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Background
Stroke, also known as cerebrovascular accident (CVA), is a group of diseases with 
three major types (hemorrhagic stroke, ischemic stroke, and TIA transient ischemic 
attack) and with cerebral infarction being the most common phenotype [1]. In the 
past decades, stroke treatment and prevention have seen significant advances in 

Abstract 

Background: Stroke has an acute onset and a high mortality rate, making it one of the 
most fatal diseases worldwide. Its underlying biology and treatments have been widely 
studied both in the “Western” biomedicine and the Traditional Chinese Medicine (TCM). 
However, these two approaches are often studied and reported in insolation, both in 
the literature and associated databases.

Results: To aid research in finding effective prevention methods and treatments, we 
integrated knowledge from the literature and a number of databases (e.g. CID, TCMID, 
ETCM). We employed a suite of biomedical text mining (i.e. named-entity) approaches 
to identify mentions of genes, diseases, drugs, chemicals, symptoms, Chinese herbs 
and patent medicines, etc. in a large set of stroke papers from both biomedical and 
TCM domains. Then, using a combination of a rule-based approach with a pre-trained 
BioBERT model, we extracted and classified links and relationships among stroke-
related entities as expressed in the literature. We construct StrokeKG, a knowledge 
graph includes almost 46 k nodes of nine types, and 157 k links of 30 types, connecting 
diseases, genes, symptoms, drugs, pathways, herbs, chemical, ingredients and patent 
medicine.

Conclusions: Our Stroke-KG can provide practical and reliable stroke-related knowl-
edge to help with stroke-related research like exploring new directions for stroke 
research and ideas for drug repurposing and discovery. We make StrokeKG freely avail-
able at http:// 114. 115. 208. 144: 7474/ brows er/ (Please click "Connect" directly) and the 
source structured data for stroke at https:// github. com/ yangx i1016/ Stroke

Keywords: Stroke, Knowledge graph, Biomedical text mining, Traditional Chinese 
Medicine

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi 
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Yang et al. BMC Bioinformatics          (2021) 22:387  
https://doi.org/10.1186/s12859-021-04292-4

*Correspondence:   
g.nenadic@manchester.ac.uk 
†Xi Yang and Chengkun Wu have 
contributed equally to this work
3 Department of Computer 
Science, University of Manchester, 
Manchester M13 9PL, UK
Full list of author information is 
available at the end of the article

http://114.115.208.144:7474/browser/
https://github.com/yangxi1016/Stroke
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04292-4&domain=pdf


Page 2 of 18Yang et al. BMC Bioinformatics          (2021) 22:387 

particular in declining stroke mortality [2]. Western therapeutic such as drug injec-
tion and endovascular therapy [3], as well as traditional Chinese treatment such as 
herbal medicine and acupuncture [4], have made tremendous efforts for preventing 
stroke and recovery after stroke. However, stroke is still one of the most critical fatal 
diseases worldwide (the second leading cause of death) [5] because of acute onset, 
with the enormous economic burden of recovery for those who survive. So, there is 
a need to investigate potential pathogenic genes, risk factors further, and aura symp-
toms of stroke to find efficient preventative and therapeutic approaches.

There are some existing structured knowledge sources focused on stroke [6–8]. 
Still, a large amount of stroke-related information is available in scientific articles. 
For example, a recent search for ‘stroke’ in PubMed resulted in over 327 K papers. In 
this study, we aim to develop a stroke-related knowledge base by combining infor-
mation extracted from these scientific papers and existing knowledge bases. The 
large volume of texts requires automated and computational methods to extract use-
ful information from these unstructured data to build structured databases.

Knowledge graphs (KGs) [9] are widely known as knowledge domain visualiza-
tion or knowledge domain mapping graphs in the library and information industry 
[10]. They are often represented as a series of different graphs with the relation-
ships between development processes and the structure of knowledge. Visualiza-
tion technology is used to describe, analyze, construct, and display knowledge and 
inter-relationships [11]. Such representation methods can promote the understand-
ing of relations between biomedical entities, which is vital for scientific researchers 
to refine their research scope and improve personalized medicine. It is also possi-
ble to discover new knowledge (e.g., new drugs [12] and effective prevention/treat-
ment methods [13, 14]). However, it is a laborious and time-consuming process to 
construct a KG manually. Therefore, automated approaches to assist an automated/
semi-automated construction of knowledge graphs in specific domains have been 
used [15, 16].

