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Abstract: We study entropy inequalities for variables that are related by functional dependencies.
Although the powerset on four variables is the smallest Boolean lattice with non-Shannon inequalities,
there exist lattices with many more variables where the Shannon inequalities are sufficient. We search
for conditions that exclude the existence of non-Shannon inequalities. The existence of non-Shannon
inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of
a group. In order to formulate and prove the results, one has to bridge lattice theory, group theory,
the theory of functional dependences and the theory of conditional independence. It is demonstrated
that the Shannon inequalities are sufficient for planar modular lattices. The proof applies a gluing
technique that uses that if the Shannon inequalities are sufficient for the pieces, then they are also
sufficient for the whole lattice. It is conjectured that the Shannon inequalities are sufficient if and only
if the lattice does not contain a special lattice as a sub-semilattice.
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1. Introduction

The existence of non-Shannon inequalities has received much attention since the first inequality
of this type was discovered by Zhang and Yeung [1]. The basic observation is that any four random
variables X, Y, Z and W satisfy the following inequality:

2I (Z; W) ≤ I (X; Y)+ I (X; Z ⊎W)+ 3I (Z; W ∣ X)+ I (Z; W ∣ Y) . (1)

Here, C ⊎D denotes the random variable that takes a value of the form (c, d) if c = C and d = D.
As usual, I (⋅; ⋅) and I (⋅; ⋅ ∣ ⋅) denote mutual information and conditional mutual information given by:

I (X; Y) =H (X)+ H (Y)− H (X ⊎Y) , (2)

I (X; Y ∣ Z) =H (X ⊎ Z)+ H (Y ⊎ Z)− H (X ⊎Y ⊎ Z)− H (Z) . (3)

where H denotes the Shannon entropy. The inequality (1) is non-Shannon in the sense that it cannot be
deduced from the positivity, monotonicity and submodularity of the entropy function on the variables
X, Y, Z, and their joins, i.e., satisfaction of the following inequalities:

Positivity H (X) ≥ 0 , (4)

Monotonicity H (X ⊎Y) ≥ H (X) , (5)

Submodularity H (X ⊎ Z)+ H (Y ⊎ Z) ≥ H (X ⊎Y ⊎ Z)+ H (Z) . (6)
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Positivity and monotonicity were recognized by Shannon [2], while submodularity was first
observed by McGill [3]. It is easy to show that any inequality involving only three variables rather
than four can be deduced from Shannon’s inequalities [4]. The powerset of four variables is a Boolean
algebra with 16 elements, and any smaller Boolean algebra corresponds to a smaller number of
variables, so in a trivial sense, the Boolean algebra with 16 elements is the smallest Boolean algebra
with non-Shannon inequalities.

In the literature on non-Shannon inequalities, all inequalities are expressed in terms of sets of
variables and their joins. Another way to formulate this is that the inequalities are stated for the
free ∪-semi-lattice generated by a finite number of variables. In this paper, we will also consider
intersections of sets of variables. We note that for sets of variables, we have the inequality:

I (X; Y ∣ Z) ≥ H (X ∩Y ∣ Z) . (7)

Inequality (7) has even inspired some authors to use I (⋅ ∧ ⋅) as notation for mutual information.
Although non-Shannon inequalities have been known for two decades, they have found

remarkably few applications compared with the Shannon inequalities. One of the reasons is that
there exists much larger lattices than the Boolean algebra with 16 elements for which the Shannon
inequalities are sufficient. The simplest examples are the Markov chains:

X1 → X2 → X3 → ⋅ ⋅ ⋅→ Xn (8)

where any variable Xj is determined by its predecessor, i.e., the conditional entropies H (Xj+1 ∣ Xj) are
zero for j = 1, 2, . . . , n − 1. For such a chain, one has:

H (X1) ≥ H (X2) ≥ H (X3) ≥ ⋅ ⋅ ⋅ ≥ H (Xn) ≥ 0. (9)

The inequalities (9) are all instances of the entropy function being monotone, and it is quite clear
that these inequalities are sufficient in the sense that for any sequence of values that satisfies these
inequalities, there exists random variables related by a deterministic Markov chain with these values
as entropies.

In this paper, we look at entropy inequalities for random variables that are related by functional
dependencies. Functional dependencies give a partial ordering of sets of variables into a lattice.
Such functional dependence lattices have many applications in information theory, but in this paper,
we will focus on determining whether a lattice of functionally-related variables can have non-Shannon
inequalities. In order to achieve interesting results, we have to restrict our attention to special classes
of lattices.

Entropy inequalities have been studied using matroid theory, but finite matroids are given by
geometric lattices, i.e., atomistic semi-modular lattices (see the textbook of Stern [5] for definitions).
For the study of non-Shannon inequalities, it is more natural to look at general lattices rather than
geometric lattices because many important applications involve lattices that are not atomistic or not
semi-modular. For instance, a deterministic Markov chain gives a lattice that is not atomistic. It is
known that a function is entropic if and only if it is (approximately) equal to the logarithm of the index
of a subgroup in a group [6]. Therefore, it is natural to study entropic functions on lattices and their
relations to subgroup lattices.

In this paper, we bridge lattice theory, database theory and the theory of conditional independence,
but sometimes, the terminology in these fields does not match. In such cases, we give preference to
lattice theory over database theory and preference to database theory over the theory of conditional
independence. For instance, there is a property for closure operators that is called extensivity in the
theory of lattices. We translate extensivity into a property for functional dependence, and it turns
out that extensivity can be used instead of the property for functional dependences, which is called
augmentation. Extensivity is apparently a weaker condition than augmentation, but together with
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the properties called monotonicity and transitivity, they are equivalent on finite lattices. Finally,
we translate extensivity from functional dependencies to separoid relations that model the concept
of conditional independence. In the literature on conditional independence, extensivity has been
termed “normality” without any explanation why this term is used. We called it extensivity
because it is equivalent to the notion of extensivity in lattice theory, which we consider as a more
fundamental theory.

The paper is organized as follows. In Section 2, we describe the link between lattice theory
and the theory of functional dependences in detail. We demonstrate how properties of closure
operators associated with sub-semilattices correspond to the properties of functional dependence that
are normally called Armstrong’s axioms. In Section 3, we describe positive monotone submodular
functions (polymatroid functions) and how they lead to separoid relations on lattices. These separoid
relations generalize the notion of conditional independence known from Bayesian networks and similar
graphical models. We demonstrate how properties of separoid relations correspond to properties of
functional dependences.

In Section 4, we describe entropy functions on lattices and how they correspond to subgroup
lattices of a group. We conjecture that the Shannon inequalities are sufficient for describing entropic
polymatroid functions of a lattice if and only if the lattice does not contain a special lattice as a
sub-semilattice. In Section 5, we develop some technical results related to “gluing” lattices together.
The gluing technique is very useful for planar lattices, and in Section 6, we demonstrate that entropic
functions on planar modular lattices can be described by Shannon’s inequalities.

We finish with a short discussion, where we outline some future research directions. There is one
appendix with some additional comments related to Armstrong’s axioms. These are mainly intended
for readers that are familiar with the theory of functional dependencies in databases. A second
appendix contains a long list of lattices that are used to document that polymatroid functions on
lattices with seven or fewer elements can be described by Shannon’s inequalities.

Some of the results presented in this paper have been published in preliminary form and without
proof [7,8], but since then, most of the results have now been strengthened or reformulated. In this
paper, all proof details will be given.

2. Lattices of Functional Dependence

In this section, we shall briefly describe functional dependencies and their relation to lattice
theory. The relation between functional dependence and lattices has been studied [7,9–13]. The relation
between lattices and functional dependencies is closely related to minimal sets of Shannon-type
inequalities [14,15]. Relations between functional dependencies and Bayesian networks have also been
described [8,16]. Many problems in information theory and cryptography can be formulated in terms
of functional dependencies.

