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Abstract. Annexins are a structurally related family 
of Ca 2+ binding proteins of undetermined biological 
function. Annexin I (also called lipocortin 1) is a sub- 
strate for the EGF-stimulated tyrosine kinase and is 
postulated to be involved in mitogenic signal transduc- 
tion. To investigate further the involvement of lipocor- 
tin 1 in cell proliferation, we measured lipocortin 1 
levels in normal diploid human foreskin fibroblasts 
(HFF) to determine whether its expression changed as 
a function of growth status. For comparison, the ex- 
pression of annexin V (also called endonexin II) was 
measured in HFF cells. Endonexin II is a protein with 
similar Ca z+ and phospholipid binding properties as 
lipocortin 1, but it is not a substrate for tyrosine ki- 
nases. Quiescent HFF cell cultures were induced to 
proliferate by either subculture to lower cell density, 
EGF stimulation, or serum stimulation. In all three 
protocols, proliferating HFF cells contained three- to 
fourfold higher levels of lipocortin 1 and three- to 
fourfold lower levels of endonexin II than quiescent 
HFF cells. In contrast, the expression of annexin II 
(also called calpactin I) and annexin IV (also called 

endonexin I) remained relatively unchanged in growing 
and quiescent HFF cells. Lipocortin 1 synthesis rate 
was eightfold higher and its turnover rate was 1.5-fold 
slower in proliferating compared to quiescent HFF 
cells. Endonexin II synthesis rate remained constant 
but its turnover rate was 2.2-fold faster in proliferating 
compared to quiescent HFF cells. In a separate set of 
experiments, annexin expression levels were measured 
in cultures of rat PC-12 cells, a pheochromocytoma 
that ceases proliferation and undergoes reversible 
differentiation into nondividing neuronlike cells in re- 
sponse to nerve growth factor (NGF). After NGF 
treatment, PC-12 cells expressed fivefold higher levels 
of endonexin II and 32-fold higher levels of calpactin 
1. Lipocortin 1 and endonexin I were not expressed in 
PC-12 cells. In summary, lipocortin 1 expression ex- 
hibited a positive correlation with cell proliferation in 
HFF cells. The increased expression of endonexin II 
in quiescent HFF cells and differentiating PC-12 cells 
implies that this protein may play a more prominent 
role in nondividing cells. 

NEXINS are a family of structurally related proteins 
that bind to certain phospholipids in a Ca2+-depen - 
dent manner (for reviews, see references 7 and 12). 

The phospholipids to which they bind are preferentially lo- 
cated on the cytosolic face of the plasma membrane. Since 
they were independently discovered by several different 
laboratories that were interested in different biological prob- 
lems, these proteins have been given several unrelated, and 
often overlapping names including lipocortins, calpactins, 
synexin, chromobindins, endonexins, calelectrins, calcimed- 
ins, and placental anticoagulant proteins. The relationships 
of these proteins are illustrated in Table I of reference 21. 
Each annexin has an amino terminal domain that has only 
limited sequence similarity with the others, while all an- 
nexins have a core domain consisting of either a four- or 
eightfold repeat of a conserved amino acid sequence that is 
~72 amino acids in length. Despite detailed structural infor- 
mation, the biological functions are not clearly defined for 
any of the annexins. Some of the more attractive proposals 
for annexin function include involvement in regulation of 
membrane traffic and exocytosis (3, 9, 31), mediation of 

cytoskeletal-membrane interactions (12, 47), and mitogenic 
signal transduction (10, 20, 33). 

Since the different annexins have unique amino-terminal 
domains, it is compelling to speculate that this domain con- 
fers a unique biological function to each annexin. Many of 
the proteins are phosphorylated by protein kinase C in the 
amino terminal domain (17, 41, 45), thereby raising the pos- 
sibility that phosphorylation may modulate their function. 
Two of the proteins, annexin I (also called lipocortin 1) and 
annexin II (also called calpactin 1), are phosphorylated on 
a conserved tyrosine residue in the amino terminal domain 
by the EGF receptor/kinase (8, 20, 33) and by pp60 s~ (13, 
15), respectively. The phosphorylation of lipocortin 1 by the 
EGF receptor/kinase exhibits many characteristics expected 
of a physiological substrate for a protein tyrosine kinase: (a) 
the EGF receptor/kinase affinity for lipocortin 1 in vitro is 
very high, apparent Km = 50 nM (20); (b) the phosphoryla- 
tion occurs in intact cells in a growth and EGF-dependent 
manner (14, 39) and; (c) the stoichiometry of phosphoryla- 
tion in cultured diploid fibroblasts changes from <1% in 
quiescent cells to ~25% in EGF-stimulated cells (D. D. 
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Schlaepfer and H. T. Haigler, unpublished results). Thus, 
lipocortin 1, and possibly other annexins, may be involved 
in intracellular transduction of mitogenic signals. Phos- 
phorylation of lipocortin 1 at tyrosine 21 reduced by fivefold 
the amount of Ca 2+ required for half-maximal association of 
the protein with phospholipid vesicles (40) and increased by 
10-fold the sensitivity to tryptic cleavage at lysine-26 (20). 
However, the physiological significances of these observa- 
tions are not yet known. 

Another indication that the individual annexins have 
specialized roles comes from the observation that different 
annexins have unique tissue and cell distributions (7, 16, 35). 
A comprehensive expression survey is not available, because 
the members of this family have only recently been defined. 
It is known that the expression of annexins can be modulated 
by the stage of development (5, 28, 30), differentiation (22, 
24, 36, 46), and thyroid status (37). Initially, it was proposed 
that the synthesis of lipocortins was induced by glucocorti- 
colds (34, 38, 44); however, recent studies have been incon- 
sistent with this proposal (1, 2, 23, 24, 32). 

