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Estimating the COVID‑19 
prevalence and mortality using 
a novel data‑driven hybrid model 
based on ensemble empirical mode 
decomposition
Yongbin Wang1,4*, Chunjie Xu2,4, Sanqiao Yao1, Lei Wang3, Yingzheng Zhao1, 
Jingchao Ren1 & Yuchun Li1

In this study, we proposed a new data‑driven hybrid technique by integrating an ensemble empirical 
mode decomposition (EEMD), an autoregressive integrated moving average (ARIMA), with a nonlinear 
autoregressive artificial neural network (NARANN), called the EEMD‑ARIMA‑NARANN model, to 
perform time series modeling and forecasting based on the COVID‑19 prevalence and mortality data 
from 28 February 2020 to 27 June 2020 in South Africa and Nigeria. By comparing the accuracy level of 
forecasting measurements with the basic ARIMA and NARANN models, it was shown that this novel 
data‑driven hybrid model did a better job of capturing the dynamic changing trends of the target 
data than the others used in this work. Our proposed mixture technique can be deemed as a helpful 
policy‑supportive tool to plan and provide medical supplies effectively. The overall confirmed cases 
and deaths were estimated to reach around 176,570 [95% uncertainty level (UL) 173,607 to 178,476] 
and 3454 (95% UL 3384 to 3487), respectively, in South Africa, along with 32,136 (95% UL 31,568 
to 32,641) and 788 (95% UL 775 to 804) in Nigeria on 12 July 2020 using this data‑driven EEMD‑
ARIMA‑NARANN hybrid technique. The contributions of this study include three aspects. First, the 
proposed hybrid model can better capture the dynamic dependency characteristics compared with the 
individual models. Second, this new data‑driven hybrid model is constructed in a more reasonable way 
relative to the traditional mixture model. Third, this proposed model may be generalized to estimate 
the epidemic patterns of COVID‑19 in other regions.

In December 2019, a type of new pneumonia of unknown etiology initially occurred in the city of Wuhan, China, 
and soon afterward, Wuhan became the epicenter of the outbreak of this disease, later named as coronavirus 
disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2. 
Since then, COVID-19 has been bombarding almost every corner of the world for just two months and has 
become a universal  pandemic3,4. COVID-19 is highly contagious and has caused a series of massive negative 
effects on economic progress, people’s lives and health around the globe, and it has been identified as being the 
foremost global public health crisis since the twentieth  century5,6. As of June 27, 2020, the outbreak has resulted 
in a great tragedy with overall 9,653,048 confirmed cases and 491,128 deaths in more than 200 countries of our 
 planet2. The current reported cases and deaths may be underestimated in the seriously affected regions to a great 
extent as there are limited medical and health resources that satisfy the requirement of the epidemiological 
surveillance and  detection7, and it is estimated that the present epidemiological trend may still be rising expo-
nentially in the near  future2. Such an emergency has raised many significant issues associated with the spreading 
dynamics, the alleviation, along with the response strategies and measures of this public health emergency of 
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international concern. Unfortunately, because of the new nature of the SARS-CoV-2, there is still an absence of 
enough knowledge regarding this virus and an absence of clinical treatment determined and vaccines available, 
leading to greater uncertainty in the decision-making process. In this scenario, an accurate estimate based on 
mathematical and statistical techniques can provide a basis for the formulation of effective planning to better 
tackle the societal, economical, cultural, and public health issues related to this  pandemic8,9. Also, it is extremely 
crucial for directing the intensity and type of interventions required to mitigate this public health  emergency10.

Time series analysis is significantly instrumental in understanding the past epidemic patterns of the diseases 
and in forecasting the upcoming epidemiological trends based on the past and current inherent rules of the 
target series by adopting different modeling  methods4,7,11. Over the past decades, different time series modeling 
techniques with high reliability levels have been employed for various forecasting purposes. More recently, a 
large and growing body of literature has investigated the usefulness of the statistical methods to forecast the 
transmission of the COVID-19 outbreak in order to serve as a reference for mitigating the outbreak, and some 
of which have played an important role in containing the spread of the COVID-19 outbreak. For example, 
many current prevention and control measures (e.g., keeping social distancing, wearing face masks, isolation, 
and observation of the cases and close contacts, the establishment of mobile cabin hospitals, lockdown of the 
area or countries, travel restrictions and border control, and human mobility restrictions) are formed based 
on the resulting results of model  forecasting4,12–18. The current common use of the modeling methods includes 
the autoregressive integrated moving average (ARIMA)  model4,7,19–24, genetic  programming25, simple model of 
 growth26, support vector  regression27, unbiased hierarchical bayesian estimator  approach28, susceptible-exposed-
infected-recovery (SEIR)  model28, linear regression  models29, and stereographic Brownian diffusion epidemiology 
model (SBDiEM)30. Time series data are often restricted and affected by many potential determinants, leading 
to showing complicated linear and nonlinear interaction, together with non-stationarity in the  data31. For this 
reason, the mentioned methods failed to take full advantage of these components simultaneously as they are 
under the linear or nonlinear assumption, and therefore the results from them are difficult to be generalized. To 
improve the forecasting reliability level, an alternative approach should be tailored for use with both tendencies 
(linear component) and randomness (nonlinear component). Motivated by this idea, researchers have developed 
hybrid models by integrating linear models with nonlinear models (e.g., ARIMA-generalized regression neural 
network [GRNN], ARIMA– backpropagation neural network [BPNN], and autoregressive [AR]-time delay 
neural network [TDNN] hybrid models)32–34, which may generate better forecasting by use of each method’s 
capability. In such traditional ensemble architectures, the ARIMA or AR model is often used to capture the linear 
dependency structure in a time series, and then the residuals of a linear pattern is assumed to include the non-
linear component that can be captured by the neural network models  (ANNS)34,35. However, such an assumption 
may lead to an underestimation of the relationship between the linear and nonlinear patterns in a time series 
because the association between these two patterns may fail to be  additive32. Moreover, the residuals from the 
linear models may not comprise valid non-linear component in a time  series32. Importantly, recent published 
papers have also demonstrated that the traditional mixture methods do not necessarily provide a performance 
improvement over the individual  methods32,35,36. For this reason, the challenge for developing a perfect hybrid 
prediction model is how to identify the underlying linear and nonlinear patterns in a time series.

