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Abstract

Intrinsically disordered regions (IDRs) defying the traditional protein

structure–function paradigm have been difficult to analyze. The availability of

accurate structure predictions on a large scale in AlphaFoldDB offers a fresh

perspective on IDR prediction. Here, we establish three baselines for IDR pre-

diction from AlphaFoldDB models based on the recent CAID dataset. Surpris-

ingly, AlphaFoldDB is highly competitive for predicting both IDRs and

conditionally folded binding regions, demonstrating the plasticity of the disor-

der to structure continuum.
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The prediction of protein tertiary structure from
sequence has been considered the Holy Grail of struc-
tural biology since at least the 1960's, with generations of
researchers claiming progress. Since 1994, the biennial
Critical Assessment of techniques for protein Structure
Prediction (CASP) experiment has tried to measure the
state-of-the-art and progress in the field. In CASP14,1

AlphaFold has at last demonstrated a breakthrough
thanks to its clever use of machine learning and multiple
sequence alignments.2,3 This is leading to a paradigm
shift for structural biology due to the sudden availability
of orders of magnitude more protein structures.4,5 Alpha-
FoldDB expands the impact further by allowing inter-
ested researchers to browse predictions for proteins in
several major model organisms.6,7 This wealth of infor-
mation is being used to map out less studied parts of the
proteome.8,9 It has highlighted the presence of a consid-
erable fraction of the human proteome with low Alpha-
Fold accuracy scores that may reflect intrinsically

disordered regions (IDRs) in proteins.7,10 IDRs lacking a
fixed tertiary structure are well-known in structural biol-
ogy11 and have been associated with a variety of biologi-
cal functions.12

We have recently described the first round of the Crit-
ical Assessment of Protein Intrinsic Disorder (CAID)
experiment,13 which aims to establish the state-of-the-art
for IDRs in a similar way to CASP. CAID provides two
separate challenges, each using experimental IDR infor-
mation that has been manually curated from the litera-
ture and deposited in DisProt.14 These challenges
represent prediction of IDRs (DisProt) and prediction of
those IDR sub-regions responsible for, mostly transient,
binding to other molecules (DisProt-binding). In both
cases, positive annotation comes from DisProt and nega-
tives are non-annotated residues. To account for incom-
pleteness of IDR annotation in DisProt, CAID defines a
variant of the disorder prediction dataset (DisProt-PDB),
where the negatives are restricted to residues observed in
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the Protein Data Bank (PDB),15 so that experimentally
“uncertain” residues are excluded.

Here, we tested how AlphaFoldDB performs in compar-
ison to other state-of-the-art methods for both disorder and
binding categories. From our results, we will draw some
interesting conclusions regarding the relationship between
IDRs, binding and predicted structures. The assessment was
carried out exactly as detailed in CAID.13 The AlphaFoldDB
predictions were downloaded on July 20, 2021. Only
489 proteins out of the 645 evaluated in CAID were pro-
vided in AlphaFoldDB at that time. The code is implemen-
ted as a Python script and freely available from https://
github.com/BioComputingUP/AlphaFold-disorder. Since
AlphaFoldDB stores predictions for protein tertiary struc-
ture, we first need to establish how it can be used to predict
IDRs. Since we are interested only in a proof-of-principle,
three simple AlphaFold scores were defined as follows.

The authors of AlphaFold already noted how regions
for low predicted accuracy (pLDDT score) are correlated
to IDRs.6 AlphaFold-pLDDT uses 1 - pLDDT as output.
The optimal classification threshold (0.312, representing
pLDDT <68.8%) was selected by maximizing the
F1-Score performance on the CAID DisProt dataset.