In this paper we introduce a stroke-related knowledge graph (StrokeKG) by com-
bining information extracted from these scientific papers and existing knowledge 
bases. In addition to biomedical entities, we also add entities from Traditional Chi-
nese medicine (TCM) [17], which pays close attention to the medical characteristics 
of the entire system of the human body, which makes it a promising candidate for 
the treatment of stroke [18]. We use a suite of tools to extract genes, diseases, drugs, 
symptoms, Chinese herbal medicine, and other entities and link them using relation-
ship extraction methods. As a result, StrokeKG includes 46,983 nodes of 9 types, 
and 157,302 relationships of 30 types, connecting diseases, genes, symptoms, drugs, 
pathways, Chinese Patent Medicines (CPMs), Herbs, Chemical, ingredients. Besides, 
we marked 265 CPM entities and 404 CPM-Disease relationships through verifica-
tion and manual annotation of existing databases to provide practical and accurate 
stroke-related knowledge. The graph can be used to facilitate our understanding of 
this complex disease, for example, by exploring precursor symptoms and sequelae of 
stroke, therapeutic drugs, and the pathway for treating related diseases.
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Related work
In the field of biomedicine, knowledge bases (KBs) such as Gene ontology [19], dis-
ease ontology [20], reference terms for national drug archives [21], and basic mod-
els of anatomy [22] have been prominent examples of efforts to provide structured 
knowledge systematically. Some of these KBs, e.g. OpenKG [23], BenevolentAI [24], 
and KnowLife [14] have made significant contributions to the development of the 
biomedical field, including recent drug repositioning for COVID-19 [25], SemaTyP 
[26], and protein-drug target KG [15] have been used. Despite many efforts to pro-
vide more structured data, vast amounts of relevant knowledge are still hidden in the 
biomedical literature [27]. There are three main limitations to previous work on KB 
construction [9]. First, most biomedical KBs are manually constructed and curated, 
which defer them from keeping up with the pace of novel discoveries. Second, poten-
tially useful text sources such as health portals, online communities, or other sources 
of information are often ignored. Finally, most previous works focused on one molec-
ular level or chemical genomics, such as protein–protein interactions [28], gene-drug 
relationships [29], or just highly specific topics such as drug effects.

Natural language processing tools are indispensable to extract useful information 
from biomedical literature [30]. We need to start with the named entity recogni-
tion process and then relationship extraction. Biomedical Named Entity Recognition 
(NER) [31] aims to identify specific biomedical concepts in the text. NER consists 
of two steps: (1) classifying specific substrings obtained from the text to determine 
whether it is the name of a specific type of entity; (2) selecting a standard name or a 
unique identifier for one kind of entity [32]. There are already many NER tools availa-
ble for different types of biomedical entities, such as genes/proteins [33], diseases [34, 
35], species [36], mutations [37], chemicals [38, 39] and biological pathways [40]. Still, 
many essential concept types such as RNAs, phenotypes, Chinese Patent Medicines 
(CPMs), and herbal medicines do not have corresponding NER tools.

The task of Relation Extraction (RE) is has been in the focus of research in recent 
years. Due to the inherent complexity of the biomedical text, most relation extrac-
tion systems work at the sentence-based level. Common relationships include pro-
tein–protein interactions [28], drug–drug interactions [41], gene regulatory events 
[42], associations between mutations and diseases [43]. Early relationships used a co-
occurrence approach [44], while pattern-based systems [45] rely on a set of manu-
ally or automatically collected patterns to extract relations and classify relation types 
between entities. Rule-based methods [46, 47] use a set of processes or some heuristic 
algorithms to manually define or build a set of rules based on domain experts and 
automatically generated from the training data. It adds multiple constraints to scope 
specific relationships: for example, BioNLP’09 [48] focused on nine common molecu-
lar events. More recently, with the improvement of the accuracy and expanded avail-
ability of curated corpora, deep learning models are widely used in the field of natural 
language processing. Convolutional Neural Network (CNN) [49], Recurrent Neural 
Network (RNN) [50], Long Short Term Memory Network (LSTM) [41], Capsule Net-
work, CapsNet [51], Graph Neural Networks [52, 53], and BERT [54] are prevalent 
models employed in relation extraction, making great contribution to biomedical text 
mining.
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For the field of traditional Chinese medicine, Manually organized TCM database, 
TCMID [55], TCM-MESH [56], and Chinese medicine network pharmacology ETCM 
[57, 58], TCMSP brings convenience to the research of Chinese medicine. However, to 
the best of our knowledge, there is no text mining tool specifically for Traditional Chi-
nese medicine, and there is also the non-disclosure or incomplete knowledge in stroke-
related knowledge [6–8]. Therefore, in this research, we will enrich the application of 
text mining in the construction of Chinese medicine knowledge, and based on this and 
the-start-of-art, construct a stroke-related knowledge graph.