Wavelet analysis has attracted much attention as a flexible and useful tool able to diagnose high-frequency 
traits and to extract worthy information especially when time series is characterized by non-stationarity and non-
linearity because this analysis has a powerful potential to discern exceptional events by time-localized frequency 
 analysis4,37,38. More recently, researchers have developed a novel wavelet decomposition technique-ensemble 
empirical mode decomposition (EEMD) based on the empirical mode decomposition (EMD) for filtering and 
handling time series preliminarily, which is capable of overcoming the mode mixing weaknesses of the  EMD39,40. 
Unlike the conventional discrete wavelet transform methods that require and predetermine basis functions, 
causing different decomposition results, EEMD is a self-adaptive, empirical, direct, and intuitive data processing 
technique, particularly appropriate for handling the non-stationary and non-linear data  patterns41,42. And many 
hybrid models that adopt a combination of the EEMD and some algorithms have produced satisfactory results 
in the time series forecasting field. For instance, Zhou et al. built a mixture model by combining the EEMD and 
a general regression neural network to predict the  PM2.5  concentrations43. Wang et al. constructed an EEMD 
decomposition-based ARIMA to improve the prediction reliability level of the annual runoff time  series41. Wang 
et al. applied the backpropagation network model based on EEMD decomposition to hydrological time series in 
order to improve the medium and long-term forecasting accuracy  level41. However, the above-referenced models 
are only a simple ensemble architecture comprising either a basic linear or nonlinear model based on the EEMD 
technique, which is unable to consider both linear and nonlinear components in a time series simultaneously 
despite a performance improvement over the basic models by use of these ensemble architectures. Motivated by 
the “decomposition and ensemble” idea based on the EEMD method, a promising alternative is to develop an 
ensemble architecture by integrating the linear trait with the nonlinear trait decomposed by the EEMD method 
using an adequate linear model and nonlinear  model44. By doing so, this new ensemble architecture is capable 
of capturing both components in a time series simultaneously.

In time series forecasting, the ARIMA model is the most used method to handle linear information, whereas 
 ANNS methods are adept at solving nonlinear problems, and the nonlinear autoregressive artificial neural net-
work (NARANN) model has been demonstrated to have excellent mimic and prediction performances among 
ANNs models because this model has embedded memory function with the help of the tapped delay  lines45. 
Therefore, the present study developed a novel mixture prediction model by considering the respective superi-
ority of the EEMD, ARIMA, and NARANN in addressing time series forecasting issues to estimate the epide-
miological trends of the COVID-19 prevalence and mortality in South Africa and Nigeria, the hardest-hit two 
countries with the outbreak in  Africa2,46. Specifically, first, applying the EEMD technique to decompose the daily 
prevalence and mortality series into several Intrinsic Mode Functions (IMFs) subseries together with a residue 
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subseries representing the trend of the data. Second, the IMFs terms were modeled using appropriate NARANN 
methods, whereas the residue term was modeled with a suitable ARIMA model. Finally, the prediction results 
from our proposed hybrid model were obtained by a conjunction of those from the basic NARANN and ARIMA 
 models44. Since the lack of adequate health infrastructure and services in many regions of Africa, such estimates 
can elucidate the spreading dynamics of the outbreak, which will be a useful aid for government institutions 
and policymakers to plan the number of additional materials and resources in order to keep the outbreak under 
control well. Additionally, such estimates may also assist local people to lessen their present socioeconomic and 
psychosocial pressures and distresses related to the COVID-19 pandemic.

Material and methods
Data source. This research focused on the daily time series analysis of the COVID-19 prevalence and mor-
tality, the overall diagnosed COVID-19 cases and death tolls between 28 February 2020 and 27 June 2020 were 
taken from the COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns 
Hopkins University (https:// github. com/ CSSEG ISand Data/ COVID- 19) and the COVID-2019 situation reports 
by the WHO (https:// www. who. int/ emerg encies/ disea ses). Often, at least 50 observations and preferably 100 
observations or more are required in order to construct an adequate and effective  model47. Thus, the datasets 
used in this study were divided into two parts. The subset from 28 February 2020 through 15 June 2020 was 
treated as the training horizon (109 observations), the other was deemed as the prediction horizon (12 observa-
tions).

The study protocol was approved by the research institutional review board of the Xinxiang Medical Univer-
sity (No: XYLL-2019072). All relevant guidelines were followed for the study. Ethical approval is not warranted 
for this research as these data without personal information are publicly available around the globe and the same 
is approved by the CSSE and WHO.

ARIMA model. The ARIMA model has been the most frequently used forecasting tool in the domain of 
health care in the past because of its simple structure, flexible applicability, and potential to interpret a given 
time  series7. Supposing that there exists a certain linear pattern between the past observations and the future 
observations, the ARIMA model can then make use of this pattern to predict the epidemic trends in the near 
 future4,48. A representative ARIMA (p, d, q) model is composed of three components, where, p, d, and q rep-
resent the orders of the autoregressive method (AR), the non-seasonal differenced degrees, and the moving 
average method (MA), respectively. The ARIMA model is often established through four steps. Initially, an 
augmented Dickey–Fuller (ADF) test was applied to the original data to investigate its stationarity, if indicating 
a non-stationary series, a differenced transformation would help to achieve  stationarity48,49. Secondly, the crude 
values of the key parameters (p, d, and q) were determined by plotting the autocorrelation function (ACF) and 
partial ACF (PACF) graphs based on the differenced series. Among all the candidate models, the one that pro-
duced such goodness of fit measures as a larger value of the log-likelihood, as well as a lower value of the Akaike 
information criteria (AIC), consistent AIC (CAIC), and Bayesian information criterion (BIC), was considered 
the  preferred50. Thirdly, using statistical-based diagnostic indices, including Ljung-Box Q test, ACF plot, PACF 
plot, and t-test, to check the adequacy of the identified model, once the residuals behaved like a white-noise 
series under the Ljung-Box Q test and the determined parameters were statistically significant under the t-test, 
meaning that this model is  suitable51. Ultimately, the preferred ARIMA method can be employed to conduct 
out-of-sample forecasts.