Visual inspection shows how AlphaFold tends to pre-
dict regions without stable structure as “ribbons” sur-
rounding the folded core (see Figure 1 for an example).
Intuitively, these residues share a high solvent accessible
surface, which can be used as a proxy to describe the “rib-
bon” structure. A second disorder definition calculates the
relative solvent accessibility (RSA) over a local window
centered on the residue to predict (AlphaFold-RSA). The
DSSP solvent accessibility16 is normalized for each residue
by the maximum accessibility of a fully extended Gly-X-
Gly peptide17 as provided by the BioPython PDB module.18

The optimal local window size (25 residues, that is,
+/�12), was chosen with a grid search (range: 1–50 resi-
dues) resulting in a plateau between 20 and 30 residues.
Mirroring is used in the local window for positions close
to the sequence termini. The optimal classification thresh-
old for AlphaFold-RSA (0.581) was again selected by maxi-
mizing the F1-Score performance on the CAID DisProt
dataset and should be considered an optimistic upper
bound for its performance.

Visual inspection also shows that some “ribbon”
regions have high RSA yet retain some local secondary
structure and have a relatively high pLDDT score, sug-
gesting the possibility to act as disordered binding
regions. The combination of both features can likewise
be used to identify regions with a tendency to be simulta-
neously accessible (RSA) and structured (pLDDT), which
may indicate disordered binding regions or conditional
folding (AlphaFold-Bind). AlphaFold-Bind combines the
previous two scores using the following formula:

AlphaFold_Bind Tð Þ¼

AlphaFold_RSA,

AlphaFold_RSA≤T

TþρLDDT 1�Tð Þ,
AlphaFold_RSA>T

8
>>><

>>>:

with T set to the AlphaFold-RSA classification threshold
(0.581). This ensures values between 0 and 1 by scaling
the score for pLDDT accordingly. The optimal classifica-
tion threshold for AlphaFold-Bind (0.773) was again
selected by maximizing the performance on the CAID
DisProt-Binding dataset. Notice that this is a proof of

FIGURE 1 Example of intrinsically disordered regions and

conditional folding predictions derived from AlphaFold and best

predictors. The human Ephrin-B2 protein (UniProt accession:

P52799) is shown as a representative example to illustrate the

overlap between AlphaFold predictions and various sequence

features. Panel a, the structure of the protein predicted by

AlphaFold and colored by pLDDT score (<50 orange, <70 yellow,

<90 light blue, >90 dark blue). Residue labels indicate annotated

region boundaries. Panel b, database annotations (DisProt

DP01588, PDB, InterPro P52799) and predicted regions (AlphaFold-

pLDDT, AlphaFold-RSA, AlphaFold-Bind, fIDPnn,22 ANCHOR-

219). PDB annotation is generated by combining observed residues

in different PDB experiments. Best predictors were selected based

on their performance against DisProt and DisProt-binding

references. Annotated regions are shown colored according to the

legend on top of panel b (i.e., disorder in red, binding in gold,

structure in blue, other features in gray, while white regions

correspond to no annotation. Per-residue AlphaFold predictions are

provided in Figure S1
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principle implementation only. Performance can likely
be increased using simple measures such as smoothing
over a local window.

We have repeated the entire CAID analysis presented
previously13 by including the three AlphaFoldDB vari-
ants described above, with the full results available as
Appendix S1. As expected, AlphaFold-pLDDT performs
well on the CAID PDB-DisProt dataset6 (see Figure 2a,
Tables S1 and S2). The performance is increased using
AlphaFold-RSA, which has the highest accuracy of all
tested IDR prediction methods. As previously noted, this
definition suggests that intrinsic disorder can be consid-
ered the opposite of globular structure.13 When using the
DisProt definition, the situation changes somewhat (see
Figure 2b, Tables S3 and S4), with AlphaFold-RSA being

among the top five methods. This result can suggest a dif-
ference between low AlphaFold prediction confidence
(as expressed in AlphaFold-pLDDT) and intrinsic disor-
der. Indeed when compared to other methods, both
AlphaFold-RSA and AlphaFold-pLDDT show a lower
precision at low recall (Figure 2c) and a lower TPR at low
FPR (Figure 2d), that is when focusing on the left part of
the precision-recall and ROC curves. This indicates that
the score does not follow disorder confidence, that is,
high score is not predictive of bona fide disorder. When
used to identify fully disordered proteins AlphaFold-
pLDDT and AlphaFold-RSA behave differently, the first
under-predicts and the second over-predicts (Table S7).
AlphaFold-pLDDT always predicts some residual struc-
ture, even if transient.