Example 1. Consider a group consisting of n agents. One might be interested in giving each agent in the group
part of a password in such a way that no single agent can recover the whole password, but any two agents are
able to recover the password. Here, the password should be a function of the variables known by any two agents,
but must not be a function of a variable held by any single agent. The functional dependence structure is the
lattice illustrated in the Hasse diagram in Figure 1. The node at the top illustrates the password. Each of the
intermediate nodes represents the knowledge of an agent. The bottom node represents no knowledge.

A ∧-semilattice is a set equipped with a binary operator ∧ that satisfies the following properties:

Commutativity X ∧Y = Y ∧X , (10)

Associativity (X ∧Y)∧ Z = X ∧ (Y ∧ Z) , (11)

Idempotency X ∧X = X . (12)
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For a ∧-semilattice the relation X ∧ Y = X defines a preordering that we will denote X ≤ Y.
If (L,∧) is a semilattice, then we say thatM is sub-semilattice ifM is closed under the ∧ operation.
Let (L,∧) denote a semilattice. Let ↓ X = {Y ∈ L ∣ Y ≤ X}. Then, ↓ (X ∧Y) = (↓ X)∩ (↓ Y). Therefore,
we can identify any finite semilattice with a ∩-semilattice in a powerset. Since we will usually identify
semilattice elements with sets of variables, we will often use ⊆ and ∩ to denote the ordering and the
meet operation.

Figure 1. Hasse diagram of the lattice Mn for n = 5.

In this paper, we will assume that all semilattices and all lattices are finite. If a ∩-semilattice (L,∩)
has a maximal element, then a binary operator ∨ can be defined as:

X ∨Y = ⋂
Z⊇X
Z⊇Y

Z (13)

and then, (L,∩,∨) is a lattice.
Let (L,⊆) denote a lattice with M as a sub-semilattice with the same maximal element as L.

Then, a unary operator cl ∶ L→ L can be defined by:

cl (X) = ⋂
Z⊇X
Z∈M

Z (14)

The operator cl is a closure operator [17], i.e., it satisfies:

Extensivity X ⊆ cl (X) , (15)

Monotonicity X ⊆ Y implies cl (X) ⊆ cl (Y) , (16)

Idempotency cl (cl (X)) = cl (X) . (17)

For any closure operator cl, the element X is said to be closed if cl (X) = X. If X and Y are closed,
then X ∩Y is closed ([18], [Lemma 28]), so the closed elements of a lattice under a closure operator
form a ∩-semilattice.

Proposition 1. Let (L,⊆) denote a finite lattice. Assume that a subset M of L is closed under the meet
operation and has the same maximal element as L. Then,M is a lattice under the ordering ⊆ with the meet
operation inM given by ∩ and join operation inM given by X ⊎Y = cl (X ∪Y).

Example 2. If G is a group, then a subgroup is defined as a subset that is closed under the group operations.
The closure of a subset of G is the subgroup generated by the subset. The lattice of subgroups forms a ∩-semilattice
in the lattice of all subsets of the group. Let G denote a finite group. For any subgroup G̃ ⊆ G, we associate the
variable XG̃ that maps an element g ∈ G into the left coset gG̃. Then, the subgroup lattice of G is mapped into a
lattice of variables where the subset ordering of subgroups is equivalent to functional dependences between the
corresponding variables.
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Proposition 2. If cl is a closure operator on a lattice, then the relation cl(X) ⊇ Y and the relation cl(X) ⊇ cl(Y)
are equivalent. The relation X → Y given by cl(X) ⊇ Y satisfies the following properties.

Extensivity X → Y implies X → X ⊎Y , (18)

Monotonicity X ⊇ Y implies X → Y , (19)

Transitivity If X → Y and Y → Z, then X → Z . (20)

Remark 1. The monotonicity of → is called reflexivity in the literature on databases. We reserve the notion
of reflexivity to the relation X → X, in accordance with the terminology for ordered sets. In database theory,
the property X → X is called self determination.

In the literature on databases extensivity, (18) is replaced by an apparently stronger property called
augmentation, but in a finite lattice augmentation can be proven from extensivity, monotonicity and transitivity.
See Appendix A for details.

If the properties (18)–(20) are satisfied, we say that the relation→ satisfies Armstrong’s axioms [19]

Proof. Assume that cl(X) ⊇ cl (Y). Using extensivity (15), we get cl(Y) ⊇ Y. The transitivity of ⊇ then
gives cl(X) ⊇ Y.

Assume cl(X) ⊇ Y. Then, the monotonicity (16) gives cl(cl(X)) ⊇ cl(Y), and the idempotent gives
cl(X) ⊇ cl(Y).

To prove the extensivity (18) of →, assume that cl(X) ⊇ Y. Using the extensivity (15), we also get
cl(X) ⊇ X. Combining these two inequalities gives cl(X) ⊇ X ⊎Y, as desired.

The monotonicity (19) of → follows directly from the monotonicity (15) of cl.
The transitivity (20) of → follows from the transitivity of ⊇.

If L is a lattice with a relation → that satisfies Armstrong’s axioms, then we say that a lattice
element X is → closed if X → Y implies that X ⊇ Y.

Theorem 1. Let L be finite lattice with a relation→ that satisfies Armstrong’s axioms. Then, the set of→ closed
elements form a ∩-semilattice with the same maximal element as L. The relation X → Y holds if and only if
cl (X) ⊇ Y, where cl denotes the closure operator with respect to the semilattice.

Proof. Assume that X1 and X2 are closed and that X1 ∩ X2 → Y. The monotonicity (19) implies
Xi → X1 ∩X2, and then, the transitivity (20) implies that Xi → Y. Since Xi is closed, we have Xi ⊇ Y.
Since this holds for both i = 1 and i = 2, we have X1 ∩ X2 ⊇ Y, implying that X1 ∩ X2 is closed.
The monotonicity (19) also implies that the maximal element of L is closed so that the set of closed
elementsM forms a ∩-semilattice with a closure operator clM.

Let cl denote the closure with respect toM. We will prove that X → cl (X). Let X1 = X. Assume
that X1 is not → closed. The,n there exists Y1 such that X1 → Y1 and X1 ⊉ Y1. Using the extensivity (18),
we get X1 → X1 ⊎Y2. Define X2 = X1 ⊎Y1. Then, X1 → X2 and X1 ⊂ X2. Iterate this construction so that:

X1 → X2 → ⋅ ⋅ ⋅→ Xn , (21)

X1 ⊂ X2 ⊂ ⋅ ⋅ ⋅ ⊂ Xn . (22)

Since the lattice is finite, the construction must terminate, and when it terminates, Xn is closed.
Using transitivity, we get X → Xn and X ⊆ Xn. Since cl (X) is the smallest closed element greater than
X, we have X → cl (X).

If cl (X) ⊇ Y, then cl (X)→ Y by monotonicity (19), and then, X → Y by transitivity (20). If X → Y,
then cl (X)→ Y. Using that cl (X) is → closed, we get cl (X) ⊇ Y.

We will look at functional dependencies in databases. Assume that a set of records is labeled
by elements in a set A. In statistics records are the individual elements of a sample. For each record
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a ∈ A, the database contains the values of various attributes given by a number of functions from A
to the set of possible attributes. Sets of such functions will be denoted by capital letters, and these
will be our variables. We say that X determines Y and write X → Y if there exists some function f
such that Y(a) = f (X(a)) for any record a ∈ A. Then, the relation → satisfies Armstrong’s axioms.
Armstrong proved that these axioms form a complete set of inference rules [19]. That means that if
a set A of functional dependencies is given and a certain functional dependence X → Y holds in any
database where all the functional dependencies in A hold, then X → Y holds in that database. Therefore,
for any functional dependence X → Y that cannot be deduced using Armstrong’s axioms, there exists
a database where the functional dependence is violated [20,21]. As a consequence, there exists a
database where a functional dependence holds if and only if it can be deduced from Armstrong’s
axioms. Using the result that Armstrong’s axioms are equivalent to the closed sets forming a lattice,
Armstrong’s result is easy to prove.