NARANN model. ANNs can well enable arbitrarily complex non-stationary series to obtain any desired 
accuracy thanks to its flexible nonlinear mapping  ability52. The NARANN method with the time-varying state of 
interconnected neurons is an important dynamic recurrent ANNs model. For this reason, this method has the 
inherent attributes of ANNs (e.g., powerful nonlinear mapping capacity, self-learning and adaption ability, along 
with generalization and fault-tolerant ability)33,53. Further, the NARANN model also has a long or short-term 
memory function by retaining the prior inputs, outputs and network structures with the help of the tapped delay 
line, resulting in a dynamic modeling potential to the time-dependent  series33. An NARANN method can be in 
the form below

where Xt signifies the forecasting results from the NARANN method based on the previous given values at 
lagged period d.

In this study, the modeling procedures consist of three steps. First, the whole data were divided into two 
blocks including training samples (from 28 February 2020 to 15 June 2020) and testing samples (from 16 June 
2020 to 27 June 2020). To develop an effective and accurate NARANN model, the effective training samples were 
further partitioned into training (80% of the training samples), validation (10%), and testing (10%) subseries 
by use of the dividerand function in MATLAB software. Second, the number of hidden neurons and delays d 
were investigated by trial and error by use of the Levenberg–Marquardt algorithm in an open feedback  form33. 
Whilst the response plot between the estimated outputs and targets, the ACF plot, along with the mean square 
error (MSE) and correlation coefficient (R) were computed until the best possible specification was  determined53. 
Finally, the training open-loop form was closed to make a multi-step-ahead forecast.

A hybrid model of EEMD‑ARIMA‑NARANN. EEMD. Although the EMD method has been wide-
ly employed to deal with the noisy nonlinear and non-stationary processes in signal analysis, it has been 

(1)Xt = f (x(t − 1), x(t − 2), . . . , x(t − d))

https://github.com/CSSEGISandData/COVID-19
https://www.who.int/emergencies/diseases
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shown that this method suffers from two major shortcomings, including the edge-effects and mode-mixing in 
 applications39,54,55, particularly for the mode-mixing issue, it can not only lead to the mixing of different scale 
vibration modes but also even result in the loss of the physical meaning of the decomposed IMFs  terms40. To 
compensate for the weaknesses of the EMD method, an advanced EEMD technique was therefore introduced 
based on the EMD  method39. This EEMD technique resolved the mode-mixing issue by defining the original 
each IMFs term as the average of an ensemble of experiments, and each IMFs term consists of the signal and 
noise of finite-amplitude54. The decomposition processes of the EEMD approach can be done as below:

Firstly, adding a white noise series w(t) to the original series x(t) , and then the produced new time series 
was defined as

Secondly, decomposing this new time series into the IMFs terms by use of the EMD method.
Thirdly, repeating the first and second steps using different white noise series, and the obtained results were 

added to the original time series each time.
Finally, averaging the ensemble of the IMFs terms from the EMD method.
At the decomposition stage, determining the number of the ensembles and the amplitudes of the added white 

noise series is very crucial for the resultant  results43. Fortunately, these two parameters can be determined by use 
of a well-demonstrated statistical  rule39

where N is the number of the ensembles, ε represents the amplitudes of the added white noise series, and εn 
refers to the standard error. It has been shown that the EEMD technique can obtain a satisfactory result when the 
ensemble numbers were 100 and the amplitudes of added white noise series were 0.2 times standard  deviation39,56.

EEMD-ARIMA-NARANN mixture model. To achieve the goal of making full use of the constituent linear 
and nonlinear components in the object series, inspired by the “decomposition and ensemble” idea of the EEMD 
method and its powerful flexible nonlinear mapping capacity of the NARANN  method57, the EEMD-ARIMA-
NARANN mixture method was thus constructed. In this advanced mixture model-developing process, the 
prevalence and mortality time series of COVID-19 were first decomposed into various IMFs and residue terms. 
Then, each of IMFs terms was modeled by use of an adequate NARANN method; whereas the residue term was 
modeled by use of an adequate ARIMA method. Finally, the results from our proposed mixture method could be 
obtained by combing the forecasts from the ARIMA and NARANN models (Fig. 1). By doing so, the new data-
driven mixture technique can capture both linear and nonlinear patterns simultaneously in the prevalence and 
mortality series of COVID-19. The specific representation of our proposed EEMD-ARIMA-NARANN mixture 
method can be expressed as

where ŷ refers to the estimated results from the EEMD-ARIMA-NARANN mixture technique, ât represents the 
estimated results from the ARIMA model, b̂t is the estimated results from the NARANN model.

Assessing model performance. In this study, four statistical measures of error, including root mean square per-
centage error (RMSPE), mean absolute deviation (MAD), mean error rate (MER), and mean absolute percentage 
error (MAPE), were calculated to evaluate the accuracy of forecasts. The above statistical measures of error had 
smaller values, indicating a better model.

