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Abstract

Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These
networks – whose nodes can vary from tens to hundreds – are characterized by neurobiologically meaningful graph theory
metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs
from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based
method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were
used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as
clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these
metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and
lower modularity compared to those with smaller size and the same density. These findings indicate that the network size
should be considered in any comparison of networks across studies.
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Introduction

Human brain is a complex system containing many intercon-

nected regions. Among various methods for studying the brain,

graph theory is a valuable framework for analyzing the anatomical

and functional connectome of the brain [1,2,3,4,5]. Within the

framework of graph theory, brain regions are considered to be the

nodes and connection links (directed/undirected and weighted/

unweighted) are extracted using some statistical measures of

association.

To construct large-scale functional or anatomical brain

networks, signals recorded via electroencephalography (EEG),

magnetocephalography (MEG), or magnetic resonance imaging

(MRI) are often used. Topological properties of such networks can

be analyzed by characterizing the brain as an undirected network,

where individual EEG or MEG sensors or else MRI-based regions

of interests serve as nodes and a link between any two nodes

represents a correlation of the time series associated with these

nodes or other statistical measure of their connection [1,6].

As network structure is extracted, it is tested for a number of

neurobiologically meaningful metrics. The networks are often

tested for small-worldness [7] and scale-freeness [8] – ubiquitous

properties in many natural networks. Research into the brain

networks has revealed their economical small-world structure

characterized by high clustering (transitivity) and short average

path length [9,10,11,12]. Brain functional networks are cost

efficient in that they implement parallel processing for low

connection cost [13]. Scale-freeness has also been shown to be a

property of brain networks characterized by power-law degree

distribution [14,15].

The properties of the anatomical and functional networks of

brain are linked to its functions and can be affected by

neurological and psychiatric diseases [16]. For example, schizo-

phrenia patients show altered properties in functional networks

obtained through EEG [17,18] and functional MRI [19,20].

Alzheimer’s disease is characterized by abnormal small-world

architecture in the structural and functional cortical networks,

implying their suboptimal topological and functional organization

in such patients [21,22]. Deviant wiring of brain networks

associated with the loss of visual modality and/or subsequent

plastic changes was observed in early blind subjects [23].

Brain networks can be studied at both microscopic [24] and

macroscopic levels [1,2,3,4]. At the macroscopic scale, networks of

different sizes ranging from less than 30 to 4000 nodes are

extracted [18,21,25,26]. However, graph metrics can be signifi-

cantly influenced by the number of nodes [27]. Indeed, in a recent

study, the graph metrics of structural brain networks markedly

varied as a function of the network size [28].

In this paper we considered high density EEGs recorded from a

number of healthy individuals and investigated how graph metrics

depend on the network size. To this end, EEG-based functional

networks were extracted at three different scales, and then various

graph metrics were computed for the networks. We found that

these metrics are significantly different across these scales at all

conventional EEG frequency bands.
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Methods

EEG recording
The EEGs of 32 healthy subjects, used for this analysis, were

recorded at the Department of Clinical Neurosciences of the

University of Lausanne (Lausanne, Switzerland) within the frame

of projects of Dr. M.G. Knyazeva, approved by the local Ethics

committee of the university (Commission cantonale d’éthique de la

recherche sur l’être humain). All the procedures conformed to the

Declaration of Helsinki (1964) by the World Medical Association

concerning human experimentation. The participants (11 men, 21

women; mean age 51 years, standard deviation 21 years) were

without substance abuse or dependence and had no known

neurological or psychiatric illness or trauma. Written informed

consent was obtained from all participants involved in this study.

The EEG data were collected between 11 am and 4 pm during

3–4 min of rest with eyes closed in a dedicated semi-dark room

with a low level of environmental noise. To keep adequate

alertness of subjects, their state and ongoing EEG were

continuously monitored by experimenters. A 128-channel Geo-

desic Sensor Net (Electrical Geodesic Inc., Eugene, OR, USA) was

used at a sampling frequency of 500 Hz. The electrode

impedances were kept under 30 kV [29]. The sensors from the

outer ring of the sensor net were not considered because of low

quality signals, which left 111 sensors for analysis. The EEG time

series were filtered (FIR, band-pass of 1–50 Hz and 50 Hz), re-

referenced against the common average reference, and segmented

into non-overlapping 1 second epochs using the NS3 software.

Artifacts in all channels were edited off-line: first automatically,

based on an absolute voltage threshold (100 mV) and on a

transition threshold (50 mV), and then on the basis of a thorough

visual inspection. The sensors producing artifacts more than 20%

of the recording time were corrected using a bad channel

replacement tool (NS 4.2 EGI, USA). Using short segments for

analysis allowed us to record 175669 artifact-free epochs per

subject in order to achieve high confidence of the data.