Methods
In this work, we designed a computational workflow to mine the stroke-related and 
TCM-related literature for the identification of biomedical entities and the relations 
between them. We split stroke-related abstracts into 463,225 sentences, the analysis 
pipeline tags the mentions of the following entities: drugs, chemicals, genes, pathways, 
and diseases, as well as traditional Chinese treatments like Herbs, Chinese Patent Medi-
cines (CPMs), and ingredients. To increase the data set of Chinese medicine on stroke-
related disease, we then split TCM-related abstracts into sentences for extract disease, 
CPM and herbs. We then use several approaches to relations between entities. After ver-
ifying and cleaning of the results, we use NEO4J to construct StrokeKG.

The steps of our workflow are explained below (Fig. 1).

Data source

A search for “Stroke AND treatment OR gene OR Herbs OR TCM” in PubMed resulted 
in 45,080 stroke-related and “Traditional Chinese Medicine” 72,410 TCM related 
abstracts, which we used as a dataset to extract information from. In addition, manu-
ally created databases and annotated corpora, drug-disease relation database: CDR 
[59], CTD [60], gene-disease relation corpus: EU-ADR [42], and TCMID ETCM [57], 

Fig. 1 The workflow for constructing StrokeKG. a Unstructured data search, b structured data download, c 
pre-processing, d Named Entity Recognition, e Relation Extraction, f Knowledge Graph construction
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TCMSP [58] are also the main source of our knowledge graph data. Table 1 details the 
data source of our research.

Pre‑processing

We re-formatted the PubMed abstracts into the PubTator [63] format to match the data 
for NER tools and then split sentences by NLTK [64].

Named entity recognition

We extract mentions of nine named-entity types (diseases, drugs, genes, symptoms, 
pathways, Chinese Patent Medicines (CPMs), Herbs, Chemicals, Ingredients). We use 
state-of-the-art NER methods, including DNorm [34] to extract and normalize disease 
words, tmChem [38] as a chemical named entity identifier, GNormPlus [33] to handle 
both gene mentions and identifier detection, and pathways through PWTEES [40].

We used a pre-trained BiLSTM-CRF [65] model with the Plant-disease corpus [62] to 
build a NER classifier to identify Herbs. The lack of annotated corpora poses a consider-
able challenge to using deep learning methods to build other NERs needed for our study. 
We have therefore developed dictionary- and rule-based methods for other entity types. 
A rule-based method PKDE4J [46] was used to modify the Stanford CoreNLP pipeline 
to extract entities based on drug dictionaries. Which we have collected Symptoms and 
ingredients are recognized by collecting terms from download the CPM database [55] 
and the ingredient database[56], construct a symptoms dictionary, and which are then 
inserted the dictionary into the PKDE4J model applied a dictionary-based method for 
NER.