(2)Y(t) = x(t)+ w(t)

(3)εn =
ε

N
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N
∑

i=1

(f (IMF1(t − 1), . . . , IMF1(t − d))+ · · · + (f (IMFN (t − 1), . . . , IMFN (t − d))
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here Xi signifies the prevalence and mortality data of COVID-19, X̂i is the estimates using the chosen approaches, 
Xi refers to the mean of the prevalence and mortality data of COVID-19, and N stands for the number of simula-
tions and forecasts.

Results
Development of the ARIMA model. During the study span, the overall confirmed cases totaled 12,459 
in South Africa and 23,298 in Nigeria, with a daily mean of 1030 and 193 cases, respectively. Out of them, there 
were overall 2340 deaths in South Africa and 554 deaths in Nigeria, with a daily mean of 20 and 5 cases, respec-
tively. As shown in Fig. 2, the prevalence and mortality time series displayed an apparent increasing trend, so 
the differencing is required to remove the trend effects of these target series. After differencing, an ADF test was 
employed to the differenced series, and the resulting statistics for the differenced series are illustrated in Table S1, 
indicating a stationary series. Thus, the possible values of the ARIMA models’ key parameters were crudely 
determined based on these stationary series. As illustrated in Table 1, it appeared that the sparse coefficient 
ARIMA (2, 2, (1, 3)) (AIC = 1482.590, CAIC = 1483.441, BIC = 1498.642, and Log-likelihood = -736.290) and 
ARIMA (0, 2,(1, 3, 4)) (AIC = 733.390, CAIC = 733.980, BIC = 746.750, and Log-likelihood = − 362.690) specifi-
cations were expected to be considered the best models for simulating the prevalence and mortality data, respec-
tively, in South Africa because the measurement metrics of AIC, CAIC, and BIC provided the lowest values, 
and log-likelihood gave the greatest value among all the possible models. Furthermore, as illustrated in Tables 2 
and 3, Fig. 3, the identified key parameters of the best-fitting ARIMA models showed a statistical significance 
(p < 0.05) and the Box-Ljung Q tests for the error series from these best models suggested no statistical signifi-
cance at different lags (p > 0.05), these results meant that the identified optimal ARIMA models are adequate for 
modeling the target data. Similarly, the diagnostic checking for the best ARIMA models could be done on the 
residuals from the prevalence and mortality data in Nigeria (Tables 1, 2, 3 and Fig. 3), it was demonstrated that 
the ARIMA (1, 2, 2) and sparse coefficient ARIMA (0, 2,(1, 2, 4)) models were also suitable for modeling the 

(9)MAPE =
1

N

N
∑

i=1

|Xi − X̂i

∣

∣

∣

Xi
× 100

Figure 1.  Flow chart of the novel data-driven EEMD-ARIMA-NARANN mixture method.
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prevalence and mortality data, respectively, in Nigeria. Accordingly, these preferred ARIMA models determined 
can be used to forecast the epidemics in the next days.

Construction of the NARANN model. To obtain the preferred NARANN model, the different number 
of hidden units ranging from 1 to 20 and feedback delays ranging from 1 to 6 were trained by trial and error. 
After trying, it was found that the NARANN with 15 hidden units and 6 delays and the NARANN with 14 hid-
den units and 5 delays tended to be identified as the optimal specifications for mimicking the prevalence and 
mortality data, respectively, in South Africa as the NARANN (15,6) and NARANN (14,5) specifications showed 
the lowest MSE values in the training (2648.213 and 9.710, respectively), validation (1595.504 and 12.849, 
respectively), and testing (8647.196 and 24.024, respectively) subsets, along with the greatest R values in the 
training (1 and 1, respectively), validation (1 and 1, respectively), and testing (1 and 1, respectively) subsets of 
the prevalence and mortality data among all the potential models (Tables 3 and 4, Figures S1 and S2). Moreover, 
almost all autocorrelation coefficients of the resulting errors fell into the estimated 95% uncertainty level (UL) at 
different lags and the response plots between inputs and outputs showed that the resulting residuals presented an 
acceptable level of fluctuation in their corresponding subsets (Figs. 4, 5). The above-mentioned results intimated 
that the identified two best NARANN specifications offered reliable estimates for the prevalence and mortality 

Figure 2.  Time series plots showing the prevalence and mortality data of COVID-19 in South Africa and 
Nigeria (A) The overall confirmed cases in these two countries; (B) The overall deaths in these two countries.
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Table 1.  The possible tested ARIMA models for the prevalence and mortality time series of COVID-19 in 
South Africa and Nigeria. ARIMA Autoregressive integrated moving average method, AIC Akaike information 
criteria, CAIC consistent AIC, BIC Bayesian information criterion. *Represents the parameters were no 
significantly statistical difference.