Since lipocortin 1 appears to be a physiological substrate 
for the EGF receptor kinase and thus has been implicated in 
the regulation of cell growth, we have investigated its expres- 
sion as a function of growth in human diploid foreskin 
fibroblasts (HFF).t For comparison, we also measured the 
expression of annexin V (also called endonexin II), a protein 
with Ca 2+ and phospholipid binding properties similar to 
those of lipocortin 1 (11, 19, 25, 26, 29, 42). Endonexin II 
does not have a tyrosine residue in its amino terminal domain 
and is not a protein kinase substrate (41). The study reported 
herein shows that mitogenic stimulation of normal diploid 
fibroblasts caused an increase in lipocortin 1 and a decrease 
in endonexin II expression. We also observed increased en- 
donexin II and calpactin 1 expression in PC-12 ceils that had 
stopped dividing and had differentiated in response to nerve 
growth factor (NGF). 

Materials and Methods 

Cell Culture 

Experimental cultures of diploid human foreskin fibroblasts (HFF) (pas- 
sages 10-16) were plated in 35-mm cell culture dishes containing Dul- 
becco's modified Eagle's medium (DME), supplemented with 10% calf se- 
rum, penicillin (50 U/ml) and streptomycin (50 #g/ml). Stock cultures were 
maintained in T-75 flasks with complete media changes every 5 d. HFF cells 
were subeultured by limited trypsin treatment. Briefly, confluent ceils were 
exposed to trypsin 0.25% without Ca 2+ and Mg 2+ (No. 610-5050; Gibeo 
Laboratories, Grand Island, NY) for 10 min at 37°C, harvested by centrifu- 
gation (300 g), washed with PBS, and resuspended in complete media. 
Stock HFF cells were subeultured (1:6) once every 3 wk. 

Experimental cultures of rat adrenal pheochromocytoma cells (PC-12) 
(No. CRL 1721; American Type Culture Collection, Rockville, MD) were 
plated in collagen-coated 35-mm cell culture dishes containing RPMI 1640 
(Mediatech, Herndon, VA), supplemented with 1% heat-inactivated horse 
serum, penicillin (50 U/ml) and streptomycin (50 #g/ml). NGF (50 ng/ml) 
(2.5S NGF; Sigma Chemical Co., St. Louis, MO) was added daily in a ster- 
ile PBS solution containing 0.1% BSA. 50% of the experimental culture 
medium was replaced every 2 d. Stock cultures were maintained in 
collagen-coated T-75 flasks in a growth media containing 85% RPMI 1640, 
10% heat-inactivated horse serum, and 5% FBS. 75% of the media was 
replacedevery 2 d. When the stock PC-12 cells became confluent, they were 
removed from the collagen substrate by forced #petting, harvested by cen- 

1. Abbreviations used in this paper: HFF, human foreskin fibroblast; NGF, 
nerve growth factor. 

trifugation, passed through a 22-gauge needle to obtain a single cell suspen- 
sion and subeulmred at a 1:6 ratio. 

Cellular Protein Extraction 

All experimental 35-mm cell culture dishes were rinsed with PBS, and the 
protein extracted at room temperature by the addition of 125 #1 of extraction 
buffer (62 mM Tris, pH 6.8, 2.5 mM MgC12, 1 mM EGTA, 1% SDS 
[wt/vol], 1% Triton X-100 [vol/vol], 5 #g/ml leupeptin, and 5 #g/nil aproti- 
nin) per 35-mm dish. The cells were dislodged with a rubber policeman and 
10 #1 of a DNase I and RNase solution (1 mg/mi each in 20 mM Hepes, 
pH 7.4, containing 5 mM MgCI2) was added to reduce viscosity. Extracts 
from several 35-mm culture dishes were pooled for each experimental time 
point and duplicate aliquots were assayed for protein content by the BCA 
micro protocol method (Pierce Chemical Co., Rockford, IL). The remain- 
ing experimental extracts immediately were frozen in liquid N2, lyophi- 
lized, and then resuspended in the same volume of Laemmli SDS sample 
buffer (27). 

Cellular growth rates were determined by measuring changes in total cel- 
lular protein. Cell numbers were determined with the use of a hemocytome- 
ter. By measuring both total protein content and cell numbers, we found 
that there was an average of 3 x 103 cells/microgram of total protein and 
that this value did not significantly change as a function of cell density. 

SDS-Gel Electrophoresis and Western 
Immunoblot Analysis 

20 #g of cell protein from aliquots of the experimental extracts were sub- 
jected to SDS-PAGE (27) and electrophoretically transferred to Immobilon 
PVDF membranes (Millipore Continental Water Systems, Bedford, MA) 
by the method by Towbin et al. (43). Molecular mass standards used for 
calibration were purchased (Bio-Rad Laboratories, Richmond, CA). After 
staining with Coomassie blue, the Immobilon membranes were incubated 
for 2 h at 37°C in 2% powdered milk (wt/vol) in a TBS solution (50 mM 
Tris-HC1, pH 7.7, 150 mM NaC1, 0.2% NAN3) to saturate the Immobilon 
membrane binding capacity. The membranes were washed in TBS (5 min), 
then exposed to specific rabbit polyclonal antiserum (1:400 dilution) in a 
0.25 % gelatin-TBS solution for 2 h at 23"C. Polyclonal rabbit antiserum was 
raised to placental lipocortin 1, endonexin I and endonexin II as described 
(20, 26). The membranes were sequentially washed with TBS, TBS con- 
taining 0.05% NP-40 (2x), and then TBS again. After washing, the mem- 
branes were exposed to t2SI-labeled protein A (37.8 #Ci/#g) (ICN Radio- 
chemicals, Irvine, CA) at 5 × 103 cpm/ml in 0.25% gelatin-TBS solution 
for 1 h at 23"C. The membranes were washed with TBS and TBS containing 
NP-40 as before, dried, and autoradiography was performed with Kodak 
XAR-5 film with intensifying screens at -700C. The immunoreactive pro- 
tein bands that were visualized by autoradiography were excised and the 
amount of associated radioactivity was determined with a gamma-counter. 