To minimize the effects of volume conduction, we computed

high-resolution Laplacian [30]. To this end, at each sample, a 2-D

spline was fitted to common-average-reference EEG, along the

surface of the best-fit sphere.

Constructing brain functional networks
For EEG-based brain functional networks, the individual (or

groups of) sensors are often considered as nodes. To find

connections between nodes, bivariate measures such as cross-

correlation and coherence for linear dependence [31], synchroni-

zation likelihood for nonlinear association [32], and multivariate

measures such as S-estimator [33] can be used. Furthermore, the

EEG-based brain functional networks of various sizes can be

constructed. Here we considered three networks with 111 (original

number of sensors), 55 and 19 nodes (Fig. 1). Our choice was

defined by the EEG montages commonly used in neuroscience

research and clinical neurophysiology. The frequently applied

dense-array EEG includes 111 sensors, providing a network size of

111 nodes. Another montage, traditionally used by EEG

community, especially in clinical settings, is an International 10/

20 system. To approximate it, we considered groups consisting of

the first neighbors of 10/20 sensor locations as individual nodes

resulting in a network with 19 nodes. Finally, an intermediate

montage, used both in clinical and research purposes, is an

Extended 10–20 system. To approximate it, we also considered a

size of 55 nodes by grouping pairs of sensors.

To obtain the associations between nodes, we used S-estimator

technique [33,34,35], which is based on entropy of the eigenvalues of

the correlation matrix. For totally uncorrelated time series, dimen-

sionality of data becomes maximized, while perfectly synchronized

data lead to a minimal dimensionality [33,34,35]. As diversity of

eigenvalues correlates with the dimensionality, it is a good measure of

synchronization. Suppose we have two groups of P1- and P2-

multivariate time series each with length L. Let us denote these time

series by Y
(1)
1 (t),Y

(1)
2 (t),:::,Y (1)

P1 (t) and Y
(2)
1 (t),Y

(2)
2 (t),:::,Y (2)

P1 (t):
Also, let us define vectors Y 1

t ,Y 2
t as Y 1

t ~ Y
(1)
1 (t),

h
Y
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2 (t) ::: Y

(1)
P1 (t)�T ,Y 2

t ~ Y
(2)
1 (t),Y

(2)
2 (t) ::: Y

(2)
P1 (t)

h iT

. Without loss

of generality, we assume that Y 1
t and Y 2

t have zero mean and unitary

variance. The correlation matrix is computed as

C(i,j)~
1

L{1

X(L{1)

(t~0)

Y iT

t Y
j
t ð1Þ

and,

C~
C(1,1)

C(1,2)T
C(1,2)
C(2,2)

h i
, ð2Þ

Where C(i,i) is the internal correlation matrix of group i, and C(1,2) is

the inter-correlation between groups 1 and 2. Since the correlation

matrix for real time series is symmetric, we have written C(1,2)T instead

of C(2,1). The above correlation matrix includes both intra-group and

inter-group correlations. In order to get rid of intra-group correlations,

let us consider the following linear transformation [35]

Z~½Z1Z2�~ Y1

Y2

h iT
T(1)

0
0

T(2)

h i
, ð3Þ

Where T ið Þ~C i,ið Þ{1

2
, and suppose that R is the correlation matrix

of the transformed time series calculated as

R~
IP1

T(1)TC(1,2)T(2)

T(2)T C(2,1)T(1) IP2

" #
, ð4Þ

where IP1
is the unity matrix of dimension P1. It is straightforward to

see that after the transformation, the internal correlation of both groups

is cancelled out [35]. Now, let l0i~
li

P
be the i-th normalized eigenvalue

of matrix C, where P = P1+P2. Then, we compute II which is entropy of

these normalized eigenvalues

II~{
XP

i~1

l0i log (l0i): ð5Þ

If the two groups are uncorrelated, R(1,2) = R(2,1) = 0, R would

be diagonal, and II = log(P1+P2), whereas if they are identical, R

will have ones on the main diagonal and zeros otherwise. The

following formula has been proposed for estimating the inter-

group correlation (synchronization) between these groups [35]

S~
log(P1zP2){II

log(P1zP2){IImin

, ð6Þ

where IImin could be achieved when the time series have the

lowest dimensionality, or equivalently, when they are mostly

correlated. Such a quantity can be computed numerically by

taking entropy of eigenvalues of matrix A (as obtained by Eg. (5)),

EEG-Based Brain Networks
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which is defined as

A~
IP1
BT

B
IP2

� �
, ð7Þ

where

B~ IP1
0P1|(P2{P1)

h i
: ð8Þ

The S-estimator – as obtained through Eq. (6) – scales from 0 to

1; where 0 corresponds to completely non-synchronized systems

and 1, to perfectly coherent systems.