Country Model AIC CAIC BIC Log likelihood

South Africa

Prevalence data

ARIMA (2, 2, (1, 3)) 1482.590 1483.441 1498.642 − 736.290

ARIMA (0, 2, 1) 1485.030 1485.140 1490.370 − 740.510

ARIMA (0, 2, 2) 1486.980 1487.210 1495.000 − 740.490

ARIMA (0, 2, 3) 1488.880 1489.280 1499.580 − 740.440

ARIMA (1, 2, 3) 1484.830 1485.420 1498.190 − 737.420

ARIMA (2, 2, 0) 1487.060 1487.300 1495.080 − 740.530

Mortality data

ARIMA (0, 2, (1, 3, 4)) 733.390 733.980 746.750 − 362.690

ARIMA (0, 2, 1) 750.650 750.770 756.000 − 373.330

ARIMA (0, 2, 2) 752.540 752.780 760.560 − 373.270

ARIMA (0, 2, 3) 742.200 742.590 752.890 − 367.100

ARIMA (1, 2, 1) 752.610 752.840 760.630 − 373.310

Nigeria

Prevalence data

ARIMA (1, 2, 2) 1319.300 1319.690 1329.990 − 655.650

ARIMA (0, 2, 1) 1323.680 1323.790 1329.020 − 659.840

ARIMA (0, 2, 2) 1322.700 1322.930 1330.720 − 658.350

ARIMA (1, 2, 0) 1349.550 1349.660 1354.890 − 672.770

ARIMA (1, 2, 1) 1324.100 1324.330 1332.120 − 659.050

ARIMA (2, 2, 1) 1322.600 1323.000 1333.300 − 657.300

Mortality data

ARIMA (0, 2, (1, 2, 4)) 591.220 591.810 604.580 − 291.610

ARIMA (0, 2, 1) 600.390 600.510 605.740 − 298.200

ARIMA (0, 2, 2) 601.940 602.170 609.960 − 297.960

ARIMA (0, 2,3) 602.470 602.860 613.160 − 297.240

ARIMA (0, 2, 4)* 592.980 593.570 606.340 − 291.490

Table 2.  The identified parameters of the best-fitting ARIMA models for the prevalence and mortality time 
series of COVID-19 in South Africa and Nigeria. ARIMA Autoregressive integrated moving average method, 
AR autoregressive method, MA moving average method.

Country Model Parameters Estimates Standard error t p

South Africa

Prevalence data

ARIMA (2, 2, (1, 3))

AR1 − 1.390 0.146 − 9.521  < 0.001

AR2 − 0.432 0.141 − 3.064 0.001

MA1 1.257 0.093 13.516  < 0.001

MA3 − 0.367 0.086 − 4.267 0.001

Mortality data

ARIMA (0, 2, (1, 3, 4))

MA1 − 0.958 0.084 − 11.405  < 0.001

MA3 0.344 0.134 2.567 0.006

MA4 0.362 0.099 3.657  < 0.001

Nigeria

Prevalence data

ARIMA (1, 2, 2)

AR1 0.632 0.201 3.144 0.001

MA1 − 1.646 0.153 − 10.758  < 0.001

MA2 0.755 0.120 6.292  < 0.001

Mortality data

ARIMA (0, 2, (1, 2, 4))

MA1 − 0.928 0.097 − 9.567  < 0.001

MA2 − 0.198 0.119 − 1.664 0.0495

MA4 0.437 0.069 6.333  < 0.001
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series in South Africa. Likewise, we determined the best NARANN (15,6) and NARANN (14,6) specifications 
for fitting the prevalence and mortality data, respectively, in Nigeria according to the modeling steps, and the sta-
tistical checking results exhibited that these identified NARANN specifications were also appropriate (Tables 3, 
4, Figs. 4, 5, S3 and S4). Therefore, these resulting best NARANN models can be applied to the target series to 
generate forecasts for the testing samples.

Establishment of the EEMD‑ARIMA‑NARANN hybrid model. Based on the decomposed proce-
dures, the original target series was decomposed into different IMFs and residues (Fig. 6). Subsequently, the 
residues representing the trends of the target series were used to establish the ARIMA model, and the obtained 
best-fitting ARIMA models and their goodness of fit statistics for different target series are listed in Table 5; 
whereas the IMFs components representing the detailed (nonlinear) information contained in the target series 
were employed to develop the NARANN models, and the identified best-fitting NARANN models and their 
diagnostic testing results for various IMFs series are summarized in Table 4. Then each decomposed series is 
fitted and predicted by adopting the most appropriate target models and the resulting in-sample simulations and 
out-of-sample forecasts can be summed to obtain the final results from the advanced EEMD-ARIMA-NARANN 
hybrid model.

Comparisons of forecasting accuracy level between models. We discovered that the EEMD-
ARIMA-NARANN mixture model showed the lowest values of the measurement metrics, including MAD, 
MAPE, MER, and RMSPE, in addition to the RMSPE value in the prevalence data of Nigeria by comparing 
the forecasts for the testing samples from the selected best-fitting three models in the study regions (Table 6). 
Consequently, we can conclude that our proposed mixture model is superior to the basic ARIMA and NARANN 
models. Further, we re-established our proposed hybrid model to forecast the future 15-day epidemiological 
trends of the COVID-19 prevalence and mortality based on the overall data, and the resulting best models and 
the final forecasts are visible in Figs. 7, S5 and S6, Tables S1–S5. So the next 15-day forecasts of confirmed cases 
may be 176,570 (95% UL 173,607 to 178,476) in South Africa and 32,136 (95% UL 31,568 to 32,641) in Nigeria, 
and the forecasts of total deaths may be 3454 (95% UL 3384 to 3487) in South Africa and 788 (95% UL 775 to 
804) in Nigeria (Table S5).

Discussion
Effective prevention and control plans are needed to curb and harness the rapid transmission of the COVID-19 
outbreak. Early nowcasting and forecasting are essential to forming such plans as the allocation of limited health 
resources, the timely adjustment of the current intervention strategies, the arrangement of production activities, 
and even the local economic  development30,31,58. For this reason, it is imperative to develop statistical techniques 
with high forecasting accuracy and reliability. Time series modeling is a useful aid for developing underlying 
hypotheses to analyze the current epidemic patterns and to predict the spreading dynamics of different diseases in 
the near  future4,7. As far as we are aware, this is the only study to analyze and forecast the epidemiological trends 
of the COVID-19 prevalence and mortality time series in South Africa and Nigeria by use of a novel data-driven 
EEMD-ARIMA-NARANN hybrid technique, and a series of modeling experiments indicated that this new hybrid 
technique produced lower forecasting errors over the basic ARIMA and NARANN methods by comparing the 
measurement metrics, such as MAD, MAPE, MER, and RMSPE (Table 6). These results meant our proposed 
hybrid method has a greater potential to track the dynamic dependence characteristics during the epidemic 
process of COVID-19 relative to the others used in this study, which may act as a profitable tool-supportive 

Table 3.  Box-Ljung Q test for the residual series from the best ARIMA and NARANN models. ARIMA 
Autoregressive integrated moving average method, NARANN nonlinear autoregressive artificial neural 
network.