Table 1 Data resource of our StrokeKG

Stroke MESHID:D020521, cerebrovascular ischemia/Ischemic stroke/ brain ischemia D007511, cerebral ischemia D002545, 
transient ischemic attack(TIA): D002546, haemorrhagic stroke/subarachnoid haemorrhage MESH:D013345, cerebrovascular 
accident(CVA) D002544, Subarachnoid hemorrhageMESH:D01334 D002543

Data source Types Number of entities Number of 
relations

Number of 
documents

PubMed English abstracts – – 52,175 abstracts

CTD [60] Western medicine 
databases

Chemical (19, stroke-
related)

19  (stroke-related) 19 (stroke-related) 
470(total)

CDR [59] Western medicine 
corpus

Chemical (14, stroke-
related)

Chemical (1279, 
total)

Disease (1188, total)

15 (stroke-related)
3116 [42] (total)

10 (stroke-related)
1500 (total)

TCMID TCM databases CPM (681) –(therapeutic)681 –

ETCM [57] TCM databases Gene(10), Herbs 
(498), CPM (3419)

– –

TCMSP [58] TCM databases Gene (63), Herbs 
(114)

– –

DDI corpus [61] Western medicine 
corpus

– Drug-drug:14,281

EU-ADR  [42] corpus Western medicine 
corpus

– Gene–disease:355 100 Medline abstracts

Plant-disease corpus 
[62]

TCM databases Disease:100
Plant:1102

Plant-disease: 
Therapeutic (Treat-
ment):708

Induce(Cause):486

180 abstracts
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To eliminate the occurrence of an entity by accident, we determine the threshold 
based on the number of occurrences of the entity. When the number of occurrences of 
the entity is smaller than 3, We will manually determine whether the entity is related to 
stroke.

Relation extraction

We focus on eleven relationship types as specified in Table  2. These have been taken 
from the existing databases and from existing corpora (see below).

The relation extraction process is shown in Fig. 2. We first use a simple co-occur-
rence method. When two entities appear in the same sentence, we consider that there 
is a particular relationship between them. Secondly, a rule-based method has been 

Table 2 Keyword classification rules and corpus for drugs/TCM/Herbs/chemicals and diseases

Entity pairs Relation types Associated Keywords Corpus

CPM-Disease/Symptoms
Herbs-Disease/Symptoms
Drug-Disease/Symptoms
Chemical-Disease/Symp-

toms

Treatment Therapy, treating, cure, 
remedy Inhibit…

Plant-disease Corpus

Cause Induce, cause, side effect, 
influence, dynamic…

other No special key word…

CPM-Herbs
CPM-Chemicals
Herbs-Chemicals
CPM-Drugs
Herbs-Drugs

advise Avoid, should not be Drug–Drug Interaction 
Corpus

int Interaction, and, between

effect Enhance, against, demon-
strated

mechanism Metabolize, decrease, 
increase

negative no

Entity-Origin Include, contain,

Gene-Disease Positive association (PA) Effect, induce, target EU-ADR

Negative association (NA) Indifference, no

Fig. 2 Pipeline and details about relation extraction
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used to extract ‘evidence’ for the relationship between two entities. Finally, we devel-
oped a machine-learning model to further classify relation types according to existing 
databases or corpora.

• Co-occurrence extraction

 We use NLTK [64] to segment each sentence and match the position of each 
entity in the sentence according to the entity positions determined by multiple 
NER model (see Fig. 2①).

• Rule-based approach
 We used PKDE4J [46] to create a dependency tree containing syntactic and gram-

matical structures. We rely on standard features and structures in sentences that 
may represent relationships and extract the keywords that may express the rela-
tionship between two entities identified via co-occurrence (Fig.  2②). We then 
designed a set of matching rules to classify these keywords to elven relationship 
types (e.g., positive association; therapeutic; induce; etc.) between specific pairs of 
entities (e.g., Gene-Disease; Herb-Chemical) as specified in the existing biomedi-
cal databases (e.g., TCMID [55], CTD database [60]) (as shown in Table 1).

• Extracting relation by Bio-BERT

We chose Bio-Bert [54] as a pre-trained model, which shares potential latent fea-
tures with our data as it was re-trained on biomedical corpora. According to the 
parameter configuration of BioBERT, we use the gold standard data sets [42, 60, 61] as 
the training sets and our Co-occurrence results as the test set and select the result of 
the 20th epoch as the final result of our relation extraction. The corpora for relation-
ship extraction we use can be seen in Table 2.

The co-occurrence method proves that two entities appear in the same sentence, 
indicating that there is a possible relationship between the entities. Rule-based meth-
ods can classify entity relationships well if keywords are extracted. When the key-
words cannot be extracted, we use BioBERT’s classification results, which can classify 
all relationships, but it much depends on the richness of the corpus and the accuracy 
of the model.