Theorem 2. For any finite lattice L, there exists a database with a set of related variables such that the elements
of the lattice corresponds to closed sets under functional dependence.

Proof. As the set of records, we take the elements of the lattice L. With each Y ∈ L, we associate a
function fY ∶ L→ L given by fY (X) = Y ∩X. If Y1 ⊇ Y2, then:

fY2 (X) = Y2 ∩X

= Y2 ∩ (Y1 ∩X)
= fY2 ( fY1 (X))

(23)

so that fY2 = fY2 ○ fY1 . Therefore, fY1 → fY2 .
Assume that fY1 → fY2 . Let X1 = Y1 and X2 = Y1 ⊎Y2. Then, fY1 (X1) = fY1 (X2) = Y1, while

fY2 (X1) = Y1 ∩Y2 and fY2 (X2) = Y2. Using that fY1 → fY2 , we get Y1 ∩Y2 = Y2, so that Y1 ⊇ Y2.

We have seen that for a subgroup lattice of a group, there exists a lattice of functional dependence.
The opposite is also true. To each database with attributes related by functional dependence, there is a
group. The construction is as follows. Let A denote a set of records. Let G = Sym(A) be the symmetric
group consisting of permutations of the records. If X is a function on A, then we define the stabilizer
group GX as the set of permutations that leave X invariant, i.e., permutations π ∈ Sym(A) such
that X(π(a)) = X(a) for all a ∈ A. Then, X → Y if and only if GX ⊆ GY. In this way, the functional
dependence lattice of a database can be mapped into a lattice of subgroups of a group.

Combining Theorem 2 with the stabilizers subgroups of the symmetric group of a database,
we get the following result that was first proven in 1946 by Whitman [22].

Corollary 1. Any finite lattice can be represented as a functional dependence lattice generated by subgroups of
a group.

3. Polymatroid Functions and Separoids

Definition 1. On a lattice, the submodularity of a function h is defined via the inequality h (X) + h (Y) ≥
h (X ⊎Y)+ h (X ∩Y). If the submodular inequality holds with equality, we say that the function is modular.
A polymatroid function on a lattice is a function that is non-negative, increasing and sub-modular.

Example 3. Let L be finite atomistic lattice with a ranking function r ∶ L→ R. Then, L is a geometric lattice if
and only if the function r is polymatroid ([5], Corollary 1.9.10).
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For a polymatroid function h on a lattice, one may introduce a function Ih (⋅; ⋅ ∣ ⋅) that corresponds
to conditional mutual information by:

Ih (X; Y ∣ Z) = h (X ⊎ Z)+ h (Y ⊎ Z)− h (X ⊎Y ⊎ Z)− h (Z) . (24)

One can rewrite Ih (⋅; ⋅ ∣ ⋅) as:

Ih (X; Y ∣ Z) = h (X ⊎ Z)+ h (Y ⊎ Z)− h (X ⊎Y ⊎ Z)− h ((X ⊎ Z)∩ (Y ⊎ Z))
+h ((X ⊎ Z)∩ (Y ⊎ Z))− h (Z) .

(25)

Since h is monotone and submodular, we have:

Positivity Ih (X; Y ∣ Z) ≥ 0. (26)

It is straightforward to verify that:

Symmetry Ih (X; Y ∣ Z) = Ih (Y; X ∣ Z) , (27)

Chain rule Ih (X; Y ⊎ Z ∣ W) = Ih (X; Y ∣ W)+ Ih (X; Z ∣ Y ⊎W) . (28)

We will say that a function I(⋅; ⋅ ∣ ⋅) that satisfies positivity (26), symmetry (27) and the chain rule (28)
is a separoid function.

Proposition 3. If I (⋅, ⋅ ∣ ⋅) is a separoid function, then the following property is satisfied.

Monotonicity Y ⊆ Z implies I (X; Y ∣ Z) = 0 . (29)

Proof. Assume that Y ⊆ Z. We can use the chain rule (28) to get:

I (X; Y ∣ Z) = I (X; Y ⊎Y ∣ Z)
= I (X; Y ∣ Z)+ I (X; Y ∣ Y ⊎ Z)
= 2 ⋅ I (X; Y ∣ Z) .

(30)

Hence, monotonicity (29) is satisfied.

The relation Ih (X; X ∣ Z) = 0 is equivalent to h (X ⊎ Z) = h (Z), and this relation will be denoted
X →h Z. The first to observe that toh defines a lattices was Shannon, who published a very short paper
on this topic in 1953 [23]. Shannon did not mention the relation to the theory of functional dependences
because that theory was only developed two decades later. Surprisingly, Shannon’s paper was only
cited once until 2002!

The relation →h satisfies Armstrong’s axioms, and the most instructive way to see this is via
separoid relations. If h is a polymatroid function, then the relation Ih (X, Y ∣ Z) = 0 will be denoted
X ��h Y ∣ Z. Following Dawid et al. [24,25], we say that a relation (⋅ �� ⋅ ∣ ⋅) on a lattice (L,∩,⊎) is a
separoid relation, if it has the following properties:

Monotonicity Y ⊆ Z implies X ��Y ∣ Z , (31)

Symmetry X ��Y ∣ Z implies Y ��X ∣ Z , (32)

Chain rule X ��Y ⊎ Z ∣ W, if and only if X ��Y ∣ W and X �� Z ∣ Y ⊎W . (33)

Remark 2. The term monotonicity was used for a different concept by Paolini [26]. In [24,25], a weaker
condition than monotonicity was used, but their condition together with the chain rule implies monotonicity.
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With this definition we see that ��h is a separoid relation. The properties (31)–(33) should hold
for all X, Y, Z, W ∈ L. In this paper, we are particularly interested in the case where the subsets are
not disjoint. In the literature on Bayesian networks and similar graphical models, the focus has been
on disjoint sets where only the last two properties (32) and (33) are used to define a semi-graphoid
relation [27]. See also [28], Remark 2.5, where it is noted that semi-graphoid relations can be defined
on join semi-lattices.

A long list of properties for the notion of independence was given by Paolini [26], but Studený
has proven that one cannot deduce all properties of statistical conditional independence from a finite
list of axioms [28,29].

Proposition 4. A separoid relation (⋅ �� ⋅ ∣ ⋅) on a lattice satisfies the following properties.

Extensivity X ��Y ∣ Z implies X ��Y ⊎ Z ∣ Z , (34)

Transitivity If X ��Y ∣ W and X �� Z ∣ Y ⊎W, then X �� Z ∣ W . (35)

Remark 3. Property (34), which we call extensivity, was called normality by Paolini [26].

Proof. To prove the extensivity (34), assume that X ��Y ∣ Z, which is equivalent to X ��Y ∣ Z ⊎ Z.
The monotonicity (31) gives X �� Z ∣ Z. The conclusion X ��Y ⊎ Z ∣ Z is obtained by the chain rule (33).

To prove the transitivity (35), assume that X ��Y ∣ W and X ��Z ∣ Y⊎W. The chain rule (33) applied
twice gives X ��Y ⊎ Z ∣ W and X �� Z ∣ W.

In a set of random variables, we note that if Y is independent of Y given X, then Y is a function of
X almost surely. If Y ��Y ∣ X, we write X →�� Y.

Theorem 3. If (L,∩,⊎) is a lattice with a separoid relation (⋅ �� ⋅ ∣ ⋅), then the relation→�� satisfies Armstrong’s
axioms. The relation (⋅ �� ⋅ ∣ ⋅) restricted to the lattice of closed lattice elements is separoid.