By comparing radioactivity associated with an immunoreactive band in 
the experimental sample with standard curves constructed from Western 
blots of purified human placental annexin proteins (20), the nanogram 
amounts of specific annexin protein in the experimental samples were calcu- 
lated. In each experiment, the immunoblots of the experimental cell extracts 
and the purified protein standards were coincubated in the same primary 
antibody and 12SI-labeled protein A solutions at the same time. The 125I- 
labeled protein A signal was linear with respect to the annexin protein stan- 
dards in the range tested (10-500 rig). There was no detectable protein/ 
antibody cross-reactivity when antilipocortin 1, antiendonexin I, or anti- 
endonexin II was used to probe 500 ng of a different purified armexin protein 
(lipocortin 1, calpactin 1, endonexin I, and endonexin II). Polyclonal antise- 
rum raised to chicken calpactin I was a generous gift from Dr. Tony Hunter 
(6). This antiserum failed to recognize 500 ng of endonexin I or endonexin 
II, but it did cross-react with lipocortin 1 at 'x,15 % the intensity with which 
it reacted with calpactin 1. Thus, the anticalpactin 1 antibody could not be 
used to obtain precise measurements of calpactin 1 expression in HFF cells 
because of cross-reactivity with lipocortin 1 that had a similar migration 
by SDS-PAGE. The anticaipactin 1 antibody was used to quantitate PC-12 
calpactin 1 expression because these cells did not express detectable 
amounts of lipocortin 1. 

Metabolic Labeling and lmmunoprecipitation 
The rates of synthesis of annexin proteins were determined by pulse- 
labeling and immunoprecipitation. HFF cells were subeultured (1:10) into 

The Journal of Cell Biology, Volume l 1 l, 1990 230 



35-mm cell culture dishes at a density of 1 x 105 cells/dish in 3 ml of 
DME supplemented with 10% calf serum, penicillin (50 U/ml) and strep- 
tomycin (50/~g/ml). At the indicated time, cultures were washed two times 
with PBS and then pulse-labeled in 1 ml methionine-free DME (No. 320- 
1970 A J; Gibco Laboratories) supplemented with 10 % dialyzed calf serum 
and 250 #Ci of [35S]methionine (>1,000 Ci/mmol) (Amersham Corp., 
Arlington Heights, IL) for 3 h. The labeling media was removed, the cells 
were washed three times in PBS, and lysed in 125 #l immunoprecipitation 
extraction buffer (10 mM NaHEPO4 pH 7.2, 0.5% SDS [wt/vol], 2% 
/~-mercaptoethanol [vol/vol], 2 mM EDTA, 2 mM PMSE and 0.1 mM 
leupeptin). The lysate was boiled for 2 min, clarified by centrifugation 
(16,000 g, 10 rain) and stored frozen at -70°C. Since the total amount of 
cell protein in each dish increased throughout the experiment, duplicate cul- 
ture dishes were processed to determine total cell number and total cell pro- 
tein for each experimental time point. Samples were thawed, diluted four- 
fold with PBS containing 1% Triton X-100 (vol/vol), and divided into two 
equal parts for immunoprecipitation with either rabbit polyclonal antilipo- 
cortin 1 or antiendonexin If. An aliquot of each sample was removed and 
precipitated with TCA to determine the amount of [35S]methionine incor- 
porated into total cell protein. Immunoprecipitations were then performed 
on 50 #g total protein was described (14). The antigen was elnted from the 
protein A-Sepharose (Sigma Chemical Co.) with Laemmli SDS sample buf- 
fer (27) and analyzed by SDS-PAGE. The gels were treated with 
EN3HANCE (New England Nuclear, Boston, MA), dried, and exposed to 
Kodak XAR-5 film with intensifying screens at -70°C. The immunoprecip- 
itated protein bands that were visualized by autoradiography were excised, 
the gel pieces were dissolved in 90% PROTOSOL (New England Nuclear), 
and the associated radioactivity was determined by scintillation counting. 

The half-lives of annexin proteins were determined by pulse-chase label- 
ing followed by immunoprecipitation. HFF cells were subcultured (1:10) at 
a density of I x 105 cells/dish as described above. At either day 1 or day 
5 after the initial subculture, the growth media was removed and the 35-mm 
cell dishes were washed three times with PBS. The cells were pulse-labeled 
in 1 ml of methionine free DME (No. 320-1970 AJ; Gibco Laboratories) 
supplemented with 10% dialyzed calf serum and 250/zCi [3SS]methionine 
(>1,000 Ci/mmol) (Amersham Corp.) for 2.5 h. The labeling media was 
removed, the cultures were rinsed three times with PBS, and then incubated 
in the original growth media supplemented with an additional 1 mM unla- 
beled methionine. The ceils were harvested at the indicated chase times and 
the radioactivity associated with immunoprecipitated lipocortin 1 and en- 
donexin II was determined as described above. 

Results 

Regulated Expression of Lipocortin I and 
Endonexin H as a Function of CeU Growth 

The following experiments were performed to determine 
whether the expression of annexins varied as a function of 
cell growth in cultured diploid H F E  HFF cells from a 
confluent stock T75 flask were subcultured into 80 35-mm 
dishes (1 × 105 cells/dish), a n  '~10-fold increase in avail- 
able growth surface area. The cells were allowed to grow 
without any media changes. Cellular extracts taken at several 
time points were analyzed for lipocortin 1, endonexin II, and 
for total cellular protein content (Figs. 1 and 2). The initially 
sparse cultures grew rapidly for the first 4 d as indicated by 
an increase in both call density and total cellular protein con- 
tent per dish (Fig. 2). As cells became quiescent at days 6-8  
( ~ 6  × 105 cells/dish), the growth rate decreased and the 
total protein content reached a plateau value (Fig. 2). 

