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Abstract

Background. Pairwise and network meta-analyses using fixed effect and random effects models are commonly
applied to synthesize evidence from randomized controlled trials. The models differ in their assumptions and the
interpretation of the results. The model choice depends on the objective of the analysis and knowledge of
the included studies. Fixed effect models are often used because there are too few studies with which to estimate the
between-study SD from the data alone. Objectives. The aim of this study was to propose a framework for eliciting
an informative prior distribution for the between-study SD in a Bayesian random effects meta-analysis model to gen-
uinely represent heterogeneity when data are sparse. Methods. We developed an elicitation method using external
information, such as empirical evidence and expert beliefs, on the ‘‘range’’ of treatment effects to infer the prior dis-
tribution for the between-study SD. We also developed the method to be implemented in R. Results. The 3-stage eli-
citation approach allows uncertainty to be represented by a genuine prior distribution to avoid making misleading
inferences. It is flexible to what judgments an expert can provide and is applicable to all types of outcome measures
for which a treatment effect can be constructed on an additive scale. Conclusions. The choice between using a fixed
effect or random effects meta-analysis model depends on the inferences required and not on the number of available
studies. Our elicitation framework captures external evidence about heterogeneity and overcomes the assumption
that studies are estimating the same treatment effect, thereby improving the quality of inferences in decision making.
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Evidence of clinical effectiveness can arise from multiple
sources. Pairwise meta-analysis (MA) is an established
statistical tool for estimating the relative efficacy of 2
interventions evaluated in randomized controlled trials.
In the absence of head-to-head studies, network meta-
analysis (NMA) can be used to synthesize all available
evidence and make simultaneous comparisons between
treatments.

A pairwise MA and NMA can be conducted using a
fixed effect or a random effects model. These models dif-
fer in their assumptions as well as in the interpretation of
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the treatment effects.1–4 The choice of which model to
use depends on the objective of the analysis and knowl-
edge of the included studies. In this paper, we investigate
the circumstances when and rationale for using these 2
models in single technology appraisals (STAs) submitted
to the National Institute for Health and Care Excellence
(NICE), which appraises health technologies and pro-
vides guidance to the National Health Service in
England. We also propose how to overcome the problem
of imprecise estimates of the heterogeneity parameter in
the absence of sufficient sample data.

A fixed effect model would be appropriate if the
objective is to determine whether the treatment had an
effect in the observed studies (i.e., a conditional infer-
ence) or it would be appropriate when it is believed that
the true treatment effects in each study are the same.
Heterogeneity is expected in MAs because they combine
studies that have clinical and methodological heterogene-
ity.5 A random effects model would be preferred because
it allows for heterogeneity in the treatment effects among
the studies and allows the results to be generalized
beyond the studies included in the analysis. Nevertheless,
fixed effect models are still commonly used even when
heterogeneity is expected.

Parameters can be estimated from either a frequentist
or Bayesian perspective. The Bayesian approach pro-
vides more natural and useful inference, can incorporate
external information, and is ideal for problems of deci-
sion making. There has been an increase in the use of
Bayesian evidence synthesis in submissions to NICE,
perhaps primarily because the evidence synthesis
Technical Support Documents (TSDs) issued by the
NICE Decision Support Unit (DSU)6–11 advocate the
Bayesian approach.

A random effects model requires an estimate of the
between-study SD. When the number of included studies
is small, the estimate of the between-study SD will be
highly imprecise and biased in a frequentist framework
such as using DerSimonian and Laird estimate.1

Similarly, a Bayesian analysis of only limited data, using
a standard, vague or weakly informative prior distribu-
tion for the between-study SD will give implausible pos-
terior distributions.12 A proper Bayesian analysis
requires genuine specification of the prior distribution
using external evidence, typically including experts’
beliefs. Note that a judgement that a posterior distribu-
tion is implausible by an individual suggests that he/she
must have some prior beliefs to make elicitation feasible.