Proof. The extensivity (18) of→�� follows directly from the extensivity (34) of ��.
The monotonicity (19) follows directly from the monotonicity (31).
To prove the transitivity of →��, assume that X →�� Y and Y →�� Z. The monotonicity (31) implies

that Z ��X ∣ Z ⊎Y, which by the chain rule (33), implies Z �� Z ⊎X ∣ Y. By the chain rule (33), we have
Z ��Z ∣ Y ⊎X. The monotonicity (31) also gives Z ��Y ∣ Y ⊎X, which together with X →�� Y implies that
Z ��Y ∣ X by transitivity (35). The transitivity (35) then implies Z �� Z ∣ X.

To prove that the relation (⋅ �� ⋅ ∣ ⋅) restricted to the lattice of closed lattice elements is separoid, one
just has to prove that X ��Y ∣ Z if and only if X �� cl�� (Y) ∣ Z if and only if X ��Y ∣ cl�� (Z). This follows
from Armstrong’s results.

The significance of this theorem is that if we start with a separoid relation on a lattice, then this
separoid relation is also a separoid when restricted to elements that are closed under the relation→��.

Theorem 4. Any finite lattice can be represented as a closure system of a separoid relation defined on a powerset.

Proof. For any finite lattice L, one identifies the elements with subgroups of a group G. If the group
G is assigned a uniform distribution, then the variable corresponding to a subgroup will also have a
uniform distribution. With this distribution, a variable is independent of itself given another variable
if and only if the other variable determines the first variable. Therefore, statistical independence
with respect to the uniform distribution on G gives a separoid relation for which the closure is the
original lattice.
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Assume that X and Y are →h closed. Then:

h (cl→h (X ⊎Y))+ h (X ∩Y) = h (X ⊎Y)+ h (X ∩Y)
≤ h (X)+ h (Y) .

(36)

Therefore, h restricted to the →h closed elements is polymatroid. We may summarize these
observations in the following proposition.

Proposition 5. If h is a polymatroid function defined on the lattice (L,⊆), then the relation →h satisfies
Armstrong’s axioms. The function h restricted to the lattice of→h closed elements is polymatroid.

We recall that a pair of point (Y, Z) is said to be a modular pair, and we write YMZ if Y∩Z ⊆ X ⊆ Z
implies that:

(X ⊎Y)∩ Z = X . (37)

If all pairs are modular, we say that the lattice is modular, and we have:

The modular law X ⊎ (Y ∩ Z) = (X ⊎Y)∩ Z . (38)

when X ⊆ Z.

Proposition 6. If (⋅ �� ⋅ ∣ ⋅) is a separoid relation on a lattice and:

Y �� Z ∣ Y ∩ Z (39)

then YMZ in the lattice of closed elements. In particular, if h is a polymatroid function on a lattice and:

h(Y)+ h(Z) = h(Y ∩ Z)+ h(Y ⊎ Z), (40)

then YMZ in the lattice of closed elements.

Proof. If Y ∩ Z ⊆ X ⊆ Z, then we have the following sequence of implications.

Y �� Z ∣ Y ∩ Z (41)

Y ��X ⊎ Z ∣ Y ∩ Z (42)

Y �� Z ∣ X ⊎ (Y ∩ Z) (43)

Y �� Z ∣ X (44)

X ⊎Y �� Z ∣ X (45)

(X ⊎Y)∩ Z �� (X ⊎Y)∩ Z ∣ X (46)

Hence,
X →�� (X ⊎Y)∩ Zandcl (X) = cl ((X ⊎Y)∩ Z) . (47)

If �� is separoid, then according to the extensivity (34), the relation X ��Y ∣ Z implies:

X ⊎ Z ��Y ⊎ Z ∣ Z (48)

so that Z ⊇�� (X ⊎ Z)∩ (Y ⊎ Z) ⊇�� Z. Following Dawid [24], we define the relation X ��M Y ∣ Z by:

Z = (X ⊎ Z)∩ (Y ⊎ Z) . (49)
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Theorem 5. If a polymatroid function h on a lattice is modular, then the lattice of→h closed elements is modular.
If the lattice is modular, then X ��h Y ∣ Z if and only if X ��M Y ∣ Z in the lattice of closed elements.

Proof. If the function h is modular, then all pairs of elements are modular in the lattice of h-closed
elements, so the lattice of closed elements is modular. In a modular lattice:

Ih (X, Y ∣ Z) = h ((X ⊎ Z)∩ (Y ⊎ Z))− h (Z) (50)

so that X ��h Y ∣ Z holds when Z →h (X ⊎ Z)∩ (Y ⊎ Z) .

The following result appears in [24] with a longer proof.

Corollary 2. For a lattice, the relation X ��M Y ∣ Z is separoid if and only if the lattice is modular.

Proof. Assume that the lattice is modular. Then, the ranking function r is modular, and X →r Y if and
only if X ⊇ Y. Therefore, X ��M Y ∣ Z is equivalent to the separoid relation Ir (X, Y ∣ Z) = 0.

Assume that the relation ��M is separoid. Since X ��M Y ∣ X ∩Y, we have that XMY. Since all pairs
are modular, the lattice is modular.

4. Entropy in Functional Dependence Lattices

Let L denote a lattice with maximal element m. Let Γ (L) denote the set of polymatroid functions
on L. The set Γ (L) is polyhedral, and often, we may normalize the polymatroid functions by replacing
h (⋅) by h (⋅) /h (m). In this way, we obtain a polytope that we will denote Γ1 (L).

Definition 2. A function h ∈ Γ (L) is said to be entropic if there exists a function f from L into a set of random
variables such that h (X) = H ( f (X)) for any element X in the lattice.

Let Γ∗1 (L) denote the set of normalized entropic functions on L, and let Γ̄∗1 (L) denote the closure
of Γ∗1 (L).

Definition 3. A lattice is said to be a Shannon lattice if any polymatroid function can be realized approximately
by random variables, i.e., Γ1 (L) = Γ̄∗1 (L) .

One may then check whether a lattice is a Shannon lattice by checking that the extreme
polymatroid functions are entropic or can be approximated by entropic functions.

Example 4. Let G denote a finite group. For any subgroup G̃ ⊆ G, we associate the variable XG̃ that maps
an element g ∈ G into the left coset gG̃. The number of possible values of XG̃ is ∣G ∶ G̃∣ = ∣G∣∣G̃∣ . Assume that the

subgroups are given a functional dependence structure where a variable X is given by a function A →B. If A has
n elements, then the groups of permutations G have n! elements. The subgroup that leaves X invariant has:

Πb∈B (n ⋅ P (X = b))! (51)

element. Therefore:

ln (∣G ∶ GX ∣) = ln( n
Πb∈B (n ⋅ P (X = b))!

)

≈ −n ⋅∑
b∈B

P (X = b) ln (P (X = b))

= n ⋅ H (X) .

(52)
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If U is the uniform distribution on the finite group G, then the distribution of XG̃ is uniform, and the
entropy is H (XG̃) = ln (∣G∣)− ln (∣G̃∣) . It has been proven that the set of entropic functions generated form a
convex cone. Therefore, the normalized polymatroid functions generated by groups has Γ̄∗1 (L) as closure [4].

From Definition 3, we immediately get the following result.

Proposition 7. If L is a Shannon lattice and M is a subset that is a ∩-semi-lattice, then M is a Shannon lattice.
In particular, all sub-lattices of a Shannon lattice are Shannon lattices.

Proof. Assume that L is a Shannon lattice and that M is a sub-lattice. Let h ∶ M → R denote a
polymatroid function. For ` ∈ L, let ˜̀ denote the m ∈ M that minimize h (m) under the constraint
that m ⊇ `. Define the function h̃ (`) = h ( ˜̀) . Now, h̃ is an extension of h, and with this definition, h̃ is
non-negative and increasing. For x, y ∈ L, we have:

h̃ (X)+ h̃ (Y) = h (X̃)+ h (Ỹ)
≥ h (X̃ ⊎ Ỹ)+ h (X̃ ∩ Ỹ)
≥ h̃ (X ⊎Y)+ h̃ (X ∩Y)

(53)

because X̃ ⊎ Ỹ ≥ X ⊎Y and X̃ ∩ Ỹ ≥ X ∩Y. Hence, h̃ is submodular. By the assumption, h̃ is entropic,
so the restriction of h̃ to M is also entropic.