Immunoblot  analysis of  cellular extracts showed the same 
qualitative pattern at all time points: a single protein band 
that reacted with polyclonal antiserum specific to the an- 
nexins (Fig. 1). But quantitative immunoblot analysis of the 
cellular extracts showed that there were significant changes 
in the expression of certain annexins as a function of time 
after subculture (Fig. 2). As seen visually in the immunoblot 

Figure 1. Immunoblot analysis of lipocortin 1 and endonexin II ex- 
pression in diploid human fibroblasts subcultured at a 1:10 ratio. 
Stock confluent HFF cells were subcultured (1 x 105 cells/35-mm 
dish) in 3 ml of DME containing 10% calf serum and allowed to 
proliferate without a media change throughout the experiment. Cell 
lysates were prepared at each time point indicated and 20 ~g total 
protein from each extract was resolved by SDS-PAGE and trans- 
ferred to Immobilon membranes (see Materials and Methods). The 
Immobilon membranes were incubated with antiserum specific for 
either lipocortin 1 (A) or endonexin II (B). Immunoreactive protein 
was visualized by incubating with J25I-labeled protein A followed 
by autoradiography. The day 0 gel lane represents a 20-#g protein 
extract sample from the confluent stock fibroblasts used to generate 
the 1:10 subculture experimental 35-mm dishes. The day 0.5 gel 
lane represents a 20-/xg protein extract sample from the experimen- 
tal 35-mm dishes 12 h after subculture. Autoradiograph exposure 
time (at -70°C with an intensifying screen) was 3 h. Coomassie 
blue staining of the Immobilon membranes before immunoblotting 
showed that the gross visual pattern of protein bands did not change 
significantly as a function of time after plating. 

autoradiograms in Fig. 1, and quantitatively in Fig. 2, lipo- 
cortin 1 expression increased from 0.5 % of total cellular 
protein at the time of plating to a peak of 2.0% at day 3 and 
then declined with time back to the initial level. In striking 
contrast, endonexin II expression was highest (2.0 % of total 
cellular protein) initially, decreased to '~0.5 % at day 3 and 
then rose with time to the initial level (Figs. 1 and 2). 

Since several different annexins have been identified in 
vertebrates, the growth-dependent expression of other mem- 
bers of this gene family also were measured in HFF in ex- 
periments like those described in Figs. 1 and 2. Immuno- 
reactive endonexin I expression remained relatively constant 
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Figure 2. Quantitation of lipocortin 1 and endonexin II expression 
in diploid human fibroblasts subcultured at a 1:10 ratio. The im- 
munoreactive protein bands from identical experiments as de- 
scribed in Fig. 1 were excised from the Immobilon membranes and 
the radioactivity was determined with a gamma-counter. The mea- 
sured radioactivity was compared to standard curves constructed 
using purified lipocortin 1 and endonexin II to calculate the amount 
of immunoreactive lipocortin 1 (triangles) and endonexin II 
(squares) in the cell extracts for each experimental time point (see 
Materials and Methods). The total protein (circles) in the 35-mm 
subculture dishes at each time point was determined as described 
in Materials and Methods. On average, there were 3 x 103 cells/ 
microgram of total cell protein. These results are an average of 
three separate experiments. 

throughout the experimental time period within a range of 
0.08-0.13 % of the total cell protein (data not shown). Using 
similar methods, attempts to quantitatively measure calpac- 
tin 1 expression were only partially successful due to cross- 
reactivity between anticalpactin 1 antiserum and lipocortin 1 
(see Materials and Methods). However, by calculating the 
contribution of lipocortin 1 cross-reactivity to the total im- 
munoreactive signal, it was determined that calpactin 1 was 
expressed at relatively high levels (~,1% of total cellular pro- 
tein), and the expression did not significantly change (less 
than twofold) as a function of growth state (data not shown). 
Thus, of the annexins investigated, only lipocortin 1 and en- 
donexin II underwent large changes in expression as a func- 
tion of growth state. Although the expression of lipocortin 1 
and endonexin II changed approximately fourfold, the inverse 
complementary nature of the changes resulted in <20 % change 
in the sum of the two at any given time point. It may be sig- 
nificant that the increase in lipocortin 1 and decrease in en- 
donexin II coincided with the period of rapid cell growth and 
the return to their initial states coincided with the time at 
which the cells became quiescent and underwent density in- 
hibition to cell growth. 

To determine whether the lipocortin 1 and endonexin II ex- 
pression changes were correlated with the cellular growth 
state or were the result of the manipulations involved in the 
subculture procedure such as the trypsin treatment used to 
remove the cells from the stock culture flasks, the following 
experiment was performed. HFF cells were subcultured as 
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Figure 3. Quantitation of lipocortin 1 and endonexin II expression 
in diploid human fibroblasts subcultured at a 1:2 ratio. Stock 
confluent HFF cells were subcultured (5 x 105 cells/35-mm dish) 
in 3 ml of DME containing 10 % calf serum and allowed to prolifer- 
ate without a media change throughout the experiment (14 d). Im- 
munoblot analysis was performed with 20/xg total protein from 
each extract, exactly as described in the legend of Fig. 1, and sub- 
jected to quantitative analysis as described in the legend of Fig. 2. 
Triangles, lipocortin 1; squares, endonexin II; and circles, the total 
protein/35-mm dish. These results are an average of two separate 
experiments. 

described in the legend of Fig. 1, except experimental cul- 
tures were plated at a high density (1:2 subculture ratio, 5 x 
1@ cells/dish) so that only minimal cellular growth was 
possible (Fig. 3). Under these conditions, there were only 
minor changes in the expression of lipocortin 1 and en- 
donexin II (Fig. 3). Thus, subculture alone did not result in 
changes in expression of these two proteins. Subculture at a 
1:4 ratio (2.5 × 105 cells/dish) resulted in approximately a 
fourfold increase in lipocortin 1 expression 2 d after plating. 
This increase in lipocortin 1 expression was followed by a 
return to the initial values that occurred more rapidly com- 
pared to cultures subcultured at a 1:10 ratio (data not shown). 