NICE DSU TSD7 suggests comparing goodness-of-fit
of both fixed effect and random effects models using the
deviance information criteria (DIC).13 However, when

the number of studies is small, it is likely that either
model would at least provide an adequate fit to the data,
specifically when the data are not sufficiently informative
to learn about the between-study SD. Rather than
goodness-of-fit, the issue is therefore how best to appro-
priately represent uncertainty about the treatment effect.
When heterogeneity is expected, a fixed effect model is
likely to be overconfident, and a random effects model
with a vague prior is likely to be underconfident: a com-
promise between these 2 extremes is needed, which can
be achieved with a more informative prior distribution.

Higgins et al.14 presented an example of a Bayesian
MA of MAs to create a predictive distribution for the
between-study variance in gastroenterology. Other
authors have generated predicative distributions for the
heterogeneity expected in future MAs in more general
settings using data from the Cochrane Database of
Systematic Reviews for a log odds ratio (LOR),15–17 and
a standardized mean difference.18 Smith et al.19 con-
structed an informative prior distribution for the
between-study variance using a gamma distribution by
assuming that odds ratios (ORs) between studies have
roughly one order of magnitude spread, and that it is
very unlikely that the variability in treatment effects
between studies varies by 2 or more orders of magnitude.
Spiegelhalter et al.20 suggested that a half-Normal distri-
bution could be used as a prior distribution for the
between-study SD and showed how to interpret the prior
distribution. NICE DSU TSD8 also suggested using an
informative half-Normal prior distribution with a mean
of 0 and a variance of 0.322, representing the belief that
95% of the study-specific ORs lie within a factor of 2
from the median OR for each comparison. Both half-
Normal prior distributions are proposed for treatment
effects measured by ORs. To the best of our knowledge,
there has been little work on the formal elicitation of
experts’ beliefs for the between-study SD in random
effects MA models.

To investigate the application of fixed effect and ran-
dom effects models in submissions to NICE, we con-
ducted a review of all the STAs completed up to 31
October, 2016. (Although this is a selective set, we believe
the findings likely to be consistent with the rationale for
analyses by international pharmaceutical companies to
other HTA decision makers.) The results of the review
are presented in Section 2. In Section 3, we propose novel
methods to construct an informative prior distribution
for the between-study SD using external information for
all common types of outcome measures. Examples of re-
analyzing 2 STAs using the proposed elicitation frame-
work are given in Section 4.
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A Review of NICE STAs

Two hundred and thirty-nine NICE STAs were com-
pleted between September 2005 (when the STA process
was introduced) and 31 October 2016. After assessment
by SR, a final set of 183 STAs was identified for review.
Figure 1 presents a flow chart of the identification, inclu-
sion, and exclusion of STAs. We have only reviewed the
original companies’ submissions, and not considered
additional analyses that may have occurred during the
appraisal process.

Thirty-eight STA submissions used pairwise MAs with
a single approach being applied within each submission:
25 (66%) used a frequentist approach to estimate para-
meters and make inferences; 8 (21%) pooled individual
patient-level data across studies; and, in 5 cases (13%), it
was unclear which method was used. Ninety-three STA
submissions included NMAs (multiple approaches may
have been used in one submission): 71 (76%) of these
used either a Bayesian or a frequentist NMA, 41 (44%)
used Bucher indirect comparisons21, and 1 (1%) didn’t
report the method.

We extracted the rationale for using fixed effect and
random effects model for both pairwise MAs and
NMAs. The findings of the review are presented in Table
1 and are summarized as follows:

� All submissions that performed pairwise MAs used a
frequentist approach, and most that performed
NMAs used a Bayesian approach (90%).

� 71% of the submissions that performed fixed effect
pairwise MAs did not provide a justification for the
model choice. For the submissions that performed
random effects MAs, 60% gave no justification for
the model choice. Fewer submissions using NMAs
provided no justification for the model choice: 25%
and 27% for fixed effect and random effects model,
respectively.