Because entity pairs may appear in different sentences, the classification results 
may differ. To find all relations between the pair of two entities, we calculated the 
confidence for the pair related by a particular relation, overall the sentences in which 
that pair of entities co-occur. We select only those relationships with confidence more 
considerably than the threshold to eliminate the noisy relationships that happen by 
accident. Afterward, we analyze the final relationship results for the entity.

Manual annotations for TCM corpus

Entity annotation

To verify the effectiveness of our Chinese herbal medicine related entity mining tool. 
This work mainly focuses on the annotation of herbs and Chinese Patent medicine 
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in 450 TCM-related abstracts. We regard mentions mined by the tool as pre-annota-
tion of entities. Therefore, according to the vocabulary provided by TCMID [55] and 
ETCM [57], we only need to modify the incorrect annotations and add annotations to 
the undetected entities, instead of annotating entities from scratch.

The definition of the target entities we are concerned with is as follows:
Chinese Patent medicine: including clinical prescription, TCM formulas and CPM.

Relation annotation

In relation annotation task, we only considered two relations between entities. For each 
relationship, we classified the type of relationship based on the two annotation guide-
lines. Once two target entities appear in the same sentence, we label the relationship 
between them.

Chinese patent medicine-disease this indicates the drug will treat the disease or induce 
the disease. According to Plant-disease corpus, the relationships are divided into 3 cat-
egories: treatment, cause and others.

Evaluation of text‑mined results

The evaluation of NER and RE was to compare the extracted results with the existing 
databases or manually annotated corpus.

For TCM-related NER tools, we compare whether the results we extracted overlap 
with the existing database. Secondly, for CPM entities, we will compare the results by 
dictionary-based tool and the results we manually annotated.

For relation extraction results, also check the overlap of the entity pair we extracted 
with the existing database, and then calculate the correct rate (CR) of relationship clas-
sification in the overlap section.

Knowledge graph construction

The construction of a knowledge graph is a compelling visual representation of enti-
ties and relationships. These are embedded in the knowledge graph to carry informa-
tion about entities and relationships and are widely used in learning tasks to accelerate 
the completion and recommendation of the knowledge graph. By mapping the stroke-
related entities from our results and existing data source (TCMID [55], CDR [66], CTD 
[60], TCMSP [58] and ETCM [57]) in a common ID space, we can combine these triplets 
into one single dataset to construct a comprehensive stroke-related repurposing knowl-
edge graph.

Results
Results statistics

The results mainly include the entities and relations we mined. The statistical results and 
specific results of drugs, chemicals, symptoms, pathways, etc. are shown in Table 3 and 
https:// github. com/ yangx i1016/ Stroke.

Correct rate =
correct classification relationships

Overlapped relationships

https://github.com/yangxi1016/Stroke
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Table 3 Models and results of named entity recognition