With these results it hand, we can start hunting for non-Shannon lattices. We take a lattice
that may or may not be a Shannon lattice. We find the extreme normalized polymatroid functions.
These extreme polymatroid functions can be found either by hand or by using some suitable software
that can find extreme points of a convex polytope specified by a finite set of inequalities. For instance,
the R program with package rcdd can find all extreme points of a polytope. For each extreme point,
we determine the lattice of closed elements using Proposition 5. These lattices of closed sets will often
have a much simpler structure than the original lattice, and the goal is to check if these lattices are
Shannon lattices or not. It turns out that there are quite a few of these reduced lattices, and they could
be considered as the building blocks for larger lattices.

We recall that an element i is ⊎-irreducible if i = X ⊎Y implies that i = X or i = Y. An ∩-irreducible
element is defined similarly. An element is double irreducible if it is both ⊎-irreducible and
∩-irreducible. The lattice denoted Mn is a modular lattice with a smallest element, a largest element
and n double irreducible elements arranged in-between.

Theorem 6. For any n, the lattice Mn is a Shannon lattice.

Proof. The proof is essentially the same as the solution to the cryptographic problem stated at the
beginning of Section 2. The idea is that one should look for groups with a subgroup lattice Mn and
then check that the subgroups of such group have the right cardinality.

Let the values in the double irreducible elements be denoted h1, h2, . . . , hn. If n = 1, the extreme
polymatroid functions are h1 = 0 and h1 = 1, and these points are obviously entropic. If n = 2,
the extreme points are (h1, h2) = (0, 1), (h1, h2) = (1, 0) and (h1, h2) = (1, 1) , which are all entropic.

Assume n ≥ 3. Then, the values should satisfy the inequalities:

0 ≤ hi ≤ 1 , (54)

hi + hj ≥ 1 . (55)

If (h1, h2, . . . , hn) is an extreme point, then each variable should satisfy one of the inequalities with
equality. Assume hi = 0. Then, sub-modularity implies that hj = 1 for j ≠ i. The extreme point
(1, 1, . . . , 1, 0, 1, . . . , 1) is obviously entropic. If hi = 1, this gives no further constraint on the other
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values, so it corresponds to an extreme point on a lattice with one less variable. Finally, assume that
hi + hj = 1 for all i, j. Then, hi = 1/2 for all i.

Corollary 3. Any polymatroid function that only takes the values 0, 1/2 and 1 is entropic.

Proof. Assume that the polymatroid function h only takes the values 0, 1/2, and 1. Then, h defines
a separoid relation, and the closed elements form a lattice isomorphic to Mn for some integer n.
The function h is entropic on Mn, so h is also entropic on the original lattice.

Lemma 1. If h is submodular and increasing on ∩-irreducible elements, then h is increasing.

Proof. Assume that h is submodular and increasing on ∩-irreducible elements. We have to prove that
if X ⊇ Z, then h (X) ≥ h (Z) . In order to obtain a contradiction, assume that Z is a maximal element
such that there exist an element X such that X ⊇ Z, but h (X) < h (Z) . We may assume that X cover
Z. Since h is increasing at ∩-irreducible elements, Z cannot be ∩-irreducible. Therefore, there exists
a maximal element b such that Y ⊇ Z, but Y ⊉ X. Since X cover Z, we have X ∩Y = Z. According to
the assumptions, h (X) + h (Y) ≥ h (X ⊎Y) + h (X ∩Y) and h (X ⊎Y) ≥ h (Y) because Z is a maximal
element that violates that h is increasing. Therefore, h (X) ≥ h (X ∩Y) = h (Z) .

Theorem 7. Any lattice with seven or fewer elements is a Shannon lattice.

Proof. Up to isomorphism, there only exist finitely many lattices with seven elements or less. These are
listed in the Appendix B. Each of these lattices has finitely many extreme polymatroid functions.
These extreme polymatroid functions can be found by hand or by using the R program with package
rcdd. All the extreme polymatroid functions on these lattices can be represented by a trivial lattice,
or by the two-element chain 2, or by M5, or by M6, or by M7. All these lattices are representable,
and thereby, they are Shannon lattices.

The number of lattices grows quite fast with the number of elements, and the number of elements
is not the best way of comparing lattices.

The Boolean lattice with four atoms is the smallest non-Shannon Boolean algebra. Nevertheless,
there are smaller non-Shannon lattices. Figure 2 illustrates the Matúš lattice, which is a lattice with
just 11 elements that violates Inequality (1). This corresponds to the fact that the lattice in Figure 2 is
not equivalent to a lattice of subgroups of a finite group. The lattices that are equivalent to lattices of
subgroups of finite groups have been characterized [30], but the characterization is too complicated to
describe here. Using the ideas from [31], one can prove that the Matúš lattice in Figure 2 has infinitely
many non-Shannon inequalities. Therefore, any lattice that contains the Matúš lattice as a ∩-semilattice
also has infinitely many non-Shannon inequalities.
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1

3/4 3/4 3/4 3/4 3/4

1/2 1/2 1/2 1/2

0

Figure 2. The Matúš lattice with a non-entropic polymatroid function. This lattice is named in honor of
František Matúš, who passed away shortly before the submission of this manuscript.

Conjecture 1. A lattice is a Shannon lattice if and only if the lattice does not contain the Matúš lattice as
a ∩-semilattice.

The result of Matúš has recently found a parallel in matroid theory. An infinite set of inequalities
is needed in order to characterize presentable matroids [32–34].

5. The Skeleton of a Lattice

In this section, we will develop a cutting-and-gluing technique that can be used to handle many
lattices, but it is especially useful for planar lattices. We present the notion of tolerance. Further details
about this concept can be found in the literature [5,35].

Definition 4. A symmetric and reflexive relation Θ on a lattice is called a tolerance relation if X1ΘX2 and
Y1ΘY2 imply:

(X1 ∩X2)Θ (Y1 ∩Y2) (56)

and

(X1 ⊎X2)Θ (Y1 ⊎Y2) . (57)

If Θ is a tolerance relation, then for any X, the set {Y ∈ L ∣ XΘY} is an interval in the lattice.
These intervals are called the blocks of Θ, and the blocks will be denoted [X]Θ . For a tolerance relation,
the blocks may be considered as elements of the factor L/Θ, and this factor has a natural structure as
a lattice. Congruence relations are special cases of tolerance relations, but in general, the blocks of a
tolerance relation may overlap. We note that if the intersection of two blocks is non-empty, then the
intersection is a sublattice. If X ∈ L/Θ, then LX will denote the block in L determined by X. We defined
a glued tolerance relation as a tolerance relation where X cover Y in L/Θ, implying that LX ∩LY ≠ ∅.

A tolerance relation can be identified with a subset of L×L, so tolerance relations are ordered
by subset ordering. The trivial tolerance relation is the one where xΘy holds for all x, y ∈ L, and this
tolerance relation is the greatest tolerance relation. A glued tolerance relation contains any covering
pair, and glued tolerance relations are characterized by this property. Therefore, the intersection of two
glued tolerance relations is a glued tolerance relation. Therefore, the set of glued tolerance relations
forms a lattice. The smallest glued tolerance relation is denoted Σ (L) and is called the skeleton of
the lattice. An example of a planar modular lattice is given in Figure 3 and the skeeton is given in
Figure 4.
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Figure 3. A planar modular lattice.

Lemma 2. Let L be a lattice with an increasing function h. If the function h satisfies:

h (X)+ h (Y) ≥ h (X ∩Y)+ h (X ⊎Y) (58)

for all X, Y where X ∩Y is covered by X and Y, then the function h is submodular on L.