Lags

Prevalence data Mortality data

ARIMA NARANN ARIMA NARANN

Box-Ljung Q p Box-Ljung Q p Box-Ljung Q p Box-Ljung Q p

1 0.019 0.890 0.019 0.890 0.022 0.881 0.004 0.948

2 0.388 0.824 0.954 0.621 0.677 0.713 0.005 0.998

3 0.481 0.923 1.038 0.792 0.721 0.868 0.005 1.000

4 1.473 0.832 1.082 0.897 0.724 0.948 1.010 0.908

5 1.796 0.877 1.278 0.937 2.229 0.817 3.096 0.685

6 1.925 0.927 2.061 0.914 2.474 0.871 3.193 0.784

7 10.181 0.179 2.105 0.954 2.477 0.929 5.348 0.618

8 15.118 0.057 2.111 0.977 3.659 0.887 6.263 0.618

9 15.126 0.088 3.228 0.955 3.663 0.932 7.036 0.633

10 16.616 0.083 3.292 0.974 6.233 0.795 7.296 0.697

11 17.150 0.104 3.336 0.986 6.513 0.837 7.422 0.764

12 17.424 0.134 4.141 0.981 9.342 0.674 7.478 0.825
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Figure 3.  Autocorrelogram (ACF) and partial autocorrelogram (PACF) of the residuals generated by the 
best ARIMA model. (A) Sample ACFs and PACFs of the residuals for the prevalence dada in SouthAfrica; (B) 
Sample ACFs and PACFs of the residuals for the mortality dada in South Africa; (C) Sample ACFs and PACFs of 
the residuals for the prevalence dada in Nigeria; (D) Sample ACFs and PACFs of the residuals for the mortality 
dada in Nigeria. As shown, almost all sample ACFs and PACFs fell within the estimated 95% uncertainty levels 
across different lags except for the sample ACFs at lags 7, 8, and 15, along with the sample PACFs at lags 7 and 
8 in (A), the sample PACFs at lags 12 and 17 in (B), and the sample ACFs and PACFs lag 15 in (C) (which are 
also reasonable because some higher-order correlation coefficients readily exceed the estimated 95% uncertainty 
levels by chance). These results meant that the residuals from identified ARIMA models for different datasets 
were without pattern, suggesting that the selected ARIMA models appear to be suitable for capturing the 
dynamic dependency structure in the object series.
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for policymakers to develop appropriate prevention and control strategies and measures in both mitigating the 
outbreak and reducing the deaths due to COVID-19 pandemic. Whilst this hybrid model is also of great value 
in assessing the effects of the current public interventions. For example, if this model forecasted a remarkably 
higher epidemic level than the actual in the coming periods, suggesting that the current measures could take 
effect in the target population; otherwise, indicating that the current public interventions could be required to 
be reinforced or additional plans could be needed. In addition, the basic ARIMA and NARANN models also 
provided a high forecasting accuracy for our target data in light of the above four measurement metrics.

The most versatile method to fit the time series data is the ARIMA model, which postulates that there is a 
certain linear association between the future epidemics of a given series and the past and present states of the 
target series, and thus this model can not only be used to model nonseasonal data but also seasonal data, and 
such benefit as nonstationary  data48,49. Yet for nonstationary series, it requires to be differenced and/or trans-
formed with logarithm or square  root50. For instance, Yousaf et al. built the ARIMA (0, 2, 1), ARIMA (2, 2, 0), 
and ARIMA (1, 2, 1) models to study and predict the accumulative confirmed cases, recoveries, and deaths of 
COVID-19, respectively, for the upcoming month in  Pakistan19. Ceylan established the ARIMA (0, 2, 1), ARIMA 
(1, 2, 0), and ARIMA (0, 2, 1) models to forecast the total reported cases of COVID-19 in Italy, Spain, and France, 
 respectively7. Even though these obtained ARIMA models have high forecasting accuracy and reliability, the 
major disadvantage of the ARIMA model is its linear assumption, which makes it difficult to handle the random-
ness in the target  series52. Hence, we proposed a novel data-driven EEMD-ARIMA-NARANN hybrid model 
to overcome the limitation of the basic model. It can be said that this data-driven mixture technique shows a 
strong capacity to improve the forecasting power for the prevalence and mortality data of COVID-19 in that the 
principal advantage of such a model facilitates to identify the preferred hybridization by decomposing the target 
data into various multi-scale levels to consider the underlying trend and random parts simultaneously by use 
of the different types of models. Given the forecasting superiority of our proposed data-driven hybrid method, 
it seems that this hybrid model is also useful in nowcasting and forecasting the epidemiological trends of the 
COVID-19 prevalence and mortality time series in other regions or other infectious  diseases44. Of note, current 
studies found that some other forecasting tools (e.g., the new innovations state space modeling  framework59, long 

Table 4.  The identified parameters of the best NARANN and EEMD-ARIMA-NARANN hybrid models for 
different target series. MSE mean square error.