We applied S-estimator to weight connections in cross-

correlation matrices (1116111, 55655, or 19619). More specif-

ically, we evaluated inter-group correlation matrices (each group

containing 1, 2, or 5–8 nodes in networks with size as 111, 55, or

19 nodes, respectively, as shown in Fig. 1) by the method described

above, for each epoch. For the 19-electrode case, some groups

have common nodes, which were removed before computing S-

estimator. By averaging these weighted matrices over all artifact-

free epochs for each subject, we obtained the weighted correlation

matrices, which were further used to extract the network topology.

We analyzed the binary networks extracted from the weighted

correlation matrices, meaning that if the weight between two

nodes was larger than a threshold, the corresponding element in

the adjacency matrix would be 1, otherwise, it would be 0

[1,6,17,36].

Often, the networks are extracted for different thresholds, and

then graph theory metrics are calculated for their topologies.

However, this way, the networks might have different number of

links and the observed differences might be due to this fact. A

better way to construct the networks is based on network density

[13,19]. Here we considered the adjacency matrix A of an

unweighted and undirected graph with E edges and 111, 55, or 19

nodes. We defined normalized network density (or cost) as a total

number of edges in the graph E, divided by the maximum possible

number of edges N(N21)/2. For each subject and for a specific

network cost, the weighted correlation matrices of different sizes

were thresholded at different threshold values, while keeping the

same density for the three extracted networks (Fig. 2).

Graph theoretical metrics
Neurobiologically meaningful graph metrics were calculated for

extracted networks. Among them, clustering coefficient and

modularity refer to the processes of segregation in the brain

[1,6]. Graphs generated from real world networks usually have

clusters of high density. In other words, if node A is connected to

node B, and B is connected to C, A tends to connect to C. In order

to quantify this phenomenon, a clustering coefficient was

introduced [7]. A triplet is defined as three nodes with at least

two edges, and a group is called a closed triplet, if all the nodes are

connected. Clustering coefficient C is computed by dividing the

number of closed triplets by the total number of triplets [7]

C~
1

N

P
i,jaijaikajk

kk(kk{1)
, ð6Þ

where N is network size, aij is the corresponding element of the

adjacency matrix between nodes i and j, and ki is degree of node i

that is obtained by summing all coming links to i. Clustering

coefficient indeed considers local connectivity of a network by

counting the neighbors of the nodes where there are links in

between.

Networks’ tendency to be divided into disjoint groups is also

important. Nodes within a group are likely to be connected, while

connections between different groups are rare. Consequently,

modularity equals to the number of inter-group connections

divided by the total number of edges [37]

Q~
X
iEm

eii{
X
jEM

eij

 !2
2
4

3
5: ð7Þ

Here, the network is divided into M disjoint modules.eij denotes

the fraction of connections between modules i and j. Likewise,eii

Figure 1. Organization of the network nodes at three different scales. The Sensor Net locations that match the positions of the International
10–10 System are labeled and followed by the numbers of the Sensor Net. The sensors corresponding to the 10–20 System are shown with grey
circles. The size of the network is (a) N = 111, i.e., each individual sensor is used as a network node; (b) N = 55, i.e., pairs of sensors are used as network
nodes; (c) N = 19, i.e., the International 10–20 System locations together with their first neighborhoods are used as network nodes (in computing S-
estimator between any two group, their common nodes are removed).
doi:10.1371/journal.pone.0035673.g001
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shows fraction of connections inside module i. The modularity

index quantifies community structure of the network.

Network integration is the ability of a network to combine the

information of various parts. A frequently used measure for

network integration is global efficiency defined as [38]

E~
1

N(N{1)

X
i,j

1

li,j
ð8Þ

where li,j is the length of the shortest path between nodes i and j.

Efficiency measures how close are the nodes in the network that is

how easy the network is communicable; i.e. the higher the

efficiency of a network the better communication between the

nodes in the network.

Resiliency is the resistance of the network when facing random

or intentional failures. It has been shown that degree-heteroge-

neous networks generally have high resiliency [39]. Assortativity of

a network is the correlation of both sides of network edges [40].