Cellular Expression o f  Lipocortin I and Endonexin H 
in Quiescent HFF Cells after Media Replacement 

To investigate the hypothesis that lipocortin 1 and endonexin 
II expression correlated with the cellular growth state, the 
growth rate was manipulated by serum and medium starva- 
tion and subsequent refeeding. Stock confluent HFF cells 
were subcultured at a 1:10 ratio (1 x 105 cells/dish) and al- 
lowed to grow without a media change for 16 d. The total 
cell protein content reached a plateau value ('~180 #g/dish), 
and the total cell number remained constant (5 x 105 
cells/dish) from day 6 to day 16, indicative of a density in- 
hibited, quiescent cell state. On experimental day 16, the cell 
media was replaced completely with fresh DME sup- 
plemented with 10% calf serum (Fig. 4). This caused an ap- 
proximate doubling of cell density (1.1 x 106 cells/dish by 
day 19; Fig. 4) and total cell protein within 3 d (Fig. 4; day 
16-19). No further growth was stimulated by an additional 
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Figure 4. Lipocortin 1 and endonexin II expression in quiescent 
diploid human fibroblasts after mitogenic stimulation with fresh 
media. Stock confluent HFF cells were subcultured at a 1:10 ratio 
(1 x 105 cells/35-mm dish) in 3 ml of DME containing 10% calf 
serum and allowed to proliferate without a media change until sub- 
culture day 16 at which time the cells were quiescent. The media 
was completely replaced with fresh DME containing 10% calf se- 
rum on subculture days 16 and 21. Immunoblot analysis was per- 
formed with 20 #g total protein from each extract, exactly as 
described in the legend of Fig. 1, and subjected to quantitative anal- 
ysis as described in the legend of Fig. 2. The day 0 data point 
represents a 20-#g protein extract sample from the confluent stock 
fibroblasts that were used to generate the original 1:10 subculture. 
The day 16 extract was obtained immediately before the culture me- 
dia was replaced. Triangles, lipocortin 1; squares, endonexin II; 
and circles, the total protein/35-mm dish. These results are an aver- 
age of two separate experiments. 

media change on day 21 (Fig. 4). Immunoblot analysis of ex- 
tracts showed that on day 18, 2 d after the media was 
replaced, there was a fourfold increase in lipocortin 1 protein 
expression followed by a return to the initial low value over 
the next 3 d (Fig. 4). In an opposite fashion, there was a 3.5- 
fold decrease in endonexin II expression during the second 
and third days after the media was replaced (Fig. 4). The me- 
dia change on day 21 did not stimulate growth and did not 
significantly affect lipocortin 1 or endonexin II expression 
(Fig. 4). 

Regulated Expression of  Lipocortin 1 
and Endonexin H in Confluent HFF Cells after 
Epidermal Growth Factor (EGF) Addition 

The following experiment was performed to determine 
whether lipocortin 1 and endonexin II expression in conflu- 
ent HFF cells would be affected by EGF-stimulated cell 
growth and division. Stock confluent HFF cells were subcul- 
tured at a 1:10 ratio and allowed to proliferate (9 × I(Y 
cells/dish by day 16) with regular media changes on days 5, 
10, 15, and 20. The addition of  EGF (50 ng/ml) to the culture 
media of  the confluent cells on day 16 stimulated a further 
round of cell division. There was an approximately twofold 
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Figure 5. Lipocortin 1 and endonexin II expression after EGF addi- 
tion to confluent diploid human fibroblasts on subculture day 16. 
Stock confluent HFF cells were subcultured at a 1:10 ratio (1 × 1@ 
cells/35-mm dish) and allowed to proliferate with media changes 
on subculture days 5, 10, 15, and 20. EGF (50 ng/ml) was added 
to the culture media on subculture day 16. Immunoblot analysis was 
performed with 20/zg total protein from each extract, exactly as 
described in the legend of Fig. 1, and subjected to quantitative anal- 
ysis as described in the legend of Fig. 2. The day 0 data point 
represents a 20-/zg protein extract sample from the confluent stock 
fibroblasts that were used to generate the original 1:10 subculture. 
The day 16 data point represents an extract obtained immediately 
before EGF addition. Triangles, lipocortin 1; squares, endonexin 
II; and circles, the total protein/35-mm dish. These results are an 
average of two separate experiments. 

increase in the monolayer cell density (2.2 x 106 cells/dish 
by day 19; Fig. 5) and in total protein (days 16-19, Fig. 5) 
within 3 d after EGF addition. During the period of EGF- 
stimulated cell growth, there was an approximately threefold 
increase in lipocortin 1 expression and an approximately 
threefold decrease in endonexin II expression (Fig. 5). After 
the period of  EGF-stimulated cell growth, the lipocortin 1 
and endonexin II expression returned to the levels detected 
before stimulation. 

A control set of  experimental cells were subjected to the 
same protocol of  media replacement described in Fig. 5, but 
the cells did not receive EGF addition on day 16. Within the 
experimental window of days 16-24, there were no signifi- 
cant changes in lipocortin 1 and endonexin II expression in 
this control set of healthy and confluent HFF cells (data not 
shown). Thus, the cellular changes in lipocortin 1 and en- 
donexin II expression observed within the confluent HFF 
cells appears to be correlated with some aspect of fibroblast 
growth or division that was stimulated by the EGF addition. 

S c h l a e p f e r  and  H a i g l e r  Expression of Lipocortin 1 and Endonexin H 2 3 3  
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Figure 6. Lipocortin 1 and endonexin II rate of synthesis in diploid 
human fibroblasts subcultured at a 1:10 ratio. Stock confluent HFF 
cells were subcultured (1 × 105 cells/35-mm dish) as described in 
the legend of Fig. 1. At the indicated time after the initial subcul- 
ture, the media was removed, and the HFF cells were pulse-labeled 
in 1 ml with 250 /~Ci [35S]methionine for 3 h as described in 
Materials and Methods. Cell lysates were prepared, the total acid 
precipitable [asS] in aiiquots of each extract was determined, and 
immunoprecipitations were performed on 50 #g total protein from 
each extract with antiserum to either lipocortin 1 or endonexin II. 
The immunoprecipitated proteins were resolved by SDS-PAGE, 
visualized by autoradiography, and quantitated by scintillation 
counting as described in Materials and Methods. The experiment 
was repeated two times and the results were averaged (+ standard 
deviation). Triangles, lipocortin 1, and squares, endonexin II. 

