considered as a mapping of electron density 
of the system, which achieves peak values surrounding the Si atoms, 
allowing us to also extract the well-defined center distribution of Si 
atoms. However, for a general system, the electron density map 
(e.g., associated with extended states) might be better represented 
by a random field, for which the spectral density would be a better 
metric for hyperuniformity. It can be seen that   ̂   (k)  is fully isotropic, 
and the scattering is completely suppressed at infinite wavelength, 
i.e.,   lim  k→0   ̂   (k ) = 0  with   ̂   (k) ∼ k  for small k values, which indicates 
that the 2D amorphous silica samples analyzed are hyperuniform 
(see the Supplementary Materials for detailed scaling analysis).

Numerical models of DHU 2D amorphous silica networks
Next, we computationally generate disordered hyperuniform 2D 
silica networks. We note that unlike 3D amorphous materials such 

as metallic glasses, which can be simulated by numerically quenching 
a high temperature liquid state, even very rapid quenching of a 2D 
material will lead to a highly crystalline material with a small number 
of local defects. These defected crystalline materials cannot represent 
the experimentally obtained DHU amorphous silica network. 
Together with the observation that the 2D silica systems are dis-
ordered hyperuniform, this motivates us to use a structure-based 
method, which is a two-step approach.

In the first step, a three-coordinated DHU network is generated 
using a modified “collective coordinate” approach (7), in which a 
random initial configuration of points is gradually evolved to match 
a prescribed targeted structure factor S*(k) while simultaneously 
satisfying mutual exclusion volume constraints. The targeted S*(k) = 0 
for k ≤ K* drives the system to a hyperuniform state, and the exclusion 
volume constraints ensure that the final configuration can be feasibly 
mapped to an amorphous silica network. In the second step, the 
obtained point configuration is mapped to a three-coordinated 
network by connecting a point with its three nearest neighbors. This 
network is further converted to a silica network, by placing a silicon 
atom centered at each point and placing an oxygen atom at the mid-
point of the two connected silicon atoms. We then perform molecular 
statics simulations using the Si─O potential based on the Tersoff 
parameterization (27) as implemented in the LAMMPS program (28) 
to optimize the constructed silica network to physically metastable 
states by minimizing their total potential energy.

The spectral density of the simulated amorphous silica network 
(see Fig. 1B) is computed by placing a Gaussian kernel function at 
the center of each silicon atom and is shown in Fig. 1D. It can be 
clearly seen that   ̂   (k)  of the simulated network agrees very well with 
the experimental data for all wave numbers including the zero-k limit, 
i.e.,   lim  k→0   ̂   (k ) = 0  with   ̂   (k ) ∼ k  for small k values (see the Sup-
plementary Materials for detailed scaling analysis and comparison 
to experimental results). We also compute and analyze the structure 
factors associated with the center distribution of Si atoms in both the 
experimental and simulated 2D amorphous silica, which have the 
same small-k behavior, i.e., S(k) ~ k and limk → 0S(k) = 0. In addition, 
we directly analyze the Si atom center number variance 2(R) as a 
function of the radius of circular observation window R, which also 
confirms the same scaling behavior, i.e., 2(R) ∼ R ln (R) for large R 
(see the Supplementary Materials for details).

We note that in the second step of the simulation (i.e., the potential 
energy minimization), hyperuniformity [i.e., the small k values of 
S(k)] is not constrained anymore. The evolution of the system is dom-
inated by the interactions of atoms and constrained by the topology, 
and the positions of the atoms have been significantly perturbed 
compared to the final configuration obtained in the first step. Yet, 
the resulting system is still hyperuniform. This result suggests the 
strong geometrical and topological constraints, i.e., the bond length 
and angle associated with the Si-O bonds, as well as three-coordinated 
configurations, induced by the local chemical order could lead to the 
observed hyperuniformity in the system. We note that the emergence 
of disordered hyperuniformity from geometrical constraints has also 
been observed in jammed particle packings (4, 5), avian photo receptor 
patterns (15), and amorphous laser speckle patterns (29).