� The most frequently stated reason for the use of a
fixed effect model was that there were too few studies
to conduct a random effects model.

� In some cases, where heterogeneity was noted, there
was an acknowledgement that a random effects
model would be appropriate but it was not used
when there were only few studies.

� Among the pairwise MAs that used a frequentist
approach, the choice of fixed effect or random effects
model was typically assessed using the Q-statistic/I2-
statistic.

� When Bayesian fixed effect and random effects mod-
els were both used in a submission, the most popular

method for choosing the final model was comparing
the DIC statistic for the 2 models (62%).

� Providing either a fixed effect or random effects
model within a sensitivity analysis was observed in
both pairwise MAs (9%) and NMAs (21%) in the
case where both models were used.

� Four submissions performed sensitivity analyses
using different prior distributions for the between-
study SD. TA28822 considered the possibility of using
alternative data sources to inform the prior distribu-
tion but concluded that no suitable sources were
available. TA34123 used a prior distribution informed
using predictive distributions proposed by Turner
et al.16 TA17324 used a half-Normal prior based on a
re-analysis of the data from a previous systematic
review. TA34325 used a half-Normal prior distribu-
tion suggested by NICE DSU TSD.8

Overall, we found that the most frequently stated reason
for the use of a fixed effect model was that there were
too few studies to conduct a random effects model but
not that there was unlikely to be heterogeneity or that a
conditional inference was of interest. This showed that
there is a need for more guidance on properly accounting
for heterogeneity when the number of included studies is
small. We now present a framework for constructing
prior distributions for the heterogeneity parameter using
external information such as empirical evidence and
experts’ beliefs.

General Elicitation Framework

For simplicity, we suppose that there is one female
expert and the elicitation is conducted by a male facilita-
tor. We do not consider issues such as the selection and
training of experts, motivation, and how to elicit a prior
distribution from multiple experts, which are covered
elsewhere.26–28 The general elicitation framework pro-
posed in this section is for performing a pairwise MA.
An extension to the approach for use in NMAs is dis-
cussed later.

We envisage that the elicitation will take place after
specification of the decision problem and completion
of the systematic literature review, with the finding that
few studies satisfy the inclusion criteria for the MA.
The expert making the judgments could be a clinician
or an analyst who conducts the MA. We envisage her
to have expertise specific to the disease area and treat-
ments under investigation. She will be given the infor-
mation on the decision problem, including population,
intervention, control, outcome, and the summary of
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baseline characteristics of the included studies, and is
encouraged to think about any potential treatment
effect modifiers.

Suppose that there are S studies included in the MA,
and that the treatment effect in study i is denoted by di,
for i= 1 . . . S, expressed on some appropriate additive
scale. The expert is required to make judgements about
the likely variability in d1, . . . , dS between studies. For
any 2 studies i and j, one could make judgements about

the relative treatment effect di=dj, i.e., ‘‘the treatment effect
in one study could be x times that of the treatment effect
in another.’’ Alternatively, one could consider the differ-
ence in treatment effects di � dj, i.e., ‘‘the treatment effect
in one study could exceed that in another study by x units’.
In this paper, we consider the former case only, building
on the discussion and analysis by previous authors.19,20 In
the latter case, elicitation methods for variances discussed
by Alhussain and Oakley29 could be considered.

Figure 1 Flow chart showing the identification, inclusion, and exclusion of reviews. STA, single technology appraisal; MTA,
multiple technology appraisal; RE, random effects; FE, fixed effect; MA, meta-analysis; NMA, network meta-analysis; IPD,
individual patient-level data. *Multiple analyses and analyses for multiple outcomes may have been conducted in one submission.
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We assume that d1, . . . , dS ; N d, t2ð Þ, where d is the
average treatment effect in a population of treatment
effects and t2 is the between-study variance, which repre-
sents the heterogeneity in treatment effects between studies.
This is the standard model when di is a LOR, log hazard
ratio, or mean difference.7 We define R to be the ratio of
the 97.5th percentile to the 2.5th percentile of treatment
effects on the natural scale from a population of treatment
effects. When the additive treatment effect estimated in the
MA is on the log scale, we propose to elicit the treatment
effect on the natural scale. For example, if di is a LOR,
then we propose using ORi in the elicitation, which is
exp dið Þ, and R=OR97:5=OR2:5 is the ratio of the 97.5th
percentile to the 2.5th percentile of ORs in a population of
treatment effects, roughly representing the ‘‘range’’ of
ORs. Noting that logR= d0:975 � d0:025, we link R to t via