Country Target series Hidden units Delays

MSE R

Training 
subseries

Validation 
subseries

Testing 
subseries

Training 
subseries

Validation 
subseries

Testing 
subseries Overall

South Africa

Prevalence data

Original series 15 6 2648.213 1595.504 8647.196 1.000 1.000 1.000 1.000

IMF1 15 5 50,572.372 84,373.288 136,600.627 0.864 0.742 0.632 0.834

IMF2 16 4 8177.455 3132.033 8164.032 0.959 0.969 0.944 0.960

IMF3 15 5 80.456 96.150 439.063 1.000 0.999 0.998 1.000

IMF4 14 4 5.420 1.215 4.841 1.000 1.000 1.000 1.000

IMF5 14 5 6.780 4.005 3.993 1.000 1.000 1.000 1.000

Mortality data

Original series 14 5 9.710 12.849 24.024 1.000 1.000 1.000 1.000

IMF1 17 5 34.933 99.083 32.655 0.823 0.626 0.920 0.789

IMF2 16 5 2.428 7.065 5.659 0.976 0.922 0.981 0.971

IMF3 14 5 4.363 1.155 1.411 0.999 0.999 0.999 0.999

IMF4 15 4 2.444 2.518 6.129 1.000 1.000 1.000 1.000

IMF5 15 4 1.672 4.768 4.259 1.000 1.000 1.000 1.000

Nigeria

Prevalence data

Original series 15 6 4417.994 3853.800 9902.660 1.000 1.000 0.999 1.000

IMF1 17 5 5061.116 8908.892 15,396.154 0.816 0.764 0.575 0.763

IMF2 16 5 774.071 1073.004 494.054 0.933 0.930 0.981 0.938

IMF3 15 5 9.138 27.153 18.503 0.999 0.991 0.990 0.998

IMF4 16 6 1.751 2.290 7.026 1.000 1.000 1.000 1.000

IMF5 15 5 1.632 1.278 1.000 1.000 1.000 1.000 1.000

Mortality data

Original series 14 6 4.259 9.533 15.204 1.000 0.999 1.000 1.000

IMF1 18 5 2.467 6.268 7.791 0.890 0.779 0.235 0.830

IMF2 16 5 3.259 4.492 8.789 0.978 0.970 0.979 0.976

IMF3 15 5 3.690 2.591 4.244 1.000 1.000 0.997 0.999

IMF4 14 6 1.292 2.924 2.852 1.000 1.000 1.000 1.000

IMF5 15 5 2.628 4.384 5.654 1.000 1.000 1.000 1.000
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short-term memory neural  network60, advanced error-trend-seasonal (ETS)  framework61, α-Sutte  Indicator62, 
and  SBDiEM30) performed a highly accurate forecast for the epidemiological trends of COVID-19. As a result, 
to further our research we are planning to make a comparative study between our proposed EEMD-SARIMA-
NARANN hybrid model and the ones above. The contributions of the current work are several-fold. First, at least 
14.321% and at most 40.488%, along with at least 22.545% and at most 59.766% of computational accuracies are 
achieved compared with the ARIMA and NARANN models, respectively, when using the MAPE (which is the 
most frequently used index to judge the predictive performance) to measure the forecasting accuracy. Second, 
this work presents a new data-driven integrated system in a more reasonable way compared with the conventional 
mixture pattern. Third, this new data-driven hybrid model may be generalized to estimate the epidemic patterns 
in other regions seriously affected by the COVID-19 outbreak.

Given the outbreak trends of COVID-19 and the situation of the health infrastructure and services in Africa, 
there is a great concern on whether African regions’ health system capacity is able to duly and effectively meet 
the requirements of the medical supplies for the increased confirmed cases. For this reason, we used our pro-
posed mixture technique to predict the next 15-day confirmed cases and deaths in South Africa and Nigeria. 
Particularly in South Africa, the infected individuals show an exponential trend since 18 May 2020 (Figs. 2, 7), 
and even worse, our prediction results display that the epidemiological trends of the outbreak may still be rapidly 
increasing with an average of around 3465 confirmed cases and 75 deaths per day in the upcoming 15 days in 
South Africa (Fig. 7A,B, Table S5), and it needs more time to reach the platform in the morbidity. Therefore, 
more strict or additional precautionary measures are required to reduce the rapid spreading of COVID-19 
(e.g., increasing the number of doctors, pharmacists, medical students, and other health workers who can offer 
their expertise in the frontlines of the pandemic response, strengthening the overnight curfew management 
to prevent the social interaction, raising public awareness by strengthening advocacy, issuing more stringent 
lockdown rules, building more mobile cabin hospitals to treat the mild patients, forcing mandated face-covering 
in public, suspending trans-regional public transportation, suspending or prohibiting tourism across regions, 
strengthening inspection and quarantine, extending the closure period of public places such as schools, universi-
ties and church, supporting the home office work, prohibiting possible social gatherings, accelerating research 

Figure 4.  Autocorrelogram (ACF) of the residuals generated by the best NARANN model. (A) Sample ACFs 
of the residuals for the prevalence dada in South Africa; (B) Sample ACFs of the residuals for the mortality dada 
in South Africa; (C) Sample ACFs of the residuals for the prevalence dada in Nigeria; (D) Sample ACFs of the 
residuals for the mortality dada in Nigeria.
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on the vaccines and clinical treatment programmes, and seeking help from other countries in a position to do 
so)12,19,31,60,63. Nigeria that was hit the second hardest with the COVID-19 outbreak is witnessing a downward 
trend in the COVID-19 prevalence and mortality with daily 590 estimated confirmed cases and 16 deaths in the 
next 15 days (Fig. 7C,D, Table S5). However, strict prophylactic measures still need to be implemented in Nigeria 
to avoid the rebounding of the outbreak.

