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ABSTRACT The technological leap of DNA sequencing generated a tension between
modern metagenomics and historical microbiology. We are forcibly harmonizing the
output of a modern tool with centuries of experimental knowledge derived from cul-
ture-based microbiology. As a thought experiment, we borrow the notion of Cartesian
doubt from philosopher Rene Descartes, who used doubt to build a philosophical
framework from his incorrigible statement that “I think therefore I am.” We aim to cast
away preconceived notions and conceptualize microorganisms through the lens of
metagenomic sequencing alone. Specifically, we propose funding and building analysis
and engineering methods that neither search for nor rely on the assumption of inde-
pendent genomes bound by lipid barriers containing discrete functional roles and tax-
onomies. We propose that a view of microbial communities based in sequencing will
engender novel insights into metagenomic structure and may capture functional biol-
ogy not reflected within the current paradigm.
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Cartesian doubt—beginning with radical skepticism and moving forward with as
few external assumptions as possible—can be used to reconceive our approaches

to microbiome science, potentially avoiding biases and conflicts stemming from centu-
ries of culture-based microbiology. In 1641, Rene Descartes published his Meditations
on First Philosophy, in which he upended and tossed aside past philosophical thought
by asking “How do we know what is true?” (1). We propose similarly rethinking micro-
bial communities as revealed via DNA sequencing, reimagining what microbial life may
be instead of assuming what it is based on existing understandings of taxonomy, mi-
crobial genomes, or other culture-centric paradigms.

Consider metagenomic sequencing as an incarnation of Anton van Leeuwenhoek’s
microscope: peering through its “lens,” what do we “see?” A FASTA file certainly does
not display the discrete particles Anton van Leeuwenhoek described: sequencing is a
lens foreign to historical microbiologists’ view of microbes. Nevertheless, microbiome
science routinely maps sequencing reads to “species” and “core” or “accessory” genes.
Why restrict metagenomes to this paradigm, overlaying modern tools with centuries of
single-species-centric experimental work rooted in physical observation? (2, 3). In light of
the potential for epistemic conflicts between culture-based and sequencing-based knowl-
edge, can the field establish an analytic frame that integrates these distinct perspectives?

Gaps between metagenomics (4) and historical microbiology illustrate why micro-
biome scientists should reconsider our core assumptions (Fig. 1A)—though the field
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should not adopt an ahistorical view. Rather, researchers should acknowledge that
contemporary analyses can be biased by prior experiments. For example, phylogenies
(5) employed as buckets for sequence data amalgamate physiological (e.g., via
Bergey’s manual and numerical taxonomy) and genetic markers (e.g., 16S sequence
similarity) built through specific, now-historical perceptions of microbial life (6–10).
This can constrain our understanding of microbiome biology (Fig. 1B). Additionally, “com-
plete” genomes are defined through gold standard cutoffs that prioritize genes on the ba-
sis of their presence in previously assembled sequence data (11). Ecosystem-spanning sig-
nals extraneous to our current frameworks, like horizontal gene transfer (HGT) or
evolutionary drift, look like noise to a framework built for monocultures and not commun-
ities (Fig. 1C). Assembly-based methods for genome discovery may therefore artificially
bias gene content in organisms—or functions—with high rates of HGT. Further, the func-
tional roles of similar sequences are often defined through global percent identity cutoffs,
despite sequence not necessarily correlating to function (12). Finally, bio- and geochemical
reactions exist in multiple spatial and temporal structures that may not be membrane
bound within discrete cells. Overall, microbiologists constructed paradigms to cohere with
pure cultures; a sequencing-centered approach to metagenomics unconstrained by pure-
culture-based paradigms provides an exciting opportunity to rethink assumptions about
the organization of microbial life.

While it is impossible to truly disregard a preconceived framework derived from
hundreds of years of experimentation, Cartesian doubt can address epistemological
conflicts between observations (i.e., raw data) from microbial communities and the
paradigms (i.e., theory) used to interpret them. Consider working from the following
axiom: a metagenome is captured in a data structure representing complete “sequenc-
ing of microbial DNA”—base pair order (e.g., reads), chemical structure (e.g., methyla-
tion), and spatial structure (e.g., via Hi-C [high-throughput chromosome conformation
capture]). In other words, we hypothesize that DNA sequencing will advance such that
it operates at any read length with increased resolution for sequence chemistry and
structure. An unprejudiced view of this idealized sequencing data would allow the field
to, at least temporarily, abnegate the paradigms that currently bind us and identify
novel metagenomic structure.

Microbiome pattern identification is initially an algorithmic task. Modern approaches to
metagenomic data analysis today discard ostensibly junk reads that, for example, do not
map to draft genomes or assemble cleanly; unbiased approaches should first aim to mini-
mize discarded data to avoid biological signal loss (13–16). Methodologically, numerous
tools are used to “project” complex, unordered data into human-readable, low-dimen-
sional space (Fig. 2A). These tools stem mostly from computer science and natural lan-
guage processing, and some have already been applied to metagenomic data (17, 18).
One simple method may be to collect k-mers in individual sequence reads across
time, collapsing them into highly correlated clusters. Researchers could also consider
using extensions of vector-based sequence projection methods, colored de Bruijn
graphs, or metabolic network strategies (19–24). These approaches will advance anal-
yses unconstrained by the paradigm of individual cells containing individual
genomes. However, methods and data structures (e.g., databases indexing the k-
mers of the Sequence Read Archive) should be selected carefully, as different ques-
tions mandate different approaches.