d97:5 � d2:5 = 2 3 1:96t = 3:92t

) logR= 3:92t

) t =
log Rð Þ
3:92

ð1Þ

We propose asking the expert to make judgements about
R, from which judgements about t can be inferred using
equation (1). However, given the somewhat abstract
nature of R, we suggest providing the less formal defini-
tion to the expert: she is asked to consider the ratio of
the largest to the smallest treatment effect on the natural
scale that could arise over a set of studies (though the
expert should be told that ‘‘largest’’ and ‘‘smallest’’ will
be interpreted as 97.5th and 2.5th percentiles), ignoring
sampling variability within studies.

Table 1 Justifications of Model Choice in Submissions

Method Used (Number of Submissions) Justification N (%)

Pairwise
meta-analysis (38a)

Fixed effect model only (7) No justification 5 (71%)
Check heterogeneity using test statistic 2 (29%)

Random effects model only (10) No justification 6 (60%)
Allow for heterogeneity 3 (30%)
Check heterogeneity using test statistic 1 (10%)

Both models (11b) Not clear which model was a base case 5 (45%)
Check heterogeneity using test statistic 4 (36%)
One model as sensitivity analysis 1 (9%)
Checking inclusion criteria 1 (9%)

Pooling using individual
patient-level data (8)

Unclear (5)
Network
meta-analysis (71a)

Fixed effect model only (24) Insufficient data 17 (71%)
No justification 6 (25%)
Check heterogeneity using test statistic 1 (4%)

Random effects model only (15) Allow for heterogeneity 4 (27%)
No justification 4 (27%)
Sufficient data 2 (13%)
Check heterogeneity using test statistic 1 (7%)
Same model as a previous study 1 (7%)
Count for correlations 1 (7%)
Count for multi-arms 1 (7%)
Unclear 1 (7%)

Both models (34b) Based on deviance information criteria 21 (62%)
One model as sensitivity analysis 7 (21%)
Final model fixed effect because of insufficient data 4 (12%)
Not clear which model was a base case 3 (9%)
Compare the credible intervals 1 (3%)
Presence of closed loops 1 (3%)

Unclear (2)

aMultiple analyses and analyses for multiple outcomes may have been conducted in one submission.
bMultiple reasons for model choice may have been used in one analysis.
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A Three-stage Procedure for Eliciting the Prior
Distribution for the Between-study SD

In some cases, even with adequate training, the expert
may find it difficult to make the judgements about R

that are necessary to obtain a distribution for t.
Consequently, we propose a 3-stage procedure depending
on the judgements that the expert can make. We firstly
present this procedure when the treatment effect is an
LOR, and then discuss modifications for treatment
effects reported on different scales. Instructions for
implementing our method using the R package SHELF30

are given in Appendix 3.

Stage 1: Confirmation of the Need for a Random Effects
Model. The fixed effect model is a special case of the
random effects model, corresponding to the judgement
that P R= 1ð Þ= 1, i.e., the expert is certain that the larg-
est OR is the same as the smallest OR in a set of studies.
The expert is asked to either rule out or accept this case:

� ‘‘Can you be certain that the treatment effects across
the studies will be identical, ignoring within-study
sampling variability?’’

If she is certain that this will be the case, then a fixed
effect model should be used with appropriate justifica-
tion provided. Otherwise, we proceed to Stage 2.