Synthesis and Turnover of Lipocortin 1 
and Endonexin H as a Function of  CeU Growth 
in HFF Cells 

The rates of synthesis and turnover of lipocortin 1 and en- 
donexin II were measured to gain insights into the level at 
which the growth-dependent regulation of annexin expres- 
sion occurs. Stock confluent HFF cells were subcultured at 
a 1:10 ratio (1 x 105 cells/dish) as described in the legend 
of Fig. 1. At the indicated time points, the HFF cells were 
pulsed-labeled with psS]methionine and the annexins were 
immunoprecipitated from the cell lysates (see Materials and 
Methods). Lipocortin 1 synthesis was maximal during the 
period in which the HFF cells were highly proliferative (Fig. 
6, days 2 and 3) and decreased eightfold as the cells became 
quiescent (Fig. 6; days 8 and 10). In contrast to these results, 
the rate of  endonexin II synthesis remained relatively con- 
stant throughout the experiment at a value intermediate to 
that of the lipocortin 1 extremes (Fig. 6). Since the rate of 
endonexin II synthesis was relatively constant while its cellu- 
lar expression levels were changing (Fig. 2), we considered 
the possibility that the expression changes were due to the 
regulation of the endonexin II degradation rate. 

The turnover rates of endonexin II and lipocortin 1 were 
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Figure 7. Pulse-chase analysis of lipocortin 1 and endonexin II in 
diploid human fibroblasts subcultured at a 1:10 ratio. Stock 
confluent HFF cells were subcultured (1 x 105 cells/35-mm dish) 
as described in the legend of Fig. 1. The HFF cells were allowed 
to proliferate without a media change for either 1 or 5 d. At days 
1 or 5, the HFF cells were pulse-labeled with 250/~Ci/ml [35S]me- 
thionine for 2.5 h, and then rinsed with PBS and incubated in the 
original growth media containing an excess of unlabeled methio- 
nine for the indicated times. The amount of radioactivity associated 
with either lipocortin 1 or endonexin II was determined by immu- 
noprecipitation, followed by autoradiography and scintillation 
counting as described in Materials and Methods. Lines were drawn 
through the data points through the use of exponential regression 
analysis that was constrained to 100% at t = 0. Labeling that initi- 
ated on day 1 (triangles): lipocortin 1 (R 2 = 0.95, tl/2 = 35 h) and 
endonexin II (R 2 = 0.98, tu2 = 21 h). Labeling that initiated on 
day 5 (squares): lipocortin 1 (R 2 = 0.95, tl/2 = 23 h) and en- 
donexin II (R 2 = 0.96, t,/2 = 46 h). The results are an average of 
two separate experiments. 

measured on either day 1 or 5 after the initial subculture: the 
days in which the rate of change in annexin expression was 
maximal (Fig. 2). HFF cell cultures were pulse-labeled with 
[35S]methionine for 2.5 h, chased with the original growth 
media supplemented with 1 mM unlabeled methionine, and, 
at the indicated times, the annexins were immunoprecipi- 
tated from the cell lysates (see Materials and Methods). The 
time course of endonexin II radioactive decay could be ap- 
proximated by a single exponential curve. From these data, 
it was estimated that the t~a of endonexin H turnover in- 
creased from 21 h in proliferating cells labeled on day 1 to 
46 h in quiescent cells labeled on day 5 (Fig. 7). However, 
it should be noted that other physiological changes may have 
occurred during the relatively long chase period. In fact, the 
decay curve for endonexin II in cultures labeled on day 1 is 
not exactly linear in the semilog plot (Fig. 7) and may indi- 
cate that degradation occurred at a more rapid rate at the ear- 
lier time points of the chase. 

The turnover rate of lipocortin 1 also changed as a function 
of HFF cell growth. However, the differences in lipocortin 

The Journal of Cell Biology, Volume 111, 1990 234 



1 turnover varied less, and in an opposite manner compared 
to the differences in endonexin II turnover. The t~a of lipo- 
cortin 1 turnover decreased from 35 h in proliferating cells 
labeled on day 1 to 23 h in quiescent cells labeled on day 5 
(Fig. 7). 

Thus, the observed growth-dependent lipocortin 1 expres- 
sion change (Fig. 2) is due to changes in both its rate of syn- 
thesis (Fig. 6) and degradation (Fig. 7) while alterations in a. 
endonexin II expression appear to be achieved primarily by *' ¢O 

changes in its rate of degradation (Fig. 7). The measured 
turnover rates of endonexin II do not quite quantitatively ac- 
count for the observed changes in its expression (Fig. 2). 
However, the half-life during the period of maximal en- o 
donexin II decrease may be shorter than the one measured 
in the experimental window. 

Expression of Annexins in Rat Adrenal 
PC-12 Cells as a Function of NGF Addition and 
Cellular Differentiation 

Since the expression of certain annexins in HFF cells 
changes as a function of cell growth and division, experi- 
ments were designed to study the relative expression of an- 
nexins in a rapidly proliferating cell line that was stimulated 
to differentiate into nondividing cells. The cells chosen were 
PC-12 cells (18), a cell line that ceases mitotic division and 
initiate neurite outgrowth in response to NGE PC-12 cells 
were subcultured (2 x 105 cells/dish) into collagen-coated 
35-mm experimental cell dishes in minimal media with or 
without the addition of NGF (50 ng/ml) on a daily basis. 
Control cells were allowed to proliferate without NGF addi- 
tion for 10 d. At this point, high density clusters of rounded 
cells were observed (1 x 10 ~ cells/dish). In the NGF- 
treated experimental group, growth was slower and the cells 
had begun to produce a neurite outgrowth by day 3 and a 
more defined network of neurites by day 5 (data not shown). 
However, all cells did not differentiate in response to NGF 
and some clusters of ceils continued to proliferate (by visual 
inspection, ~50 % of the cells had assumed a stellate appear- 
ance by day 5). The effects of NGF were in large part revers- 
ible because the majority of the neurites retracted within 2 d 
of NGF removal from the cultures. 