Would a sequence-first approach revise our view of genomes, genes, or codons?
Any algorithm effectively parsing read data will identify conservation in sequence.
Consider an approach that identifies consistent patterns in DNA base pair order. This
may identify codons, as they are conserved and nonrandom. Comparison across reads
could uncover alternate coding schemes as variations within this pattern (25). Perhaps
longer reads would recover genes with little sequence divergence. Genes with high
divergence would likely not cocluster; however, conserved motifs may. Biologists
might have to further reconsider the fundamental units of microbial genetics (26, 27)
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For example, would core and accessory genes—or other patterns entirely—exist at
higher levels of genomic organization (e.g., across metagenomes instead of genomes)?

Analyses based upon existing paradigms may also be limited in their capacities to
capture genomic temporal variation. No microbial genome (or genome within an orga-
nism in any kingdom of life) is static across time and space. Replication forks, structural
rearrangements, CRISPR spacer acquisition and loss, HGT, and plasmids will yield con-
tinually “incomplete” genomes, even if a single read could capture a contiguous unit
of DNA. Unbiased pattern identification that aims to discover fundamental, spatiotem-
porally consistent (or inconsistent) metagenomic units will align our view of microbial
genomics along an entirely new axis, redefining our perspective on microbiomic tem-
poral modulation (Fig. 2B).

We hypothesize that unbiased approaches to sequence analysis would yield a con-
tinuum of sequence-based conservation: sequence substructures (e.g., motifs, genes
conserved at high percent identity) that represent emergent biology, not necessarily
tied to pathways, genes, or genomes. These substructures could, however, be periodi-
cally cooccurring, dynamic (or temporally periodic) elements that may, for example, be
environmentally dependent or affect ecosystem-level functions. This “periodic table of
metagenomic elements,” which would minimize assumptions about meaningful versus
noise reads, could provide increased insight into latent metagenomic structure.

Historically, important biology has been overlooked (e.g., the kingdom of archaea,

FIG 1 The existing paradigm of microbiome science. (A) Our historical view of microbes originates from what is culturable. Bacteria, specifically, have been
mostly observed in clonal isolation and are assumed to have measurable cell-based genomes that can be hierarchically grouped by phylogenetics. (B)
Microbiome scientists (generally) use DNA sequencing to investigate a complex, multikingdom microbial community that is changing across space and
time through a series of complex interactions that are not well represented by this framework, including horizontal gene transfer, cell replication, and
spontaneous mutation. (C) To build a sense of microbial (bacterial in this case) genomes, researchers, for example, assemble sequencing reads into contigs
and bin contigs into “complete,” phylogenetically annotated, genomes. The figure was generated with BioRender.com.
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noncoding DNA, noncanonical amino acids) because technology was not designed to
detect it or because assumptions limited the capacity to interpret biological signals,
even at times construing such signal as contamination (28, 29). The reads that float
between disparate genomes (or nodes that cannot be resolved in de novo assemblies)
should be treated as signals, not hidden by forcing resolution or filtered out by data
handling. Hundreds of thousands of reference microbial genomes derive from metage-
nome-assembled genomes (MAGs) built using culture-based “gold standards,” which
may exclude genes (e.g., conjugation systems) (30) or may amplify genomic features
like random mutation, HGT, or doubling under the guise of new genome discovery.
Finally, considering beyond base pair order-focused approaches will facilitate the
incorporation of alternative sequencing data (e.g., Hi-C) into our understanding of
metagenomic communities, their meta-phenotypes (e.g., colonization resistance), and
their diversity (e.g., bacteria, fungi, and viruses).

Applying Cartesian doubt to microbiome science has numerous applications to
rethinking the rules of life for microbiomes, ranging from our view of metagenomic
DNA substructure to the microbial species concept to the tools used to work with
metagenomes. We challenge the scientific and funding communities to pursue three
efforts in particular. First, since microbial metabolism is not bounded by lipid barriers
in a community setting, neither should our metagenomic paradigm. Scientists need to
extend (20, 22, 23, 31, 32) and create new algorithms that integrate across sequencing

FIG 2 Discovering new frameworks with Cartesian doubt. We propose using Cartesian doubt to consider sequencing data (referring to a range of multi-
omic technologies) and how unbiased pattern recognition (A) can result in a cell-agnostic, sequencing-based paradigm that would be complementary to
but unguided by the experimental history of microbiology (B). Combined with novel wet-lab techniques working within this new view of metagenomics,
microbiome scientists could thereby reveal potentially unknown biology outside the scope of our current framework (C). The figure was generated with
BioRender.com.

Perspective

September/October 2021 Volume 6 Issue 5 e00574-21 msystems.asm.org 4

https://msystems.asm.org


modalities and consider metagenomes as greater than sums of their parts. Second,
theory and empirical data collection (i.e., experimental practice) need to inform each
other. Currently, the field’s assumptions constrain methodological development. If
microbiological theory were less historically biased, further (33–35) wet-lab techniques
for operating on different units of microbial life could be developed, perhaps extend-
ing on current synthetic community work but relying more on enrichments of func-
tional consortia or independent HGT elements (Fig. 2C). Data interpretation methods
are also needed, such as theoretical modeling (20) and algorithms operating on k-mers
and microbiome metabolism. Finally, “gold standards” must be defined only in the
context of a particular research question, avoiding claims regarding universality, as
doing so obscures assumptions that may be invalid in context (e.g., .95% sequence
identity when comparing genes or “complete” genomes).

Minimizing assumptions will add complementary insight to current paradigms
while adding richness to our understanding of the functional organization of complex
microbiomes. Indeed, Cartesian doubt’s true power is accommodating many different
perspectives, not necessarily unveiling some grand truth, but rather adjusting refer-
ence points through complementary scientific lenses. The historical model of microbi-
ology has gotten us extremely far, and its value cannot be overlooked. However, while
we all stand on the shoulders of giants, it is occasionally prudent to consider the
ground beneath our feet.
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