Proof. First, we prove that if the function h satisfies:

h (X)+ h (Y) ≥ h (X ∩Y)+ h (X ⊎Y) (59)

for all X, Y where X ∩Y is covered by X, then the function h is submodular on L.

Figure 4. The skeleton of the lattice in the previous figure. It consist of four blocks glued together by
the factor lattice illustrated to the right.

Let A and A denote two lattice elements. Define sequences X1 ⊆ X2 ⋅ ⋅ ⋅ ⊆ Xn = A and Y1 ⊆ Y2 ⋅ ⋅ ⋅ ⊆
Yn = A ⊎ B by first defining X1 = A ∩ B and Y1 = B. Assume that X1 is an element that covers A ∩ B and
such that X1 ≤ A. Let Xi+1 ⊆ A be a cover of A ∩Yi, and let Yi+1 = Xi+1 ⊎Yi. Then:

h (Xi+1)+ h (Yi) ≥ h (Yi+1)+ h (Xi+1 ∩Yi) . (60)
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Adding all these inequalities leads to:

h (A)+ h (B) ≥ h (A ⊎ B)+ h (A ∩ B)+
n−1
∑
i=0

(h (Xi+1 ∩Yi)− h (Xi)) (61)

and the inequality is obtained because h is increasing to that h (Xi+1 ∩Yi) − h (Xi) ≥ 0 and because
Xi+1 ∩Yi ⊇ Xi by construction of the sequences.

To see that, we just need to check submodularity when B covers A∩B proven in the same way.

Proposition 8. Let L be a lattice with a tolerance relations Θ, and let h ∶ L→ R denote some function. Then,
h is polymatroid if and only if the restriction of h to any block Lx is polymatroid.

If h is entropic, then the restriction to each block is entropic. Characterizing the blocks of a lattice
has been done for certain classes of lattices, but here, we shall only mention a single result.

Theorem 8 ([36]). The blocks of a modular lattice are the maximal atomistic intervals.

In particular, the skeleton of a modular lattice consists of blocks that are geometric lattices.

6. Results for Planar Lattices

In this section, we will restrict our attention to planar lattices. There are several reasons for this
restriction. First of all, any poset with a planar Hasse diagram is a lattice if and only if it has a least
element and a greatest element [37]. As a consequence, any ∩-semilattice of a planar lattice is also
a planar lattice. Certain cut-and-glue techniques are also very efficient for planar lattices. Finally,
both planar distributive lattices and planar modular lattices have nice representations that will play a
central role in our proofs.

Theorem 9. Let h denote a polymatroid function on a planar lattice L. Then, h has an entropic representation if
and only if the restriction to each block of Σ (L) has an entropic representation.

Proof. The proof is via induction over the number of elements in the lattice. For a trivial lattice, there
is nothing to prove. Assume that the theorem has been proven for all lattices with fewer elements than
the number of elements of L. Assume that h is a polymatroid. Since the lattice is planar, it has a left
boundary chain ∅ ⊂ L1 ⊂ L2 ⋅ ⋅ ⋅ ⊂ Lm and a right boundary chain ∅ ⊂ R1 ⊂ R2 ⋅ ⋅ ⋅ ⊂ Rn where Lm = Rn

is the maximal element of L. Let Rk be the minimal element of the right boundary chain such that
L1 ⊆ Rk. We note that Rk = L1 ⊎ Rk−1. Let Lj denote the largest element in the left boundary chain such
that Lj ⊆ Rk. Then, there is a chain from Lj to Rk, and we have a glued tolerance relation with two
blocks L0 = {X ∈ L ∣ X ⊆ Rk} and L1 = {X ∈ L ∣ X ⊇ Lj} and with the two element chain lattice 2 as the
factor lattice. These two blocks are glued together along a chain Lj = y1 ⊂ y2 ⊂ ⋅ ⋅ ⋅ ⊂ yt = Rk that L1 and
L0 share. There are two cases: either Rk ⊂ Rn or Rk = Rn.

Assume that Rk ⊂ Rn. Then, the glued tolerance relation is non-trivial. Since h restricted to
{X ∈ L ∣ X ⊇ Lj} and {X ∈ L ∣ X ⊆ Rk} are probabilistically representable, we may without loss of
generality assume that there exist two groups G1 and G0 such that to X ∈ Li, there is a subgroup
Gi (X) ⊆ Gi such that h (X) = ln ∣Gi ∶ Gi (X)∣ . We associate the variable XGi(X) that maps an element
g ∈ G into the left coset gGi (X) . The goal is to find a joint distribution to a set of variables associated
with each X ∈ L. We note that all variables in L0 are functions of rk, so if we map XG1(rk) into XG0(rk),
all other variables in L2 are determined. In particular, the chain y1 ⊂ y2 ⊂ . . . yt is determined by
rk = yt. The sequences XG1(yi) are mapped into the sequence XG0(yi) recursively, starting with mapping
XG1(y1) into XG0(y1). This is possible since XG1(y1) and XG2(y1) are uniform distributions on sets of
the same size. Now, there are equally many values of XG1(y2) and XG0(y2) that map into the same
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values of XG1(y1) and XG0(y1), so the the values of XG1(y2) and XG0(y2) can be mapped into each other.
We continue like that until all the random variables along the chain y1 ⊂ y2 ⊂ . . . yt have been identified.

If rk = rn, then we make a similar construction with the role of the left chain and the right chain
reversed. If this leads to a non-trivial glued tolerance relation, we glue representations together as we
did above.

If both the left chain and the right chain lead to trivial glued tolerance relations, then L1 ⊎ r1 is the
maximal element of L, and the whole lattice consists of a single block in Σ (L) . In this case, the content
of the theorem is trivial.

Theorem 10. All planar modular lattices are Shannon lattices.

Proof. Without loss of generality, we may assume that the lattice consists of just one block for the
tolerance relation Σ (L) . A modular block is atomistic, but if a modular planar lattice is atomistic, it is
equivalent to the trivial lattice or to the lattice 2, or to the lattice 2× 2, or to one of the lattices Mn.

Our construction actually tells us more. If the lattice is distributive, it is glued together with
blocks that are either equivalent to 2 or to the lattice 2 × 2. Therefore, the lattice is a sublattice of
a product of two chains, as illustrated in Figure 5. This result was first proven by Dilworth [38].
Other characterizations of planar distributive lattices can be found in the literature [39]. Since the
extreme polymatroid functions on the lattices 2 and the lattice 2× 2 only take the values zero and one,
the same is true for any planar distributive lattice.

A modular planar lattice will also contain blocks of the type Mn. Therefore, a modular planar
lattice can be obtained from a distributive planar lattice by adding double irreducible elements [40],
as illustrated in Figure 6.

Figure 5. A product of two chains.

Since Mn has extreme polymatroid functions that take the values 0, 1/2 and 1, the extreme functions
are modular. Gluing such modular functions together leads to extreme polymatroid functions that are
modular. Therefore, all extreme polymatroid functions on a planar modular lattice can be represented
by a planar modular lattice with a modular function. Therefore, the independence structure is given
by (X ��Y ∣ Z) when Z = (X ⊎ Z)∩ (Y ⊎ Z) .
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Figure 6. A planar modular lattice.

The extreme polymatroid functions on a planar modular lattice can be represented as follows.
Let X1, X2, . . . Xm, Y1, Y2, . . . , Yn denote independent random variables uniformly distributed over Zp

for some large value of p. Let Zij denote the random variable:

⊎
`≤i

X` ⊎⊎
`≤j

Y`. (62)

and let Zijk denote the random variable:

⊎
`≤i

X` ⊎⊎
`≤j

Y` ⊎ (Xi+1 + k ⋅Yj+1) (63)

for k > 0. The way to index the variables can be seen in Figure 7. Then, the entropy is proportional to
the ranking function. A polymatroid function h that has a representation given by an Abelian group
satisfies the Ingleton inequalities [41], i.e., inequalities of the form:

h(X)+ h(Y)+ h(X ⊎Y ⊎V)+ h(X ⊎Y ⊎W)+ h(V ⊎W) ≤
h(X ⊎Y)+ h(X ⊎V)+ h(X ⊎W)+ h(Y ⊎V)+ h(Y ⊎W).