Entity type Entity_type/(> 3) Entity_mentions

Disease 3250/2733 220,144

Symptoms 728/485 350,833

Chemical 7062/2246 166,701

Drugs 2156/119 102,072

Chinese Patent medicine 242/manual(265) 914

Herbs 2402/2138 7386

Ingredients 270/170 29,301

Gene 5953/3978( 180,280

Pathway 18,842 105,337

Table 4 Number of relation results by using co-occurrence and PKDE4J

Entity1 Entity2 Relation pairs (unique pairs) Co‑occurrence PKDE4J Keywords

1 CPM Herbs 190 478 120

2 CPM Ingredients 29 5 2

3 CPM Drugs 19 30 9

4 CPM Chemical 220 498 326

5 CPM Symptoms 138 600 371

6 CPM Disease 404/704(CPM-Dis++) 1031/7771 637/5439

7 CPM Pathway 94 22 11

8 CPM Gene 194/982(CPM-Gene++) 118 53

9 Herbs Ingredients 515 1185 311

10 Herbs Drugs 1545 2873 1034

11 Herbs Chemical 2382 3926 894

12 Herbs Symptoms 1222 4927 1974

13 Herbs Disease 2012/12115((Herb-DIS++) 7872 2847

14 Herbs Pathway 1303 2221 841

14 Herbs Gene 1686 17,829 12,938

15 Ingredients Drugs 6775 9485 1337

16 Ingredients Chemical 3718 14,623 1965

17 Ingredients Symptoms 1339 5513 2064

18 Ingredients Disease 341 5224 2008

19 Ingredients Pathway 1932 2652 870

20 Drugs Chemical 225 844 564

21 Drugs Symptoms 9212 27,593 12,888

22 Drugs Disease 14,756 59,924 41,095

23 Drugs Pathway 20,053 23,848 7836

Drugs Gene 22,873

24 Chemical Symptoms 4427 6752 2335

25 Chemical Disease 8835 21,858 10,062

26 Chemical Pathway 33,614 58,426 17,584

27 Symptoms Disease 26,756 101,842 24,683

28 Symptoms Pathway 23,536 53,599 37,897

29 Disease GENE 10,084 84,003 16,668
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Relation extraction results statistics are in Table 4.

Evaluation

Evaluation for NER

Compared with our manually labeled CPM results, the recall, precision and F1-score 
of the rule-based CPM NER are shown in Table 5.

The reason for the low recall mainly because of the lack of abbreviation (CY-Tang: 
Chungsim-Yeunja-Tang) and the different spelling of TCM caused by different pro-
nunciation. (For example, Hwangryun-Hae-Dok-tang and Huanglian-Jie-Du-Tang).

Compare with existing database

To assess how validity the literature-derived knowledge represented data, we com-
pared the results to two Chinese Medicine Pharmacology Knowledge Base: ETCM 
and TCMSP to those obtained in StrokeKG. Including stroke-related CPM, herbs, 
and genes. Figure  3 shows the result of comparison with ETCM [57] and TCMSP 
[58].

Compared with the existing database, our name recognition results partially over-
lap with the existing database, which indicates that our entity recognition results are 

Table 5 F1-score of the rule-based CPM NER tool

Models Recall Precision F1‑score

CPM NER 86.04 94.21 90.06

Fig. 3 The comparison of NER results with ETCM [57] and TCMSP [58]
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effective. More importantly, we have unearthed many stroke-related entities that do 
not exist in the database. Which provides a new direction for future research.

Evaluation for RE

Compared with our manually labeled CPM-Disease relations, the recall, precision and 
F1-score of the CPM-Disease RE are shown in Table 6.

On some relationship pairs, the model cannot judge whether it is a Treatment or a 
Cause, and is classified as Other, which is most of the reason for the error.

As shown in Fig. 4a and Table 7, our mining results include 190 pairs of CPM-Herbs, 4 
pairs of CPM-Ingredients, and 515 pairs of Herbs-Ingredients, compared with the exist-
ing TCMID (only CPM components and Herbs component table) database, there are 
275 pairs of relationships that overlap and the correct rate of the relationship classifica-
tion results is 91.42%. Secondly, our mining results include 404 pairs of CPM-Disease 
(with 704 CPM for stroke-related disease) compared with TCMID (only comparing 
whether herbal medicine has a therapeutic effect on the disease). The rate is 84.37%. The 
correct rates of the relation between genes-diseases and drugs-diseases are 90.47% and 
88.86%, respectively.

To determine if classification of overlaps can and made Table 8.

Table 6 F1-score of the CPM-Disease RE tool

Models Recall Precision F1‑score

PKDE4J + BioBERT 88.92% 80.06% 84.26%

Fig. 4 The part of our mining results that is a duplicate (comparable) with the existing database. a The 
relation between CPM-Herbs, CPM-Ingredients, and Herbs-Ingredients (Comparative database: TCMID). 
b The relation between CPM-Disease, Ingredients-Disease, and Herbs—Disease (Comparative database: 
Plant-disease). c The relation between Drugs-Disease and Chemical-Disease(Comparative database: CTD: 
Chemical-Disease)

Table 7 The correct rate of our RE results

Relation Comparative database number 
of relation 
overlapped

Number 
of correct 
classification

Correct rate

CPM-Herbs, CPM-Ingredi-
ents, and Herbs-Ingredi-
ents

TCMID, TCM-Mesh 275 269 97.81%

CPM-Disease, Ingredients-
Disease, and Herbs–Dis-
ease

Plant-Disease 687 621 90.39%

Gene-Disease CTD Gene-Disease 378 342 90.47%

Drugs-Disease and Chemi-
cal-Disease

CTD + CID: Chemical-
Disease

3922 3485 88.86%
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By detailed analysis, we found our relation extraction method can accurately extract 
two entities in the same sentence, but there will be errors in the classification of the rela-
tions. The main reason is the inability to identify keywords in relation extraction.