We also obtain and compare the number of n-fold rings (where 
n = 3,4,…) formed by silicon atoms in both the experimental and 
simulated networks, see Fig. 1 (E and F). The ring statistics for the 
two systems again agree very well with one another. In addition, the 
comparison of local structural statistics of the experimental and 

Fig. 1. Hyperuniformity in 2D amorphous silica. (A) TEM image of 2D amorphous 
silica. From (25). Reprinted with permission from the American Association for the 
Advancement of Science. (B) Disordered hyperuniform silica network generated via 
computer simulations as described in the main text. Blue and red spheres denote 
Si and O atoms, respectively. (C) and (D) respectively show the angularly averaged 
spectral density (k) associated with the TEM micrograph and the simulated amor-
phous silica network. Insets show the full spectral density. (E) and (F) respectively 
show the local “ring” statistics of the experimentally obtained and simulated 2D 
amorphous silica network.
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numerical systems, including the pair correlation function and nearest 
neighbor distribution of the Si atoms, also shows excellent agreement 
(see the Supplementary Materials for details). These results indicate 
that our numerical network model can provide a statistically accu-
rate structural representation of the 2D amorphous silica system by 
capturing key correlations on both large- and small-length scales, as 
well as the local topological order. Therefore, we expect that the phys-
ical properties computed based on the numerical network model 
should also be representative of those of the experimental system.

Stone-Wales defects preserve hyperuniformity in  
2D materials
What is the origin of DHU in 2D amorphous silica? We note that as 
a first approximation, the 2D silica glass can be considered as ob-
tained from a 2D crystalline silica network by continuously intro-
ducing the Stone-Wales (SW) defects (30), which change the topology 
of the network. However, the SW defects do not affect the number 
of particles within a large observation window, since the SW trans-
formation is localized and only affects a pair of atoms on the single- 
bond scale. Nonetheless, SW transformations of atom pairs on the 
boundary of the observation window might lead to a bounded fluc-
tuation of particle numbers, which are scaled with the surface area 
of the window. Therefore, the SW defects should preserve hyper-
uniformity in the system. We provide numerical evidence for this 
speculation in the Supplementary Materials. Although the actual 
2D amorphous silica has a structure that deviates from the ideal SW 
transferred crystalline network, the above argument could provide 
a possible explanation of the observed DHU in the system.

Disordered hyperuniformity significantly reduces  
electronic bandgap
We use the simulated DHU SiO2 networks to calculate its density 
of states (DOS) at the DFT-Perdew-Burke-Ernzerhof (31) level of 
theory. Specifically, the DHU structure consists of three sublayers 
(1800 atoms; 600 Si atoms and 1200 O atoms). For comparison, we 
also create a supercell of 2D crystalline SiO2 with the same number 
of Si and O atoms. Several models of 2D crystalline SiO2 have been 
studied using DFT calculations in the literature (32). Here, we refer 
2D crystalline SiO2 to the hexagonal bilayer crystalline network ob-
served in the experiment (33).

We use numerical atomic orbitals (34) as implemented in the 
Atomic-orbital Based Ab-initio Computation at UStc (ABACUS) 
package (35) for calculating the electronic structure. The simulation 
methods and parameters can be found in Materials and Methods. 
For comparison, we also compute the DOS for 2D hexagonal crystalline 
SiO2. The energy difference between the 2D DHU and hexagonal 
crystalline SiO2 calculated from the Tersoff potential and DFT is both 
positive and comparable (0.074 and 0.134 eV/atom, respectively). 
The positive energy differences indicate that the crystalline structure 
is more energetically stable than the DHU structure. Nevertheless, 
the TEM image (see Fig. 1A) shows that the experimental atomic 
structure of 2D amorphous SiO2 is drastically different from the 
crystalline model. By contrast, the high similarity between the DHU 
model and experimentally observed atomic structure reveals the 
metastable nature of DHU systems.

Figure 2A shows that the 2D crystalline SiO2 is essentially an 
insulator with a predicted bandgap of 5.31 eV, consistent with the 
previously reported bandgap of 5.48 eV calculated for a unit cell at 
the same level of theory (36). By contrast, we observe from Fig. 2B 

that a small but finite number of states occupy the Fermi level of the 
DHU structure, showing metallic behavior of the electrons with a 
typical bandgap of ~50 meV. This is comparable to the thermal 
fluctuations at room temperature of ~25 meV. In other words, the 
disordered hyperuniformity fundamentally changes the electrical 
transport behavior of 2D SiO2, from an effective insulator at room 
temperature (as in the crystalline form) to an effective metal (as in 
the DHU form).