FIGURE 2 Results for AlphaFold on the three main CAID categories. The results for the DisProt-PDB (n = 646 proteins, panels a,b),

DisProt (n = 646 proteins, panels c, d), and DisProt-binding (n = 646 proteins, panels e, f) references are shown. Performance of predictors

expressed as maximum F1-Score across all thresholds (Fmax) (panels a, c, e) and AUC (panels b, d, f) for AlphaFold (colored), the top 10 best

ranking methods (gray) and baselines (white symbols) are shown. The legend on the right of each panel shows the name of the method

alongside its Fmax or AUC score (f and a, respectively) and coverage (c). Notice how the latter is usually 1.0 for most predictors, but only 0.76

for AlphaFold as predictions for some targets are not available
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Given the good AlphaFold performance in predicting
disorder, we wondered whether it could also be used to
predict binding regions. Conceptually, AlphaFold is not
designed to predict binding regions, being limited to sin-
gle protein chains and intra/protein contacts.3 When the
interaction partner is known and the input properly
adapted, AlphaFold has been shown to predict the struc-
ture of protein complexes with good accuracy.9 This is
possible because inter/chain contacts between interaction
surfaces are well encoded in multiple sequence align-
ments (and in the model) similarly to intra/chain
contacts.

Being able to use AlphaFoldDB to predict disordered
binding regions a priori, that is, without knowing the input
partner, is therefore not expected. Disorder binding is
inherently different from rigid surface-surface interactions,
being transient, often multivalent, and versatile, adapting
to a number of diverse partners.12 Indeed, both AlphaFold-
pLDDT and AlphaFold-RSA do not perform well on this
task (see Figure 2c, Tables S5 and S6). Strikingly, the com-
bination of both scores (AlphaFold-Bind) performs very
well and reaches state-of-the-art performance on par with
ANCHOR219 on the DisProt-Binding dataset.

The ability of AlphaFoldDB to predict IDR binding
regions is not entirely surprising. It has been known for a
while that binding often occurs in parts of the sequence
which have a tendency for disorder close to the decision
threshold. This is at the basis of methods such as
ANCHOR.20 Intuitively, the definition we use for Alpha-
FoldDB falls in the same mold. High solvent accessibility
implies the lack of overall structure, while a higher
pLDDT score implies some residual local structure. From
a biophysical perspective, disorder and secondary struc-
ture are both encoded in the protein sequence.21 As
AlphaFold leverages large sequence alignments to gener-
ate its models,3 it is implicitly encoding sequence conser-
vation in its predictions and this is reflected in the
pLDDT score. Hence, it is logical to be able to identify
regions undergoing conditional folding.

On the other hand, AlphaFoldDB currently does not
provide a thorough description of the structural ensemble
for IDRs.10 The relative movements of residues cannot be
captured with a single static structure. AlphaFold-pLDDT
fails in identifying fully disordered proteins as some
residual structure is always predicted, even if transient
(Table S7). Being able to recognize conditional folding
events by combining pLDDT and solvent accessibility can
however help distinguish in a more coarse grained man-
ner the relative rigidity of the polypeptide chain, separat-
ing spacer regions from those involved in transient
binding.

Finally, the execution time of AlphaFold is two orders
of magnitude slower than methods with similar

performance,13 indicating AlphaFold currently is not the
best choice for fast searches at the genomic scale.

We have shown how AlphaFoldDB can be used both
to predict IDRs as well as the binding regions inside
them. It should be cautioned however that this is not a
true blind test and may overestimate its performance. We
look forward to being able to assess AlphaFoldDB and
similar methods fully as part of the next round of CAID.
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