(64)

Therefore, the Shannon inequalities imply the Ingleton inequalities as long as the polymatroid
function is defined on a planar modular lattice. Paajanen [42] has proven that under some conditions,
the entropy function of a nilpotent p-group can be represented by an Abelian group. The core of the
proof was that the subgroup lattice of a nilpotent p-group is also the subgroup lattice of an Abelian
group. Many of these lattices are planar, and in these cases, the results by Paajanen follow from our
results on planar graphs.



Entropy 2018, 20, 784 18 of 28

22

21 111 112 113 12

20 101 102 103 11 011 011 013 02

10 001 002 003 01

00

Figure 7. A planar modular lattice with indexing of the elements.

7. Discussion

In this paper, we have proven that the three basic Shannon inequalities are sufficient for certain
lattices. It would be a major step forward if one could make a complete characterization of lattices without
non-Shannon inequalities, but this may be too ambitious. In order to obtain results, one may have to
restrict to certain classes of lattices like general modular lattices or geometric lattices. For handling such
lattices, one would have to develop new techniques that may also be of wider interest.

Lattices seem to fall into two types. For one type, one does not have non-Shannon inequalities.
For the other type, there are infinitely many non-Shannon inequalities. We do not know of any
lattice with non-Shannon inequalities where the entropic functions are characterized by finitely many
inequalities. Apparently, the complexity increases from three basic inequalities to infinitely many
inequalities, and this transition seems to happen due to the Matúš lattice. Similarly matroids in general
have no finite characterization, and conditional independence does not have a finite characterization.
It appear to be the case that the leap from low complexity to infinite complexity happens for the same
reason and seems to be related to the structure of the Matús lattice. In this paper, we have provided
some basic results and a common terminology that should be useful for further exploration of this
research area.

Bayesian networks and similar graphical models have not been discussed in the present
paper. Nevertheless, Bayesian networks are closely related to functional dependencies, so important
properties of Bayesian networks can be translated into lattice language. This will be the topic of a
separate publication [43], but some preliminary results have already been published [7].

We have seen how a separoid relation generates a notion of functional dependence. For modular
lattices, we have also seen that the lattice structure generates a separoid relation. It is an open question
to what extent general lattices are born with a canonical notion of conditional independence that can
be formalized in terms of separoids. For functional dependencies corresponding to Bayesian networks,
this question has been studied in detail [16], but more general results related to these questions would
be of great importance to our understanding of concepts related to cause and effect.
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Appendix A. Augmentation

In database theory extensivity (18) is replaced by the following property:.

Augmentation X → Y implies X ⊎ Z → Y ⊎ Z . (A1)

If Z = X, the augmentation (A1) reduces to the extensivity (18). In a finite lattice, the extensivity
(18) together with the other Armstrong axioms imply the augmentation (A1). To see this, first,
we observe that in a finite lattice extensivity (18), monotonicity (19) and transitivity (20) imply that
X → Y is equivalent to cl (X) ⊇ Y. The monotonicity (16) gives cl(X ⊎ Z) ≥ Y. Using the monotonicity
(16) and extensivity (15), we also get cl(X ⊎ Z) ≥ cl(Z) ≥ Z. Combining these two inequalities gives
cl(X ⊎ Z) ≥ Y ⊎ Z, as desired.

The condition in Theorem 1 that the lattice is finite can be relaxed to the ascending chain condition,
because this is essentially what is used to conclude that the chain (22) must stop. The observation
that augmentation can be relaxed to extensivity could be used to simplify some algorithms for
database normalization.

Appendix B. Lattices of Size 1–7

Here, we give a complete list of the Hasse diagrams of lattices with seven or fewer elements.

Appendix B.1. Lattice of Size 1

The trivial lattice is the only lattice of Size 1.

1

Appendix B.2. Lattice of Size 2

The two element chain 2 is the only lattice of Size 2.

1

0

Appendix B.3. Lattices of Size 3

The three element chain 3 is only one lattice of Size 3, and and it is distributive. The extreme
polymatroid functions can be represented by the lattice 2.

Appendix B.4. Lattices of Size 4

There are two lattices of Size 4, and they are both distributive. Their extreme polymatroid
functions can be represented by the lattice 2.
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2 × 2

Appendix B.5. Lattices of Size 5

The lattice M5 is modular, but not distributive. It has a a new non-trivial polymatroid function as
the extreme point. The other extreme points can be represented by M3 and the lattice 2.

M3 1

1/2 1/2 1/2

0

N5

Appendix B.6. Lattices of Size 6

The lattice M6 has a new non-trivial polymatroid extreme point. The other extreme points can be
represented by M3 and the lattice: 2.

M4 1

1/2 1/2 1/2 1/2

0
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The next five lattices have extreme points that can be represented by M5 or the lattice 2. The first
two lattices are modular, but not distributive. The next three are not modular.

V1 L4 L5

The extreme points of the last nine lattices are all represented by the lattice 2. The first four are
not modular.
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The last five are distributive.

Appendix B.7. Lattices of Size 7

The lattice M5 has a new polymatroid extreme point. The other extreme points can be represented
by M4, M3 and the lattice 2.

M5 1

1/2 1/2 1/2 1/2 1/2

0

The next seven lattices have extreme points that can be represented by M4, M3 or the lattice 2.
The first two lattices are modular. The last five lattices are not modular.
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The following lattices have extreme polymatroid functions that can be represented by M3 or the
lattice 2. The first five lattices are modular.

The next lattices are not modular.
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S7 S∗7
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The last 22 lattices of Size 7 only have trivial extreme points. The first 14 lattices are not modular.

L3
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The last eight lattices are distributive.

References

1. Zhang, Z.; Yeung, R.W. On characterization of entropy function via information inequalities. IEEE Trans.
Inform. Theory 1998, 44, 1440–1452. [CrossRef]

2. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423, 623–656.
[CrossRef]

3. McGill, W. Multivariate information transmission. Psychometrika 1954, 19, 97–116. [CrossRef]
4. Yeung, R.W. A First Course in Information Theory; Kluwer: New York, NY, USA, 2002.
5. Stern, M. Semimodular Lattices. Theory and Applications; Number 73 in Encyclopedia of Mathematics and Its

Applications; Cambridge University Press: Cambridge, UK, 1999.

http://dx.doi.org/10.1109/18.681320
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1007/BF02289159


Entropy 2018, 20, 784 27 of 28

6. Chan, T.H.; Yeung, R.W. On a Relation between Information Inequalities and Group Theory. IEEE Trans.
Inform. Theory 2002, 48, 1992–1995. [CrossRef]

7. Harremoës, P. Functional Dependences and Bayesian Networks. In Proceedings of the WITMSE 2011; Number
Report C-2011-45 in Series of Publications C; Rissanen, J., Myllymäki, P., Teemu Roos, I.T., Yamanishi, K., Eds.;
Department Computer Science, University of Helsinki: Helsinki, Finland, 2011; pp. 35–38.

8. Harremoës, P. Lattices with non-Shannon inequalities. In Proceedings of the 2015 IEEE International Symposium
on Information Theory, Hong Kong, China, 14–19 June 2015; pp. 740–744. [CrossRef]

9. Lee, T.T. An algebraic theory of relational databases. Bell Syst. Tech. J. 1983, 62, 3159–3204. [CrossRef]
10. Demetrovics, J.; Libkin, L.; Muchnik, I.B. Functional dependencies and the semilattice of closed classes.