The assortativity r of a network is defined as

r~

1

E

X
jwi

kikjaij{
1

E

X
jwi

1

2
(kizkj)aij

" #2

1

E

X
jwi

1

2
(k2

i zk2
j )aij{

1

E

X
jwi

1

2
(kizkj)aij

" #2
, ð9Þ

where M is the number of edges. A positive value of r indicates

that the network generally consists of mutually coupled high-

degree nodes, while a negative assortativity implies that the

network has vulnerable nodes. High-degree nodes connected to

each other improve network resiliency, because they keep the

nodes connected even if some links are broken.

Figure 2. Construction of brain networks from EEG signals. The top plot shows sample EEGs taken over a time period of one second. The next
step is to compute pair-wise correlations to obtain the weighted cross-correlation matrix (rows and column represent nodes). Then, the matrix is
reduced to a binary form by comparing each entry with a threshold (the threshold is set such that the network has a specific density); the links with
correlation values less than the threshold are set to 0; others to 1. Finally, graph theoretical metrics are calculated for the binary network.
doi:10.1371/journal.pone.0035673.g002
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Statistical assessments
Wilcoxon’s ranksum test was used to assess the statistically

significant differences between the graph metrics of brain networks

at different scales. The tests were carried out separately for all the

values of network cost and the difference was considered

significant at P,0.05.

All the computations were performed in MatLab. For Laplacian

computation, we used CSD toolbox freely available at (psycho-

physiology.cpmc.columbia.edu/Software/CSDtoolbox). Graph

theory measures were computed using brain connectivity toolbox

freely available at (sites.google.com/a/brain-connectivity-toolbox.

net/bct/Home).

Results

We extracted the EEG functional networks at three different

scales (see Methods), and calculated their properties through a

number of graph metrics (Figs. 3, 4, 5, 6, 7). Fig. 3 shows the

clustering coefficient as a function of network cost (density). As

expected, with density increase, clustering coefficient also

increased. This is due to the fact that a graph with higher density

has more chance to have triangles comapred to a sparse graph.

For low values of network cost, the networks with 111 nodes had

significantly larger clustering than those with 55 or 19 nodes,

while, for high networks costs, this was reversed (P,0.05,

Wilcoxon’s ranksum test). Networks with 55 nodes always had

higher clustering than those with 19 nodes. Furthermore, the

observed phenomenon was consistent across all frequency bands

and the network clustering coefficient was largely dependent on its

size.

Figure 4 shows the network modularity as a function of its

density at different network scales. Modularity overall decreased as

density increased, which is expected since dense networks consist

of many noisy connections destroying the modular structure of the

network, and, thus, decreasing the modularity. Similar to

clustering coeefficent, for a broad range of network costs, the

EEG-based brain functional networks of different sizes varied

significantly in the modularity index at all frequencies.

Next, we studied global efficiency, which shows how good is the

communication between nodes in the network. As the network

density increased, the number of links also increased resulting in

facilitating communication between its nodes, and hence, leading

to the efficiency increase (Fig. 5). Efficiency of network significantly

depended on its size: the smaller the netwrok, the lower the

efficiency (P,0.05, Wilcoxon’s ranksum test) for all values of cost

and frequency bands.

Figure 6 shows the economic efficiency, i.e., efficiency minus

cost as a function of network cost., For smaller networks, the cost

of maximum economic efficiency was higher compared to a larger

network. Indeed, brain network with 111 nodes had the best

economic efficiency at the density values of about 0.18, while for

networks with 55 and 19 nodes, these values were 0.25 and 0.32,

respectively.

Finally, we analyzed the assortative behavior of these networks

as a function of network cost (Fig. 7). Networks with 111 and 55

nodes always showed assortative behavior, i.e., positive assortativ-

ity coefficient. For small network costs, the assortativity of the

largest network with 111 nodes was significantly higher than that

of the network with 55 nodes (P,0.05, Wilcoxon’s ranksum test).