The findings in this report are subject to some shortcomings. Firstly, accurate statistics on the prevalence and 
mortality data in these two study regions are vital for the understanding of the epidemic patterns of COVID-19 
by use of our proposed data-driven EEMD-ARIMA-NARANN hybrid technique. However, the limited nuclear 
acid detection ability may result in under-diagnosis or under-reporting for the prevalence and mortality data 
during the COVID-19 outbreak. Secondly, in the NARANN method-developing process, there is currently a lack 
of general guidelines for selecting the number of hidden neurons and delays. In applications, repeated training 
is required. Thirdly, although this data-driven mixture technique does a good job of estimating the epidemic 
patterns of COVID-19 in this study, whether this data-driven mixture technique can perform a highly accurate 
prediction for the epidemiological trends of COVID-19 in other regions or other infectious contagious diseases, 
more work will need to be done. Fourthly, the forecasting performance under the EEMD-ARIMA-NARANN 
hybrid technique may be further improved by integrating some related factors (e.g., internet search queries, 

Figure 5.  Time series displaying the response results between inputs and outputs. (A) Response plot between 
inputs and outputs for the prevalence dada in South Africa; (B) Response plot between inputs and outputs for 
the mortality dada in South Africa; (C) Response plot between inputs and outputs for the prevalence dada in 
Nigeria; (D) Response plot between inputs and outputs for the mortality dada in Nigeria. These plots display 
which samples were treated as the training, validation and testing datasets, and illustrate the corresponding 
errors between inputs and targets. It could be seen that the vast majority of data points had smaller errors 
between inputs and targets, indicating that the identified NARANN methods seem to be adequate for estimating 
the epidemiological trends of COVID-19 in the study regions.
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meteorological parameters, air pollution indicators, and policy intervention), and further studies, which take 
these factors related to the COVID-19 into account, will be very interesting. However, this failed to be inves-
tigated in the current work. Lastly, the forecasting reliability level of this data-driven mixture technique may 
decrease with the increase of the forecasting periods. Therefore, the new real-time data should be integrated into 
the model to ensure its forecasting accuracy.

Figure 6.  Intrinsic Mode Functions (IMFs) subseries via decomposing the original prevalence and mortality 
time series. (A) The resulting IMFs subseries by decomposing the prevalence series in South Africa; (B) The 
resulting IMFs subseries by decomposing the mortality series in South Africa; (C) The resulting IMFs subseries 
by decomposing the prevalence series in Nigeria; (D) The resulting IMFs subseries by decomposing the 
mortality series in Nigeria.
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Conclusions
Insights from the time series modeling are extremely invaluable for the policymaker to plan effective prevention 
and control strategies in order to make the outbreak under control well in the future. In this work, we proposed 
a new data-driven EEMD-ARIMA-NARANN mixture technique, and it is demonstrated that the predicted 
values from this mixture model show better consistency with the actual observations than the basic ARIMA 
and NARANN methods, which can function as a helpful policy-supportive tool to plan and prepare medical 
supplies effectively, and thus favoring to alleviate the outbreak in South Africa and Nigeria over the upcoming 
days or weeks. It is significant to stress that the estimated values may differ from the observed values looking at 
the strategic preparedness and the measures taken by the government of these study regions. Also, our proposed 
hybrid model may be of great help to estimate and forecast the future epidemic trends in other regions severely 
affected by this crisis.

Table 5.  The identified parameters of the best-fitting ARIMA models for the decomposed residue of the 
COVID-19 the prevalence and mortality in South Africa and Nigeria. ARIMA Autoregressive integrated 
moving average method, BIC Bayesian information criterion, AR autoregressive method, MA moving average 
method.

Country Model Parameters Estimates Standard Error t p R2 Stationary  R2 Normalized BIC

Box-Ljung Q

Statistics p

South Africa

Residue of the prevalence data

ARIMA(0, 4, 2)
MA1 − 1.019 0.084 − 12.164  < 0.001

1.000 0.493 − 13.179 5.616 0.992
MA2 − 0.536 0.084 − 6.401  < 0.001

Residue of the mortality data

ARIMA(1, 3, 0) AR1 1.000 2.14E− 05 46,715.700  < 0.001 1.000 – − 21.213 0.004 1.000

Nigeria

Residue of the prevalence data

ARIMA(0, 4, 2)
MA1 − 0.803 0.097 − 8.293  < 0.001

1.000 0.382 − 16.364 3.248 1.000
MA2 − 0.194 0.097 − 1.995 0.049

Residue of the mortality data

ARIMA(1, 4, 0) AR1 0.662 0.073 9.083  < 0.001 1.000 0.426 − 24.307 8.47 0.955

Table 6.  Comparisons of the predictive abilities for the testing samples of the prevalence and mortality time 
series of COVID-19 among these three selected models in South Africa and Nigeria. ARIMA Autoregressive 
integrated moving average method, NARANN nonlinear autoregressive artificial neural network, MAD Mean 
absolute deviation, MAPE Mean absolute percentage error, MER Mean error rate, RMSPE Root mean square 
percentage error, A refers to the ARIMA model, B refers to the NARANN model, C refers to the EEMD-
ARIMA-NARANN hybrid model.

Country Model

Predictive performance for prevalence 
data

Predictive performance for mortality 
data

MAD MAPE MER RMSPE MAD MAPE MER RMSPE

South Africa

ARIMA 2064.810 1.966 0.021 0.026 67.923 3.213 0.035 0.041

NARANN 2996.471 2.908 0.031 0.036 58.052 3.102 0.030 0.037

Hybrid model 1261.426 1.170 0.013 0.020 47.119 2.435 0.024 0.030

Reduced percentages (%)

 C vs. A 38.908 40.488 38.095 23.077 30.629 24.214 31.429 26.829

 C vs. B 57.903 59.766 58.065 44.444 18.833 21.502 20.000 18.919

Nigeria

ARIMA 326.775 1.620 0.016 0.017 27.959 5.477 0.056 0.058

NARANN 371.259 1.792 0.019 0.028 20.913 4.118 0.041 0.057

Hybrid model 280.279 1.388 0.014 0.017 14.490 2.917 0.029 0.032

Reduced percentages (%)

 C vs. A 14.229 14.321 12.500 0.000 48.174 46.741 48.214 44.828

 C vs. B 24.506 22.545 26.316 39.286 30.713 29.165 29.268 43.860
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Data availability
All the data can be obtained from the WHO and CSSE websites.

Code availability
All codes used to generate the main results in this original manuscript are without restrictions to access and they 
were provided in Supplementary material.
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