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Abstract
The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more

understanding of the molecular events associated with the ovule development, we used

RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and

ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes

were identified from the four developmental stages of the ovule, respectively. We identified

a number of differently expressed genes (DEGs) from three adjacent stage comparisons,

which may play crucial roles in ovule development. The DEGs were then conducted func-

tional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analy-

ses. Genes related to cellular component biogenesis, membrane-bounded organelles and

reproductive regulation were identified to be highly expressed during the ovule develop-

ment. Different expression levels of auxin-related and cytokinin-related genes were also

identified at various stages, providing evidence for the role of sporophytic ovule tissue in

female gametophyte development from the aspect of gene expression. Generally, an over-

all transcriptome analysis for rice ovule development has been conducted. These results

increased our knowledge of the complex molecular and cellular events that occur during the

development of rice ovule and provided foundation for further studies on rice ovule

development.

Introduction
Angiosperm plants undergo two phases in their life cycle: the haploid phase of male and female
gametophytes and the diploid sporophyte phase. Not only male and female gametogenesis but
also the fertilization of haploid gametophytes takes place surrounded by the diploid sporophyte
tissues. The ovule is the site of megasporegenesis and fertilization in angiosperm, and is the
major component of the female reproductive organ. The role of the ovule in sexual reproduc-
tion is critical.
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Early studies have provided insight into the development of rice ovules in terms of morpho-
logical and cellular features [1–3]. The development of rice ovule is initiated from the ovule pri-
mordium. Consisting of a round mass of actively dividing cells, the main portion of the
primordium becomes the nucellus. Below the nucellus epidermis, a large cell develops into the
archespore. Subsequently, it enlarges and differentiates into the megaspore mother cell (MMC)
[4]. After the meiotic division of the MMC, a linear tetrad of megaspores is produced. Three
megaspores at the micropylar pole soon degenerate, leaving the chalazal megaspore as the
functional megaspore. The surviving functional megaspore then undergoes three rounds of
mitosis, resulting in the formation of an eight-nucleate female gametophyte, followed immedi-
ately by nuclear migration and cellularization. Finally, the embryo sac matures with the
polarization and differentiation of the egg cell and two synergids at the micropylar end, three
antipodal cells at the chalazal end and two polar nuclei in the central cell. In the process of fer-
tilization, the egg cell and the central cell fuse with two sperm cells, followed by the formation
of zygote and primary endosperm nucleus, while the sporophytic ovule tissue undergoes a pro-
grammed cell death (PCD)-triggered degradation after fertilization [5].

However, researches focusing on the development of female gametophyte in rice are limited
for several reasons. First, the female gametophyte is deeply embedded in the sporophytic ovule
tissue, thus it is difficult to separate it from the surrounding tissue. Although a separation
technique that may facilitate research in this field has been established [6], difficulties remain
due to the low cellular activity of the separated cells and the low success rate in separation.