However, the network with 19 nodes had significantly different

Figure 3. Clustering coefficient of the network as a function of network cost for different network sizes (N = 111, 55, and 19). Mean
values of clustering coefficient are plotted for different frequency bands including delta (1–3 Hz), theta (3–7 Hz), alpha (7–13 Hz), beta (13–30 Hz).
The dots above the plots represent statistically significant difference at P,0.05 (Wilcoxon’s ranksum test).
doi:10.1371/journal.pone.0035673.g003
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Figure 4. Network modularity as a function of network cost for different network sizes. Other designations are as in Fig. 3.
doi:10.1371/journal.pone.0035673.g004

Figure 5. Efficiency of the network as a function of network cost for different network sizes. Other designations are as in Fig. 3.
doi:10.1371/journal.pone.0035673.g005

EEG-Based Brain Networks
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Figure 6. Economic efficiency of the network (i.e. efficiency minus cost) as a function of network cost for different network sizes.
Other designations are similar to Fig. 3.
doi:10.1371/journal.pone.0035673.g006

Figure 7. Network assortativity as a function of network cost for different network sizes. Other designations are as in Fig. 3.
doi:10.1371/journal.pone.0035673.g007
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assortativity than larger networks for a broad range of network

costs (P,0.05, Wilcoxon’s ranksum test), and also showed

disassortative behaviour (i.e., negative assortativity coefficient) for

the small network costs.

These results indicate that the size of the EEG-based functional

networks significantly influences their topological properties.

Discussion

Graph theory tools have been recently applied to functional/

anatomical brain networks constructed from time series based on

MRI, MEG, or EEG. Various brain disorders have been shown to

alter their properties. Examples include schizophrenia

[17,18,19,20], Alzheimer’s disease [21,41], and early blindness

[23]. Studying the properties of brain networks in health and

disease may advance us on how the brain is organized and how the

disease affects this organization.

In the brain networks, nodes are considered to be brain regions

and the links to represent associations between these nodes. In

many real-world networks, links and nodes are well-defined. For

example, in WWW, the nodes are individual web pages and the

links are citations among them, or, in social networks, the nodes

are individuals and the links are their acquaintances. In contrast,

for the brain networks, the definition of a node depends on the

recording technique. For example, in MRI-based techniques, a

parcellation template is used and a region of interest is taken into

account as individual node in the network [13,15,19]. In EEG-

and MEG-based functional networks, often the individual sensor

positions are taken into account as network nodes [17,18,36,41].

However, different EEG techniques may have different number of

sensors resulting in networks of various sizes across the studies.

This raises a basic question of between-study comparability.

Using diffusion tensor imaging-based networks, it has been

shown that both local and global network properties strongly

depend on the parcellation scale [28]. Although the networks were

small-world and scale-free, the amount of small-worldness and

scale-freeness showed strong dependence on the network size [28].

For example, as size of the extracted networks increased, i.e.,

parcellation was performed at a finer scale, small-worldness index

increased, clustering coefficient decreased, and average path

length increased [28].

In this work, we analyzed properties of EEG-based brain

functional networks constructed at three different scales including

111, 55, and 19 nodes. We showed significant dependence of both

local and global properties of EEG-based brain functional

networks upon the network size across all frequency bands. Being

a local network metric, clustering coefficient showed different

profiles as a function of network density at different sizes: for low

network costs, the large-size network had clustering superior to the

small networks, while, for high networks costs, the reverse was

true. Efficiency of a network – a global network metric – is

important for communicability within the network. This measure

showed strong dependence on the network scale; as network size

increased, while the network density was not varied, the efficiency

of the network increased. The economic efficiency, defined as

efficiency minus density, depended on the network scale: larger

networks had optimal economic efficiency in less denser states, i.e.,

the larger the network the less the network cost at which the

economic efficiency is optimal. Modularity and assortativity of the

networks also demonstrated strong effects of scale.

In summary, while studying the properties of EEG-based brain

functional networks, the network size, e.g., the number of sensors if

they are considered as nodes, should also be taken into account.

This work can be replicated on MEG data to investigate whether

the MEG-based functional networks depend upon the network

scale the same way as those reconstructed from EEG. Also, the

networks that can be constructed through nonlinear inter-

dependence analysis of time series are of significant interest.
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anatomical networks: does the choice of nodes matter? NeuroImage 50:

970–983.
29. Ferree TC, Luu P, Russell GS, Tucker DM (2001) Scalp electrode impedance,

infection risk, and EEG data quality. Journal of Clinical Neurophysiology 112:

536–544.
30. Nunez P, Srinivasan R (2006) Electric fields of the brain: the neurophysics of

EEG. New York: Oxford University Press.
31. Tucker DM, Roth DL, Bair TB (1986) Functional connections among cortical

regions: topography of EEG coherence. Electroencephalography and Clinical

Neurophysiology 63: 242–250.
32. Stam CJ, van Dijk BW (2002) Synchronization likelihood: an unbiased measure

of generalized synchronization in multivariate data sets. Physica D 163:
236–251.

33. Carmeli C, Knyazeva M, Innocenti G, De Feo O (2005) Assessment of EEG

synchronization based on state-space analysis. NeuroImage 25: 339–354.
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