In Proceedings of the 2nd Symposium on Mathematical Fundamentals of Database Systems (MFDBS ’89),
Visegrád, Hungary, 26–30 June 1989; Springer: Berlin, Germany, 1989; pp. 136–147.

11. Matúš, F. Abstract functional dependency structures. Theor. Comput. Sci. 1991, 81, 117–126. [CrossRef]
12. Demetrovics, J.; Libkin, L.; Muchnik, I.B. Functional Dependencies in Relational Databases: A Lattice Point

of View. Discret. Appl. Math. 1992, 40, 155–185. [CrossRef]
13. Levene, M. A Lattice View of Functional Dependencies in Incomplete Relations. Acta Cybern. 1995, 12, 181–207.
14. Thakor, S.; Chan, T.; Grant, A. A minimal set of Shannon-type inequalities for functional dependence

structures. In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen,
Germany, 25–30 June 2017; pp. 679–683. [CrossRef]

15. Chan, T.; Thakor, S.; Grant, A. A Minimal Set of Shannon-type Inequalities for MRF Structures with Functional
Dependencies. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail,
CO, USA, 17–22 June 2018; pp. 1759–1763.

16. Harremoës, P. Time and Conditional Independence; IMFUFA-Tekst, IMFUFA Roskilde University, 1993;
Volume 255. Original in Danish Entitled Tid og Betinget Uafhængighed. An English Translation of Some
of the Chapters. Available online: http://www.harremoes.dk/Peter/afh/afhandling.pdf (accessed on
10 October 2018).

17. Caspard, N.; Monjardet, B. The lattices of closure systems, closure operators, and implicational systems on a
finite set: A survey. Discret. Appl. Math. 2003, 127, 241–269. [CrossRef]

18. Grätzer, G. General Lattice Theory, 2nd ed.; Birkhäuser: Basel, Switzerland, 2003.
19. Armstrong, W.W. Dependency Structures of Data Base Relationships. In Proceedings of the IFIP Congress,

Stockholm, Sweden, 5–10 August 1974; pp. 580–583.
20. Ullman, J.D. Principles of Database and Knowledge-Base Systems; Computer Science Press: Stanford, CA, USA,

1989; Volume 1.
21. Levene, M.; Loizou, G. A Guide Tour of Relational Databases and Beyond; Springer: Berlin, Germany, 1999.
22. Whitman, P.M. Lattices, equivalence relations, and subgroups. Bull. Am. Math. Soc. 1946, 52, 507–522.

[CrossRef]
23. Shannon, C. The lattice theory of information. Trans. IRE Prof. Group Inf. Theory 1953, 1, 105–107. [CrossRef]
24. Dawid, A.P. Separoids: A mathematical framework for conditional independence and irrelevance. Ann. Math.

Artif. Intell. 2001, 32, 335–372. [CrossRef]
25. Constantinou, P.; Dawid, A.P. Extended Conditional Independence and Applications in Causal Inference.

Ann. Stat. 2017, 45, 1–36. [CrossRef]
26. Paolini, G. Independence Logic and Abstract Independence Relations. Math. Logic Q. 2015, 61, 202–216.

[CrossRef]
27. Pearl, J. Probabilistic Reasoning in Intelligent Systems; Morgan Kaufmann Publ.: San Mateo, CA, USA, 1988.
28. Studený, M. Probabilistic Conditional Independence Structures; Springer: Belin, Germany, 2005.
29. Studený, M. Conditional Independence Relations Have No Finite Complete Characterization, 1990.

Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.7014&rep=rep1&type=pdf
(accessed on 10 October 2018).

30. Schmidt, R. Subgroup Lattices of Groups; Walter de Gruyter: Berlin, Germany, 1994.
31. Matúš, F. Infinitely many information inequalities. In Proceedings of the 2007 IEEE International Symposium

on Information Theory, Nice, France, 24–29 June 2007; pp. 2101–2105. [CrossRef]
32. Vámos, P. The Missing Axiom of Matroid Theory is Lost Forever. J. Lond. Math. Soc. 1978, 18, 403–408.

[CrossRef]

http://dx.doi.org/10.1109/TIT.2002.1013138
http://dx.doi.org/10.1109/ISIT.2015.7282553
http://dx.doi.org/10.1002/j.1538-7305.1983.tb03470.x
http://dx.doi.org/10.1016/0304-3975(91)90319-W
http://dx.doi.org/10.1016/0166-218X(92)90028-9
http://dx.doi.org/10.1109/ISIT.2017.8006614
http://www.harremoes.dk/Peter/afh/afhandling.pdf
http://dx.doi.org/10.1016/S0166-218X(02)00209-3
http://dx.doi.org/10.1090/S0002-9904-1946-08602-4
http://dx.doi.org/10.1109/TIT.1953.1188572
http://dx.doi.org/10.1023/A:1016734104787
http://dx.doi.org/10.1214/16-AOS1537
http://dx.doi.org/10.1002/malq.201400031
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.51.7014&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ISIT.2007.4557201
http://dx.doi.org/10.1112/jlms/s2-18.3.403


Entropy 2018, 20, 784 28 of 28

33. Mayhew, D.; Whittle, G.; Newman, M. Is the Missing Axiom of Matroid Theory Lost Forever? Q. J. Math.
2014, 65, 1397–1415. [CrossRef]

34. Mayhew, D.; Newman, M.; Whittle, G. Yes, the “missing axiom” of matroid theory is lost forever. Trans. Am.
Math. Soc. 2018, 370, 5907–5929. [CrossRef]

35. Czédli, G. Factor lattices by tolerance. Acta Sci. Math. 1982, 44, 35–42.
36. Hermann, C. S-verklebte Summen von Verbänden. Math. Z. 1973, 130, 255–274. [CrossRef]
37. Quackenbush, R.W. Planar Lattices. In Proceedings of the University of Houston Lattice Theory Conference

1973, Houston, TX, USA, 22–24 March 1973.
38. Dilworth, R.P. A decomposition theorem for partially ordered sets. Ann. Math. 1950, 51, 161–166. [CrossRef]
39. Chen, C.C.; Koh, K.M. A characterization of finite distributive planar lattices. Discret. Math. 1973, 5, 207–213.

[CrossRef]
40. Quackenbush, G.G.W. The variety generated by planar modular lattices. Algebra Universalis 2010, 63, 187–201.

[CrossRef]
41. Guille, L.; Chan, T.; Grant, A. The Minimal Set of Ingleton Inequalities. IEEE Trans. Inform. Theory 2011,

57, 1849–1864. [CrossRef]
42. Paajanen, P. Finite p-Groups, Entropy Vectors, and the Ingleton Inequality for Nilpotent Groups. IEEE Trans.

Inf. Theory 2014, 60, 3821–3824. [CrossRef]
43. Harremoës, P. Influence Diagrams as Convex Geometries. Available online: http://www.harremoes.dk/

Peter/FunctionalDAG.pdf (accessed on 21 September 2018).

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/qmath/hat031
http://dx.doi.org/10.1090/tran/7408
http://dx.doi.org/10.1007/BF01246623
http://dx.doi.org/10.2307/1969503
http://dx.doi.org/10.1016/0012-365X(73)90137-4
http://dx.doi.org/10.1007/s00012-010-0070-7
http://dx.doi.org/10.1109/TIT.2011.2111890
http://dx.doi.org/10.1109/TIT.2014.2321561
http://www.harremoes.dk/Peter/FunctionalDAG.pdf
http://www.harremoes.dk/Peter/FunctionalDAG.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Lattices of Functional Dependence
	Polymatroid Functions and Separoids
	Entropy in Functional Dependence Lattices
	The Skeleton of a Lattice
	Results for Planar Lattices
	Discussion
	Augmentation
	Lattices of Size 1–7
	Lattice of Size 1
	Lattice of Size 2
	Lattices of Size 3
	Lattices of Size 4
	Lattices of Size 5
	Lattices of Size 6
	Lattices of Size 7

	References