Stage 2: Consideration of an Upper Bound for R. If a
random effects model is deemed to be appropriate, the
expert is then asked if she can provide an upper bound
for R. She is asked:

� ‘‘Let R be the ratio of the largest to the smallest OR.
Are you able to judge a maximum plausible value for
R? Denoting this limit by Rmax, this means that you
would think values of R above Rmax are too implausi-
ble to be contemplated.’’

If the expert’s answer for Rmax is, for example, 10, this
means that she believes that the OR in one study could
be no more than 10 times that of the OR in another, i.e.
one order of magnitude. If the expert is not able to pro-
vide a value Rmax, then we recommend using the prior
distribution proposed by other author.15–17 For example,
Turner et al.16 proposed a prior distribution for the
between-study variance in a general setting with the
treatment effect measured by a LOR,

log t2 ; N �2:56, 1:742
� �

: ð2Þ

If she can provide Rmax, then we proceed to Stage 3. Note
that we do not propose asking for a lower limit for R

because we think experts would typically not want to rule
out the case R= 1 as impossible. The expert could also
provide a lower limit Rmin, if she wished, with Rmin repla-
cing the lower limit of 1 in the following.

Stage 3: Consideration of a Full Distribution for R. We
now ask if the expert judges some values in the range
1,Rmax½ � to be more likely than others, and if she is able
to express her beliefs using the roulette elicitation
method.31 If she is not able to make such judgements,
then we propose using prior distributions proposed by

others,15–17 but now truncated to 0, log (Rmax)
3:92

� �2
� �

.

If she can continue with the roulette method, then the
range 1,Rmax½ � is divided into several equal-width ‘‘bins.’’
The expert is asked to specify her probability of R lying
in a particular bin by placing ‘‘chips’’ in that bin, with
the proportion of chips allocated representing her prob-
ability. The number of chips given to the expert is speci-
fied by the facilitator. For example, if in total 20
chips are used, then each chip represents a probability of
0.05. An illustration is given in Figure 2a. Here, the
expert has chosen Rmax = 10. By placing 5 chips out of
20 in the bin (2, 3], she has expressed a judgement that
P(2\R� 3)= 5

20
.

We suggest fitting either a gamma or lognormal distri-
bution to the elicited probabilities by choosing the distri-
bution parameters to minimize the sum of squares
between the elicited and fitted cumulative probabilities.
The R package SHELF30 will identify the best fitting dis-
tribution out of the gamma and lognormal; although,
there is unlikely to be much difference in the fitted distri-
butions in most practical situations. Given that R has a
lower limit of 1, the package will fit a gamma or lognor-
mal distribution to R� 1. Hence, using a lognormal dis-
tribution, for example, we will have a prior for t specified
via

log R� 1ð Þ; N m, vð Þ,

t =
logR

3:92
,

where m and v are the mean and variance for the elicited
lognormal distribution.
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Feedback

We propose providing feedback to the expert about the
implied distribution of t using the probabilities of
implied low/moderate/high/extreme high heterogeneity,
regardless at which stage in the above procedure the eli-
citation is concluded. Spiegelhalter et al.20 suggested that
values of t between 0.1 and 0.5 are considered as reason-
able heterogeneity in many contexts (what we describe as
moderate), from 0.5 to 1.0 as fairly high heterogeneity
(what we describe as high) and above 1.0 fairly extreme
heterogeneity (what we describe as extreme). The prob-
ability of t in the range of less than or equal to 0.1, (0.1,
0.5], (0.5, 1.0] and above 1.0 will be provided to the
expert. The distribution can be displayed using a kernel
density estimate or histogram of a large sample of ran-
domly generated values of t. An illustration using
SHELF package30 is given in Figure 2b. The probabil-
ities of ‘‘low,’’ ‘‘moderate,’’ and ‘‘high’’ heterogeneity are
approximately 0.03, 0.87, and 0.1, respectively (with neg-
ligible probability of ‘‘extreme’’ heterogeneity) given the
elicited judgements about R in Figure 2a.