From Fig. 2B, we estimate the density  of the electrons that con-
tribute to the electrical conductivity of the DHU structure at room 
temperature. By integrating the number of states in the energies 
ranging from 25 meV (corresponding to the thermal energy) to the 
Fermi level in Fig. 2B, we determine  as 2.33× 1012 cm−2. This mag-
nitude belongs to the category of “high doping” (e.g., 6.0 × 1011 and 
9.2 × 1012 cm−2) applied to common 2D semiconductors such as 
WS2 and MoS2 (37). To put it another way, considering the electron 
density alone, the conductivity associated with the DHU structure 
could be comparable to those of the 2D materials.

To better understand this metallic behavior of DHU 2D SiO2, we 
compute the charge densities within an energy window of 0.5 eV 
below the highest occupied molecular orbital (HOMO) level for the 
crystalline structure and below the Fermi level for the DHU struc-
ture. For the former structure, Fig. 3A (a complete version of Fig. 3 
can be found in the Supplementary Materials) shows that the elec-
trons are distributed around Si and O atoms in the entire structure, 
i.e., fully occupying the valence bands. The amount of these electrons 
is significant, as can be seen from the large DOS below the HOMO 
level. But these electrons cannot be thermally excited at room tem-
perature to the conduction bands due to the large bandgap, leading 
to zero electrical conductivity for pure 2D crystalline SiO2.

On the other hand, for the DHU structure, the number of valence 
electrons in the same energy window is much less, resulting in a low 
carrier density but, nevertheless, a nonzero conductivity. A closer 
look at the slightly wider energy window associated with lowest 
DOS (e.g., −2 to 0 eV) reveals that the distribution of states still forms 
an almost continuous spectrum of peaks, see the inset in Fig. 2B. 
Figure 3B reveals that the valence electrons contributing to the con-
ductivity originate from a small portion of the Si and O atoms in the 
DHU system.
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Fig. 2. Electronic structure of 2D amorphous silica. DOS of the supercells of 2D 
(A) crystalline and (B) hyperuniform SiO2 calculated using DFT. The inset shows a 
zoomed-in view of the DOS near the Fermi level.
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Topological defects in DHU SiO2 lead to electron localization 
with high energies
To understand why the electrons are localized around these atoms, 
we show in Fig. 3 (C and D) the distributions of the computed 
potential energies using the Tersoff potential for the crystalline and 
DHU systems, respectively. Consistent with Fig. 3A, Fig. 3C shows 
that the potential energies are homogeneously distributed in the 
crystalline system. On the contrary, for the DHU system, we observe 
from Fig. 3D that the potential energies have a highly heterogeneous 
distribution, with significantly higher energies localized in regions 
where the atomic arrangements substantially deviate from the sixfold 
hexagonal configuration. These are topological defects, which are 
necessary to achieve DHU in amorphous 2D silica. The high-energy 
localizations perfectly coincide with the electron localizations (see 
Fig. 3B), indicating that the local potential energies due to the topo-
logical defects induced by DHU are sufficiently high to activate the 
electrons to the energy levels near the Fermi energy.

Electron localization in a disordered system is generally associated 
with a number of exotic physical phenomena (38) such as metal-to- 
insulator transitions suggested by Anderson (39). The electron local-
ization in the DHU silica system appears to be phenomenologically 
different from the Anderson localization, as the DHU localization 
gives rise to the opposite (i.e., insulator-to-metal) transition. A 
mathematical model based on model Hamiltonian that considers 
the disordered potential needs to be devised to investigate the 
electrical transport property of the localized electrons. Furthermore, 
whether the insulator-to-metal transition also occurs in other 2D 
DHU semiconductors/insulators remains unknown and is certainly 
worth exploring.