At the same time, the other purpose of the construction of our knowledge graph is 
to extract knowledge that may be useful but not included in the existing data set in the 
vast ocean of data. For this, we compare the size of the data set with the existing bio-
medical common knowledge base and proposed new possible clinical medical research 
directions.

StrokeKG

StrokeKG (http:// 114. 115. 208. 144: 7474/ brows er/) contains a total of 46,983 entities 
belonging to K = 9 entity-types. The type-wise distribution of the entities. StrokeKG 
contains a total of 157,302 triplets belonging to R = 30 edge-types with 659,838 proper-
ties. A part of the results, as shown in Fig. 5a, using entities as graphs nodes, and the 
entities contain entity ID, entity name, and standard classification (MESH). As shown in 
Fig. 5b, the PMID number of the article where two entities co-exist is used as the edge of 
the graph. In particular, the edge also contains the keyword (RelationKeyword) extracted 
by PKDE4J and the relationship classification result (RelationType) based on the BERT 
model.

To enhance the effectiveness of our knowledge graph, we also annotated the reli-
able 32,031 nodes of 9 types and 4,800 relationships of 16 types with evidence from 
the entirely correct part of the evaluation results and the information in the existing 
database.

Discussion
Detail results of NER and RE

Stroke‑related disease/symptoms

In total, we mined 4210 kinds of diseases (401,644 entity mentions) in downloaded 
documents. (Results detail shows in Additional file  1) According to our results, the 
expression of stroke in related literature includes synonyms(e.g., Apoplexy  (105), Brain 
ischemia (605), Cerebral ischemia (3183), Cerebrovascular Accident (227), Hemorrhage, 
Transient Ischemic Attack), abbreviations (e.g., CVA, TIA (722)), lexical changes, and 
word order changes. The generation of a stroke may be related to other diseases, such 
as atrial fibrillation (MESH:D001281,2732) diabetes (MESH:D006973, 2571), heart 
disease(MESH:D006333, 2590) etc., or it may have some sequelae after a stroke, such 

Table 8 Comparison of the text mining results of Drug-disease relation and existing databases 
(CID + CTD)

Relation in CID + CTD database Relation in our results

Treatment Cause Other Total

Treatment/therapeutic 1193 3 318 1514

Cause/induce 0 65 6 71

Other 82 28 2227 2337

Total 1275 96 2551 3922

http://114.115.208.144:7474/browser/
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as acute gastrointestinal bleeding, hypertension, cerebral heart syndrome, pulmonary 
infection, and acute Pulmonary edema, etc. There are 728 types of symptoms (350,833 
mentions), (Results detail shows in Additional file 2) Among them, aging (4103) men-
tioned in the 4041 abstract, which is also consistent with the fact that 64% of strokes 
occur in people aged 55 to 75 years. Virus (731) infection is a possible factor for sudden 
stroke. At the same time depression (1067), anxiety (301), and other unfavorable psycho-
logical conditions are also common complications that we need for stroke patients.

Stroke‑related gene and relation between stroke‑genes and stroke‑related disease‑genes

Gene mutations are related to the incidence of stroke. By relation extraction in disease-
genes, we found 5953 types of genes  (included 180,280 mentions). We linked 1238 

Fig. 5 Screenshots of our knowledge graph. a Overall schema, b An example of details about the entity. c 
The relation between Danggui and acute cerebral infarction
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diseases and 1574 genes, created 10,094 relationships. The results show that small 
changes in 588 genes can affect the risk of stroke and nearly 1000 genes affect stroke-
related diseases. Specifically, changes in ACE (Angiotensin Converting Enzyme) (803), 
Collagen Binding Protein (437), or MTHFr (326) affect the risk of stroke. Secondly, 
VEGF (558) can be used as a drug target for the treatment of stroke patients. At the same 
time, the regulation of the brain protein of UCHL1, Hypoxia-inducible factor 1alpha 
(HIF-1α, 239) may be crucial for how nerve cells repair themselves after a stroke.