Other Types of Outcome Measures

Other scale-free outcome measures include hazard ratio,
relative risk, and ratio of means for continuous out-
comes.32,33 The 3-stage procedure could be used in these
cases; although, it is less clear that the prior distributions

proposed by previous authors15–17 would be appropriate
because the distributions were derived based on empiri-
cal evidence of heterogeneity in ORs in MAs. It is likely
that an elicitation exercise considering a full distribution
for the ratio of treatment effects R (for example, the ratio
of the largest to the smallest hazard ratio among the
studies) would be required in these cases.

When the outcome measure is continuous or ordered
categorical with the MA model using the identity or pro-
bit link functions, the expert may find it difficult to
express beliefs about the ‘‘range’’ of treatment effects
because the continuous measurement is not unit-free and
the probit scale is difficult to interpret directly. We pro-
pose using the method described in Section 3.1 with the
following modification:

1. Dichotomize the response using some appropriate
cut-off c, to define a new treatment effect di on the
OR scale.

2. Considering ORs for the dichotomized response, use
the 3-stage procedure to elicit a prior distribution for
t, the variability in LORs in a population of studies.

3. Given a prior distribution for t, convert this to a
prior distribution for the between-study SD ~t2 on
the original scale (i.e., probit or continuous) via

~t =vt,
with v=

ffiffi
3
p

p
for the probit scale, and v=s

ffiffi
3
p

p
for

the continuous scale, where s is an estimate of an
individual level SD. The estimate could be a

Figure 2 (a) Eliciting beliefs about R with the roulette method. (b) The implied distribution of t, following the elicited
judgements about R shown in (a). The probabilities of ‘‘low,’’ ‘‘moderate,’’ and ‘‘high’’ heterogeneity are in green, yellow, and
orange, respectively (with negligible probability of ‘extreme’ heterogeneity).
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summary measure of the SDs in the included stud-
ies, pooled from included studies, or be obtained
from a single representative study.

Details of the derivation can be found in Appendix 1.

Network Meta-analysis

NMAs typically assume a homogeneous variance
model.7,14,34 A similar elicitation method as described above
can be used to elicit the common heterogeneity parameter
in an NMA. We suggest asking the expert for the ‘‘range’’
of treatment effects R for a pairwise comparison based on
the one that the expert is most comfortable about in expres-
sing her beliefs. When giving feedback to the expert on the
probability that the heterogeneity would be low, moderate,
high, or extremely high, we could ask the expert whether
she would agree with these elicited probabilities for other
pairwise comparisons in the network.

Examples: Reanalysis of Two STAs

We re-analyzed the data from 2 NICE STAs (TA16335

and TA33636) to demonstrate the use of our proposed
method. BUGS code incorporating the different prior
specifications is provided in Appendix 2.

TA16335 was a technology appraisal of infliximab for
treating acute exacerbations in adults with severely active
ulcerative colitis. Data were available from 4 studies of 3
treatments (placebo, infliximab and ciclosporin; Figure
3). The outcome measure was the colectomy rate at 3
mo. A fixed effect model was used in the original

submission. Table 2 presents results from a Bayesian
NMA using a fixed effect model, a random effects model
with a vague prior distribution uniform [0, 5], as used in
Dias et al.,7 and 3 alternative informative prior distribu-
tions: the prior distribution in equation (2), both untrun-
cated and truncated so that Rmax ¼ 10, and an elicited
prior distribution using the proposed method in Section
3. As an illustration, the elicited judgements were those
of the author (SR). Results are presented as the median
with 95% credible and prediction intervals based on
40,000 iterations from the Markov chain after a burn-in
of 60,000 iterations using the software OpenBUGS.37