In summary, we have discovered, for the first time, disordered 
hyperuniformity in 2D amorphous materials and showed that DHU 
fundamentally changes the electronic transport behaviors in the 
material, making 2D DHU silica metallic. This interesting prediction 
awaits experimental confirmation. We also showed that the metallic 
behavior (i.e., with a virtually continuous spectrum of DOS without 

notable bandgaps in DHU silica) is resulted from the localization 
of high-energy states due to the topological defects induced by DHU. 
Since the observed DHU in 2D silica is associated with the local 
topological and geometrical constraints common in many 2D mate-
rials, we would expect to observe DHU and, thus, the metallic 
behavior in the amorphous states of other 2D materials, should these 
states be metastable at least. With the increasing interest in 2D amor-
phous materials, we expect our methods of building realistic structural 
model of amorphous 2D material systems along with large-scale DFT 
calculations to be applicable to a wide range of other 2D materials 
such as graphene (40) and molybdenum disulfide (41) in the amor-
phous form.

Last, we emphasize that the conclusions about electron localiza-
tion, closure of bandgaps, and enhanced transport behaviors are 
mainly based on the numerical simulations. In future work, we will 
develop theories and carry out experiments that prove the predicted 
electron localization and enhanced electron transport behaviors in 
DHU 2D silica. On the theory side, one possible approach is to 
analytically examine the propagation of electron waves via homog-
enization of Schrödinger’s equation with model potentials having 
HU distributions (e.g., mimicking the effects of Si atoms in the 
system), following a similar contrast expansion procedure for obtain-
ing optimal bounds on photonic bandgaps described in (42). On the 
experimental side, we will carry out surface nanoscale conductivity 
measurements and tunneling spectroscopy, which have been success-
fully used to identify emergent hyperuniformity in many-electron 
glasses formed via a quantum jamming transition (43).

MATERIALS AND METHODS
Numerical realization of hyperuniform configurations 
of Si atoms
As the first step in the generation of the DHU silica network models, 
we use a generalized collective coordinate (7) method to generate 
DHU realizations of Si atoms. Specifically, we first generate a random 
initial configuration of nonoverlapping circular disks with diameter , 
which is taken to be the average nearest neighbor distance between 
a pair of Si atoms in the SiO2 network. Next, the positions of the Si 
atoms are randomly perturbed, subject to the nonoverlapping con-
straints, to generate new configurations of Si atoms. For each new 
configuration, an effective energy E, defined as the sum of the absolute 
value of the structure factor S(k) associated the configuration for 
k < K*, i.e., E = ∑k < K*∣S(k)∣. This effective energy is minimized 
using the simulated annealing method: A new configuration (gen-
erated by random perturbation of the Si atom positions) will be 
accepted and replace the old configuration with the probability p = 
min {1, exp [(Eold − Enew)/T]}, where T is the annealing parameter 
that is gradually decreased during the simulation. The final “ground 
state” configuration has a S(k) = 0 for k < K*, which is then mapped 
to a three-coordinated network, with an O atom inserted in the 
middle of every Si─Si bond, to generate a model SiO2 network.

Molecular statics simulations
We use the Tersoff potential (a representative force field for SiO2) to 
describe the energy dependence of the SiO2 network on the atomic 
coordinates. We then apply the conjugate gradient algorithm as 
implemented in LAMMPS to minimize the energy of the system by 
optimizing the in-plane lattice constants and atomic locations until 
the energy convergence criterion of 1.0 × 10−16 eV is satisfied. This 

A

B
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D

24.45 eV

24.80 eV

Fig. 3. Electron densities and potential energies of 2D amorphous silica. Elec-
tron densities at the HOMO level of (A) the crystalline structure and (B) at the Fermi 
level of the DHU structure. The isosurface value is 0.0023 e/Bohr3. The correspond-
ing distributions of potential energies are shown in (C) and (D), respectively. The 
color bar shows a range of the distributions.
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energy minimization process is called the molecular statics simula-
tions, which are distinct from molecular dynamics simulations, where 
atoms are given initial velocities and adjust their positions following 
Newton’s second law.

DFT calculations
The DFT-based electronic structure calculations are computed by 
ABACUS with numerical atomic orbitals. We adopt the PBE func-
tional and pseudopotential and use double-zeta plus polarization 
basis sets (Si: 2s2p1d, O:2s2p1d), the cutoffs for Si and O orbitals are 
set to 8 and 7 arbitrary units, respectively. The energy cutoff is set to 
100 Ry. A single k-point ( point) is used for the two large supercells 
each containing 1800 atoms.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/16/eaba0826/DC1
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