Neither control nor NGF-treated cells contained detect- 
able amounts of lipocortin 1 or endonexin I by immunoblot 
analysis. The control PC-12 cells expressed a constant low 
level endonexin U (at 0.04 % of total cell protein) and calpac- 
tin 1 (at 0.02 % of total cell protein). These levels did not vary 
significantly as a function of time after plating (data not 
shown). However, NGF addition to the PC-12 cell cultures 
caused a fivefold increase in endonexin II expression (to 
0.2% of total protein) and a 32-fold increase in the expres- 
sion of calpactin 1 (to 0.65 % of total protein) by day 5 of 
NGF treatment (Fig. 8). The level of endonexin II expression 
returned to the initial control value over a period of 3 d after 
NGF removal and a shift to complete growth medium (Fig. 
8). The level of calpactin 1 expression was slower to return 
to the control baseline value after NGF removal and a shift 
to a growth promoting culture media (Fig. 8). The observed 
changes in calpactin 1 and endonexin II expressiofi in re- 
sponse to NGF might be even greater in cultures in which 
a higher percentage of the cells differentiate in response to 
the growth factor. 
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Figure 8. Endonexin II and calpactin 1 expression in PC-12 cells 
as a function of NGF-stimulated differentiation. Stock PC-12 cells 
were subcultured into collagen-coated 35-mm dishes (2 x 105 
cells/dish) in a minimal growth media (RPMI 1640 containing 1% 
heat-inactivated horse serum) in the presence of NGF (50 ng/ml). 
The cultures were treated with NGF for 7 d then shifted to NGF- 
free growth media (RPMI 1640 supplemented with 10% heat- 
inactivated horse serum and 5 % FBS) for either 1, 2, or 3 d. Immu- 
noblot analysis was performed with 50/~g total protein from each 
extract, exactly as described in the legend of Fig. 1. The immuno- 
blot was subjected to quantitative analysis as described in the leg- 
end of Fig. 2. Endonexin II expression is indicated by squares and 
calpactin 1 expression is indicated by triangles, the day 0 point 
represents a sample from the stock PC-12 cells that were used to 
set up the experimental subculture and did not receive NGF treat- 
ment. These results are an average of two separate experiments. 
Control PC-12 cultures that were maintained throughout the 10-d 
experimental period in minimal growth media without NGF 
showed constant endonexin II and calpactin 1 expression at 
~0.04% and 0.02% of total protein, respectively (data not shown). 

Discussion 

The Ca2+-binding proteins in the annexin family are attract- 
ing intensive investigation because of their potential involve- 
ment in Ca2+-mediated stimulus-response coupling. One of 
the annexins, lipocortin 1, has properties that make it a can- 
didate for involvement in three different intracellular signal 
transduction pathways. (a) It is phosphorylated by the EGF 
receptor/kinase (10). (b) It is phosphorylated in vitro by pro- 
tein kinase C (41); and (c) although there is no direct evi- 
dence in intact cells, it potentially can change its cellular lo- 
cation in response to Ca 2+ fluxes by virtue of its ability to 
undergo reversible Ca2+-dependent binding to plasma mem- 
branes (40). Despite their potential importance, the biologi- 
cal function is not clearly defined for any of the eight or more 
proteins in the annexin family. In the absence of direct as- 
says, functional insights can be sought by determining the 
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cell types that express these proteins and parameters that 
affect their expression. Previous studies have shown that 
different annexins have unique tissue and cell distributions 
(7, 16, 35). But beyond the basic observation that differential 
expression indicates specialized function, these surveys of 
protein and gene expression in different cell types have not 
provided significant insights into the functional role played 
by these proteins. 

We have studied lipocortin 1 in cultured cells to determine 
if its expression changed as a function of growth status. We 
also concentrated our study on endonexin II because it has 
Ca 2÷ and phospholipid binding properties similar to lipo- 
cortin 1, but it is not phosphorylated by the EGF receptor/ki- 
nase or other known protein kinases (41, 42). We focused 
our study on normal diploid HFF because they express rela- 
tively high levels of both lipocortin 1 and endonexin II, be- 
cause they have a well-defined growth response to EGF (4), 
and because lipocortin 1 phosphorylation in intact HFF ceils 
has been characterized (14). We found that the level of lipo- 
cortin 1 expression increased three to fourfold when quies- 
cent HFF cells were stimulated to proliferate. The increase 
in expression was seen when cell division was induced by ei- 
ther providing quiescent cells more surface area for growth 
(Fig. 2), providing fresh medium and serum to nutrient and 
serum-starved cultures (Fig. 4), or EGF-stimulation of cul- 
tures grown to confluence in fresh medium and serum (Fig. 
5). The increased expression of lipocortin 1 may be associ- 
ated with the fact that maximal phosphorylation of lipocortin 
1 also occurs in proliferating HFF ceils (D. D. Schlaepfer 
and H. T. Haigler, unpublished results), but the functional 
correlation of this association remains to be determined. Ad- 
ditionally, we conclude that the regulation of lipocortin 1 ex- 
pression was due to changes in both its rate of synthesis (Fig. 
6) and its rate of degradation (Fig. 7) in HFF cells. 