As expected, the DIC statistics for the 5 models
were fairly similar: 34.72, 33.44, 34.70, 35.19, and 34.60,
and did not provide support for any one model over
another. The fixed effect model showed that there was
evidence that ciclosporin reduced the colectomy rate at 3
mo relative to placebo in the studies included in the
NMA, whereas there was insufficient evidence to con-
clude that infliximab had an effect relative to placebo in
the included studies. As expected, the results of the ran-
dom effects model demonstrated the sensitivity of the
results to the different prior beliefs about the heterogene-
ity parameter. The uniform [0, 5] prior for the heteroge-
neity parameter was not ‘‘updated’’ appreciably by the
data (Figure 4) and gave very different results compared
to the fixed effect model (Table 2). There was a large pos-
terior probability, 0.87, that heterogeneity was extremely
high, equivalent to saying that the probability that the
OR in a study could be 50 or more times that of the OR
in another was 0.87 (The interpretation of the heteroge-
neity parameter can be found in Appendix 1). This is

Figure 3 Network diagram for TA16335 and TA33636 used in the example. The thickness of the line represents the number of
times pairs of treatment have been compared in studies. Empa, empagliflozin; Lina, linagliptin; Sita, sitagliptin; Saxa,
saxagliptin; Can, canagliflozin; Met, metformin; SU, sulphonylurea.
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unlikely to be plausible, and the results using this prior
distribution would not lead to reasonable posterior
beliefs.

Results using empirical evidence as prior distribution
and the elicited prior distributions for the heterogeneity
were much less uncertain than those produced using the
uniform prior distribution but, as expected, differed
depending on which prior distribution was used (Table
2). Using the untruncated lognormal prior, there was a
small posterior probability that heterogeneity was
extremely high, 0.08. The truncated lognormal and eli-
cited prior distributions for the heterogeneity parameter
both provided zero posterior probability of extreme val-
ues for the between-study SD. The truncating eliminated
the possibility of extreme heterogeneity; i.e., the largest
OR in one study could be no more than 10 times the OR
in another study. The elicited prior distribution can be
found in Appendix 3, which resulted in the probability
of heterogeneity being low, moderate, and high as 0.01,
0.85, and 0.14, respectively. The analyses using informa-
tive prior distributions for the heterogeneity parameter
all suggested that ciclosporin reduced the colectomy rate
at 3 mo compared with placebo based on both the cred-
ible and prediction intervals, but the effect of infliximab
v. placebo was inclusive. The credible and predictive
intervals in the analyses using empirical evidence and eli-
cited prior distributions were wider than the fixed effect
interval because of the extra uncertainty but more plausi-
ble than analyses based on the fixed effect model and
random effects model with a uniform prior distribution.

TA33636 was a technology appraisal of empagliflozin
for the treatment of type 2 diabetes mellitus. Data were
available from 6 studies of 8 treatments in combination
with metformin (Met) or metformin and sulphonylurea
(Met+SU) (placebo, 10 and 25 mg empagaliflozin,

linagliptin, sitagliptin, saxagliptin, and 100 and 300 mg
canagliflozin). The outcome measure re-analyzed here is
the change from baseline in body weight for the third
line treatment of type 2 diabetes mellitus at 24 wk. A
fixed effect model was used in the original submission.

Table 2 presents the results of 10 mg empagliflozin +
Met + SU v. placebo + Met + SU and linagliptin +
Met + SU as an illustration. The DIC statistics for the 5
models were again similar: 3.82, 4.94, 4.61, 5.01, and
4.65. The fixed effect model showed that 10 mg empagli-
flozin +Met + SU reduced the change from baseline in
body weight compared with placebo + Met + SU and
linagliptin + Met + SU. When using the uniform [0, 5]
prior distribution for the heterogeneity parameter, there
was more ‘‘updating’’ in this case (Figure 4) but still a
large posterior probability, 0.35, that the heterogeneity
was extremely large. There was a small probability, 0.02,
that the heterogeneity was extremely large when untrun-
cated lognormal was used as the prior. The truncating
eliminated the possibility of extreme heterogeneity in
treatment effects between studies. The elicited prior can
be found in Appendix 3, which resulted in the probability
of heterogeneity being low, moderate and high as 0.06,
0.88, and 0.06, respectively. The analyses using informa-
tive prior distributions for the heterogeneity parameter
all suggested that empagliflzin 10 mg is associated with a
beneficial treatment effect as compared with placebo or
linagliptin (all in combination with Met and SU) based
on the credible and prediction intervals, except for the
prediction interval using untruncated lognormal prior.