Western medicine for treating stroke and stroke‑related disease

tmChem system successfully identified 11,129 types of Chemical entities (201,234 men-
tions) from the abstracts we downloaded. Among them, Ticlopidine, Nimodipine, Triph-
enyltetrazolium chloride has been mentioned many times and are ingredients contained 
in various medicines for the treatment of stroke and related diseases. It can be seen from 
the number of mentions that the aspirin (1475) is main chemical for relieving/ alleviat-
ing the risk of stroke, and angiotensin (435) causes vasoconstriction and increased blood 
pressure, which ultimately leads to stroke. Secondly, oxygen (2290), iron (1524) calcium 
(1918), glucose (1193) cholesterol (1177), nucleotide (1144), the index of these main 
compounds on the impact of human stroke and related diseases is the most concerned 
by the medical community.

According to the drug list provided by Drugbank, we have normalized and classified 
2156 kinds of drugs for entities. In addition to the individual elements of statistics in the 
chemical, The drugs with the greatest impact on stroke are aspirin (DB00945,1475), war-
farin (DB00682,1034), clopidogrel (DB00758,666).

TCM for treating stroke and stroke‑related disease

We have identified 294 Chinese patent medicines that have played a role in the pre-
vention and treatment of stroke and related diseases. From our mining results, 
GUALOUGUIZHI DECOCTION (10), KUDIEZIINJECTION(10), DANHONGINJEC-
TION(20), and BUYANGHUANWU DECOCTION(36) are potent medicine in treat-
ing stroke. We also extracted 420 species of Herbs (11,671 mentions). DAN-SHEN (58), 
Chuan-Xiong (50), Dang-Gui (23), Huang-Lian (21), and Bai-Fu-Zi (19) are in various 
Chinese patent medicines or prescriptions for the treatment of stroke and related dis-
eases. In ingredients extraction, except the ingredients like glucose (1947) cholesterol 
(1394) glutamate (767) dopamine (478), the unique ingredients in Chinese herbal medi-
cine such as Hyperin (265) and catechol (207) are important for treating stoke-related 
diseases.

Pathways

In our results, a total of 105,337 pathways mentions were identified. In the subsequent 
relation extraction process, we use the results for analyzing what kind of molecular pair 
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does the chemical in the medicine or the herbal ingredient play in the disease and iden-
tify what the key genes and pathways involved in stroke-related diseases are.

For example, the ERK1/2 activity generated by cytokines and free radicals or other 
inflammatory factors after stroke may worsen ischemic damage, whereas the ERK1/2 
activity produced by exogenous growth factors, estrogen, and preconditioning favors 
neuroprotection.

Discover possible existing CPM to treat stroke

StrokeKG Construction can discover possible existing drugs/CPM/herbs to treat 
stroke-related diseases to reduce the risk of stroke. Such a task can be expressed as a 
direct link prediction between the drug and disease entity, or indirectly expressed as a 
link between any pair of biological entities involved in a particular pathway. For exam-
ple, 31348992 Intersection analysis between DZXXI’s putative targets with ischemic 
stroke-associated genes identified two important targets (PTGS1, PTGS2) (Fig. 6).

Conclusions
In this study, we analyzed stroke-related literature with natural language processing, 
including named entity recognition and relation extraction. We showed that the-
state-of-the-art text mining tools could efficiently extract the critical information hid-
den behind the unstructured data in the biomedical domain.

Through the knowledge base and knowledge graph, we have a clearer understand-
ing of stroke-related diseases, symptoms, gene mutations that cause stroke, and 
the vital role of Chinese and Western medicine in preventing and treating stroke. 
We constructed StrokeKG, representing the relation among stroke-related entities 
successfully.

Fig. 6 An example of expressed as a link between any pair of biological entities
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In future research, we will optimize the relationship mining model in the field of 
biomedicine, apply the model to all aspects of various diseases, and establish a larger 
and more comprehensive map of medical knowledge.
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