Due to the inaccessibility of the relevant cells, ovule-defective mutants facilitate investiga-
tion of the molecular mechanism of ovule development. In Arabidopsis, genes encoding an
extensive range of transcription factor, protein kinase, putative corepressor, mitochondrial
ribosomal subunit and a component of the RNA interference pathway have been identified as
indispensable for ovule morphogenesis and numerous studies on ovule mutants have empha-
sized their importance [7]. Based on the various mutation phenotypes, the ovule mutants can
be assigned into two classes, sporophytic mutants and gametophytic mutants. The ovule sporo-
phytic mutants represent the mutation that occurred in the sporophytic tissue of the ovule. For
instance, the inomutant does not develop the outer ovule integument, but the inner integu-
ment is normal. Synchronously, the embryo sac is gametophytically defective, indicating the
important role of the sporophytic ovule tissue in promoting female gametophyte development
[8]. A frame-shift of the Bs-group MADS-box gene causes defective development of the integu-
ment [9]. Furthermore, down-regulation of OsIG1 will lead to the formation of unusual double
ovules and abnormal female gametophyte [10]. The ovule gametophytic mutations are identi-
fied as a distorted segregation ratio or reduced seed set because they fail to transmit through
the egg cell. For example, the ig1 (indeterminate gametophyte 1) mutant in maize has a pro-
longed phase of free nuclear divisions leading to a variety of embryo sac abnormalities (includ-
ing extra polar nuclei, synergids and egg cells) [11]. The ethylene-response ctr1 (constitutive
triple response 1) mutant resulted in a defective embryo sac leading to distorted segregation
[12]. The CTR1gene encodes Raf-like Ser/Thr protein kinase, which is the key enzyme for eth-
ylene signal transduction [13, 14]. This gene is involved in cell-cell communication between
the sporophyte and female gametophyte [15, 16]. Based on the genetic evidence of studies on
ovule-defective mutants, the sporophytic maternal tissues are hypothesized to dominate female
gametophyte formation [17, 18]. Moreover, comparative transcriptome analysis of sporocyte-
less (spl) and coatlique (coa) ovules has indicated a response of the embryo sac to sporophyte
ovule tissue and mutual communication between sporophytic ovule tissue and the embryo sac
[19].

Although research on mutants can promote an understanding of the functions of particular
genes in the context of biological phenomena, these approaches have failed to provide more
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detailed information regarding other components of the regulatory circuitry positioned
upstream or downstream in the hierarchy. However, transcriptome analysis based on microar-
rays can provide more detailed genetic information. Using this technique, dynamic gene
expression was shown in the developing rice ovule (Oryza sativa L.ssp japonica cv. Nippon-
bare) [20], establishing a new insight into the research of female development. Because the
transcriptome data were obtained using microarray-based methods, inherent limitations such
as providing only a fragmented view of transcriptome patterns still exist. Rather than measur-
ing relative gene expression, the RNA sequencing (RNA-seq) generates absolute information;
thus, many inherent limitations of microarray analysis can be avoided. This technique has
been used to study the developmental process of the embryo and endosperm in rice [21, 22].
Transcriptome analysis of developing ovule is needed to understand female development in
rice. However, current transcriptome information regarding the rice ovule is incomplete and
many genes have not been identified, hindering the analysis of genetic and molecular mecha-
nisms involved in ovule development.

To obtain greater insight into the genetic and molecular processes underlying ovule devel-
opment in rice, we used RNA-seq technology to analyze the transcriptome of ovules at four
developmental stages (embryo sac mother cell during meiosis, megaspore mitosis, mature
embryo sac and two days after flowering). Using deep RNA-seq (Illumina RNA-seq method),
sufficient and accurate transcriptome data were generated. We then conducted Gene Ontology
(GO), KEGG, MapMan pathway, hierarchical clustering and transcription factor expression
analyses, which are more comprehensive and systematic than the methods utilized in similar
studies. In this study, we discovered transitions in gene expression profiles of developing rice
ovules, which can provide genetic and molecular evidence of the cell-cell communication
between sporophytic ovule tissue and female gametophyte during the ovule developmental
process. This is the first report on the application of RNA-seq to transcriptome analysis of
developing ovules in rice. Furthermore, our research will serve as a database for the transcrip-
tome of developing ovule in this field.

Materials and Methods

Plant materials
The rice (O. sativa L. ssp. indica cv. 9311) plants were grown and maintained in the greenhouse
of Wuhan University (China).

The development of ovule before fertilization was dissected into three stages from OVR1 to
OVR3: OVR1 represented ovule containing MMC process; OVR2 was defined as ovule at
megaspore mitosis; OVR3 represented ovule containing mature embryo sac. OVR4 repre-
sented the ovule of two days after fertilization, which was designed to study the effect of fertili-
zation on ovule gene expression. In order to compare the different gene expression between the
female reproductive organ and vegetative organ, transcriptomic analysis of the rice leaf was
also conducted. The leaf used in this study was boot leaf, which was represented with LEAF,
and it was collected for three biological replicates before grinded in liquid nitrogen for later
use.