Discussion

Our review of NICE STAs showed that 17 (71%) of 24
fixed effect NMAs were chosen on the basis that there

Figure 4 Posterior histogram plot of the between-study SD using prior distribution as uniform [0,5].

540 Medical Decision Making 38(4)



were too few studies with which to estimate the heteroge-
neity parameter, but not that there was unlikely to be
heterogeneity or that a conditional inference was of
interest. A consequence of this is that decision uncer-
tainty may be underestimated. The choice between using
a fixed effect or random effects MA model depends on
the inferences required and not on the number of studies.
Although a fixed effect model is informative in assessing
whether treatments were effective in the observed studies,
when we expect heterogeneity between studies and want
to make unconditional inferences and predictions about
the treatment effect in a new study, a random effects
model should be used.

When heterogeneity is expected, the simple frame-
work we have proposed overcomes the inappropriate
assumption behind the use of a fixed effect model. We
argue that, in the absence of sufficient sample data, a
minimum requirement should be to exclude extreme and
implausible values from the prior distribution and the
common choice of the prior distribution, such as uni-
form [0, 5] or [0, 2], should not be used. We have shown
in the examples that the use of a uniform prior distribu-
tion when data are sparse would result in an implausible
estimate for the heterogeneity parameter and unreason-
able results for the treatment effect.

Our proposed elicitation framework is flexible with
the amount of information provided by an expert. The
minimum information required from the expert is the
maximum possible value of the ‘‘range’’ of treatment
effects on the natural scale. For example, if the additive
treatment effect is an LOR, then the expert is asked
whether the OR in one study could be x times that of
the OR in another and what the maximum plausible
value of x could be. If the expert is not able to provide
any judgments on the ‘‘range’’ of treatment effects,
then empirical evidence, such as a prior distribution
proposed for the heterogeneity expected in future
MAs,15–18 could be considered. When the expert pro-
vides only the maximum value of the ‘‘range’’ of treat-
ment effects, the prior distributions proposed by other
authors15–18 should be truncated accordingly before
use in the analysis. Note that the truncation of the
prior prosed by Rhodes et al.18 requires transformation
between the standardized mean difference scale and
the odds ratio scale. If the expert provides complete
probability judgments, then our proposed framework
could facilitate the elicitation exercise. In terms of pre-
senting the results, we propose reporting the prior and
posterior probabilities of heterogeneity being low,
moderate, high and extremely high rather than simply
as the point estimate and the credible interval, thereby

presenting more information about the consequences
of the chosen prior distribution. We also advocate the
use of prediction intervals for the treatment effects as
proposed by others.2,3,8 Prediction intervals provide a
summary of the treatment effect expected in a new
study, which is more relevant to decision making.

In summary, in the absence of sufficient sample data,
it is important to incorporate genuine prior information
about the heterogeneity parameter in a random effects
pairwise MA/NMA. Eliciting probability judgments
from experts is not straightforward but is important if
the aim is to genuinely represent uncertainty in a justifi-
able and transparent manner to properly inform decision
making. Our proposed elicitation framework uses exter-
nal information, such as empirical evidence and experts’
beliefs, in which the minimum requirement from the
expert is the maximum value of the ‘‘range’’ of treatment
effects. The method is also applicable to all types of out-
come measures for which a treatment effect can be con-
structed on an additive scale.

Supplementary Material

Supplementary material for this article is available on the
Medical Decision Making Web site at http://journals.sagepub
.com/home/mdm.
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