Under the above conditions, there was a concomitant 
three- to fourfold decrease in endonexin II expression (Fig. 
2, 4, and 5) in proliferating HFF ceils or in quiescent HFF 
cells that were stimulated to undergo cell division. Since the 
rate of endonexin II synthesis was found to remain constant 
(Fig. 6), we conclude that the regulation of its expression was 
primarily due to changes in its rate of degradation (Fig. 7). 
For comparison, the expression of endonexin I and calpactin 
1 were measured and found to remain relatively unchanged 
in growing and quiescent HFF cells. When the fibroblasts 
were experimentally induced to proliferate, the magnitude of 
the lipocortin 1 increase and the endonexin II decrease in ex- 
pression was similar. This results in the sum expression of 
these four annexins remaining approximately constant at 
3.5 % of the total cell protein throughout all stages of HFF 
cell growth. 

It is important to determine whether the reciprocal expres- 
sion of lipocortin 1 and endonexin II in fibroblasts with re- 
spect to growth indicates a causal relationship. If lipocortin 
1 and endonexin U are indeed involved in cell replication, 
it will be interesting to determine whether these proteins in- 
teract with the same cellular machinery. It may be possible 
that lipocortin 1 plays a role in a stimulatory growth- 
regulatory pathway and endonexin II is part of an inhibitory 
growth-regulatory pathway. Examination of the growth re- 
sponse time course and annexin expression does not provide 
a clear answer to this question because the changes in expres- 
sion occur with a time course that slightly precedes or is 

simultaneously with cell replication. The increase in lipo- 
cortin 1 expression and the decrease in endonexin II expres- 
sion began '~1 d after the mitogenic stimulus and their levels 
reached a maximum or minimum, respectively, 2 to 3 d after 
stimulation (Figs. 2, 4, and 5). When quiescent fibroblasts 
were stimulated to undergo a single round of replication with 
fresh medium and serum (Fig. 4) or with EGF (Fig. 5), the 
expression of lipocortin 1 and endonexin II returned from the 
altered levels to the original basal levels over a period of 
,x, 2 d. This relatively slow change in expression levels may 
be correlated with the fact that these proteins have measured 
half-lives on the order of over 20 h (Fig. 7). 

Contrary to the growth-regulated expression results in the 
normal diploid HFF cells, experiments conducted with the 
A431 transformed cell line showed that not all cultured cells 
regulate the expression of lipocortin 1 and endonexin II in 
a growth or density-dependent manner. The A431 cells, 
which lack normal density-dependent growth regulation, ex- 
pressed constant levels of lipocortin 1 and endonexin II. 
These levels were similar to those found in rapidly growing 
fibroblasts; i.e., relatively high levels of lipocortin 1 and low 
levels of endonexin II (data not shown). Although these ob- 
servations are consistent with the proposal that there is a 
positive correlation between rapid cell proliferation and 
lipocortin 1 expression and a negative correlation between 
rapid cell replication and endonexin II expression, a number 
of other properties of the epithelial A431 cell line could have 
contributed to these results. 

Expression of annexins also was investigated in cultured 
pheochromocytoma PC-12 ceils. These transformed ceils 
can be induced to reversibly differentiate into nondividing 
neuronlike cells with NGF (18). Our results confirm and ex- 
tend previous qualitative studies which showed that these 
cells do not contain lipocortin 1 (34) and have increased ex- 
pression of calpactin 1 after NGF treatment (16). In the con- 
trol PC-12 cells, endonexin II, and calpactin 1 were ex- 
pressed at a constant low level. However, when the PC-12 
cells were induced to reversibly differentiate into neuronlike 
cells, the cellular expression of endonexin II increased 
fivefold and the expression of calpactin 1 increased 32-fold 
(Fig. 8). The elevated level of endonexin II returned to the 
initial baseline value over a period of 3 d after NGF removal 
and a shift a growth promoting media. These results support 
the proposal that the increased endonexin II expression in 
quiescent HFF cells and in differentiated PC-12 cells may be 
correlated with a prominent yet undefined functional role in 
nondividing cells. 

A primary reason for investigating the potential role that 
annexins play in cell growth is the observation that lipocortin 
1 and calpactin 1 are cellular substrates for protein tyrosine 
kinases. Also, a previous study showed a correlation be- 
tween increased cell replication and increased expression of 
calpactin 1 (also called p36). The study showed that plating 
primary chicken myoblasts from dissociated chick limb buds 
onto culture dishes resulted in the increased expression of 
calpactin 1 (5). These observations of increased calpactin 1 
expression in cultured myoblasts may be analogous to the ob- 
served results of increased lipocortin 1 expression in HFF 
cells that were stimulated to grow by low density (1:10) sub- 
culture (Fig. 2). However, we did not observe an increased 
expression of calpactin 1 in growing HFF cells. Other 
studies also fail to demonstrate a positive correlation be- 
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tween the expression of these two annexin tryrosine kinase 
substrates and rapid cell proliferation. For instance, im- 
munohistochemical studies of the developing central ner- 
vous system of the rat embryo showed that lipocortin 1 ex- 
pression was localized specifically to a small group of cells 
in the neural tube (30). Lipocortin 1 first appeared to these 
cells at about the time when they stopped dividing and un- 
derwent terminal differentiation. Similarly, the most dra- 
matic increase in calpactin 1 expression was observed in 
NGF-treated PC-12 cells that underwent differentiation into 
nondividing ceils (Fig. 8). It is possible that in these non- 
dividing cells, these annexin proteins may play a increased 
role in some differentiated cell function such as the cross- 
linking of secretory vesicles (31). Overall, the results of 
these studies of annexins in different cell types show that 
their expression patterns are regulated in an independent and 
complex manner. 

In summary, the demonstration that annexin expression is 
growth-regulated in certain cell types adds more indirect evi- 
dence to the proposal that these proteins may be involved in 
some aspect of cell replication or differentiation. Direct evi- 
dence is needed to evaluate this proposal. Since all ver- 
tebrate cells investigated to date express multiple forms of 
annexins, each potentially having a different cellular role, an 
effective investigation of annexin function may be facilitated 
by studying a lower organism that expresses fewer annexin 
gene products. 
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