According to the correspondence existed between the morphological features of rice floret
and female gametophyte development, the sampling stage of ovule was determined based
on the anther length [20]. In order to make sure of the sampling stage of the ovule, the mor-
phological features inside the ovule of each developmental stage were observed using the
method of DIC (differential interference contrast) [23]. All ovules in our work were taken from
ovaries using micro dissection needles under an integrated microscope and stored in liquid
nitrogen for mRNA extraction. For each developmental stage, three biological replicates were
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performed. Each replicate was collect from more than 150 florets of the 20 different plants ran-
domly selected during the growing season.

Preparation of cDNA libraries and RNA sequencing
The RNA was extracted utilizing Trizol reagent according to the manufacturer’s instruction
(Invitrogen, Canada). Absorbance at 260 and 280 nm was used to determine the yield and
purity of RNA samples. RNA 6000 Nano Assay Kit (Agilent, USA) and Agilent 2100 Bioanaly-
zer (Agilent, USA) were applied to check the RNA integrity. For the procedures above, three
biological replicates of each sample were conducted individually. Before the preparation of
library, equal amounts of the RNA from three replicates were pooled together. Then, the RNA
samples were used to construct the cDNA libraries by Illumina’kit (Illumina, USA). The librar-
ies were finally sequenced via Illumina HiSeqTM 2000.

Mapping reads to the reference genome
The reads generated from RNA sequencing were mapped to the reference genome from rice
(http://rice.plantbiology.msu.edu) as that described by Xu [21].

Normalization of the genes expression from RNA-seq
ERANGE software (version 4.0) was used to evaluate gene expression by assigning reads to
their site of origin and to count them (http://woldlab.caltech.edu/gitweb/). Raw digital gene
expression counts were normalized by a variation of the reads per kilobase per million mapped
reads (RPKM) method. The calculated values could be directly used for the comparison of the
different gene expression among samples.

Identification of DEGs
The R package DEGseq was applied to identify DEGs with the random sampling model based
on the read count for each gene at different developmental stages [24]. In multiple test and
analysis, the false discover rate (FDR) was used to determine the threshold of P value. We used
FDR�0.01 and the absolute value of log2Ratio�1 as the threshold for judging the significance
of each gene expression difference.

GO, KEGG pathway and MapMan analysis
GO annotations (http://www.blast2go.org/) were performed with the Blast2GO program (ver-
sion 2.3.5) for the expressed genes. Then the GO functional classifications of genes were done
by web gene ontology annotation plot (WEGO) (http://wego.genomics.org.cn/) with a robust
FDR correction to get an adjusted P-value.

KEGG pathway analysis were performed using Cytoscape software (version 2.6.2) (http://
www.cytoscape.org/) with the ClueGO plugin (http://www.ici.upmc.fr/cluego/cluego
Download.shtml).

The MapMan tool (http://MapMan.gabipd.org) was used to visualize the involvement of the
expressed genes in the pathways, and the method was described as Gao [22].

Real-time quantitative PCR validation of RNA-seq data
To validate the data of RNA-seq, nineteen genes were chosen randomly for quantitative real-
time polymerase chain reaction (qRT-PCR) analysis. Specific primers for qRT-PCR were
designed with the software of Primer (version 5.0). OsActin1 (LOC_Os03g50885) were used as
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the internal reference gene control [20]. The qRT-PCR was carried out as described by Gao
[22]. The analyses of qRT-PCR were performed in triplicate with three biological replicates.

Results

Illumina sequencing and alignment to the reference genome
The rice ovules at four stages were collected according to the anther length [20], and they were
confirmed with the method of DIC. The DIC images clearly displayed the inner structure of
the ovules and showed the consistency to result of the sampling method depending on the
anther length, indicating that the sampling stages were correct (Fig 1 and S1 Fig). Thus, the
four stages of samples can be used for the following research. In this study, we sequenced five
cDNA libraries: OVR1, OVR2, OVR3, OVR4 and LEAF and generated 37,507,626 sequence
reads. The number of clean reads for the five samples was 7,826,182(LEAF), 7,433,271(OVR1),
7,044,517(OVR2), 7,586,725(OVR3) and 7,185,948(OVR4) (Table 1). Each library contained
more than 7 million reads, indicating that the tag density was sufficient for the quantitative

Fig 1. The Morphological observation of the developing florets, pistils and ovules. A Florets at three
developmental stages.B Pistils at three developmental stages.C1Ovule in OVR1 stage. C2Ovule in OVR2
stage.C3Ovule in OVR3 stage.C4Ovule in OVR4 stage.

doi:10.1371/journal.pone.0141613.g001
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gene expression analysis (S2 Fig). The clean reads were mapped to the rice (Oryza sativa L. ssp.
japonica) genome database (http://rice.plantbiology.msu.edu) using the SOAP aligner/soap2
software, with no more than two-base mismatches in the alignment. Of the total clean reads,
78.59% were uniquely matched on average and were used for gene expression analysis of each
library (Table 1).

Genes expressed in developing ovules and leaves
To gain statistical confirmation of gene expression among different samples, the RPKM
method was used to normalize the gene expression level. The uniquely matched reads were
used to calculate the RPKM value of genes. In total, 30,858 genes were identified in the RNA-
seq data, among which 24,920, 25,401, 23,343, 23,647 and 23,806 genes were expressed in
LEAF, OVR1, OVR2, OVR3 and OVR4, respectively, providing sufficient data for investigation
of ovule development. The size distribution of these identified genes was shown in Table 2. The
group of genes with the greatest length (� 2,000 bp) comprised the highest proportion of genes
(11,054 genes; 35.82% of all genes). The visualization tool Circos facilitates the identification
and expression of genes, which is useful for displaying variation in genome structure and any
other type of positional relationship between genome intervals [25]. In the present study, the
global gene expression profiles of the five samples (LEAF, OVR1, OVR2, OVR3 and OVR4)
were visualized using Circos (Fig 2). As shown in Fig 2, the genome-wide analysis of gene
expression indicated that the majority of genes were expressed with RPKM values ranging
from 0.1 to 100, and that the expressed genes were distributed in the reference genome. We
also determined that the genes on Chr4, Chr10, Chr11 and Chr12 were expressed at lower lev-
els, and those on Chr3, Chr5 and Chr7 were expressed at higher levels in all five samples.

The distribution of expressed genes in the five samples was visualized using a Venn diagram.
The detailed statistical analysis of the identified genes in all five samples was shown in Fig 3A.
Among the 30,858 genes, 19,055 (61.75%) genes were expressed in all five samples and they
may function as housekeeping genes, while 24,920 genes (80.76%) were expressed in the leaf
and 28,728 (93.10%) in the ovule. We compared the genes expressed in the ovules at the four

Table 1. Summary of the read numbersmapping to the rice genome based on the RNA-seq data.

Total reads Total mapped reads Unique match Muti-position match Unmapped reads

LEAF 7,826,182 (100%) 6,634,796 (84.78%) 6,229,201 (79.59%) 405,595 (5.18%) 1,191,386 (15.22%)

OVR1 7,433,271 (100%) 6,299,385 (84.75%) 5,878,909 (70.09%) 420,476 (5.66%) 1,133,886 (15.25%)

OVR2 7,044,517 (100%) 5,867,534 (83.29%) 5,471,801 (77.67%) 395,733 (5.62%) 1,176,983 (16.71%)

OVR3 7,586,725 (100%) 6,313,602 (83.22%) 5,910,889 (77.91%) 402,713 (5.31%) 1,273,123 (16.78%)

OVR4 7,185,948 (100%) 6,039,335 (84.04%) 5,646,056 (78.57%) 393,279 (5.47%) 1,146,613 (15.96%)

doi:10.1371/journal.pone.0141613.t001

Table 2. Sequence length distribution of the all 30,858 detected genes in the leaf and four develop-
mental stages of ovules.

Gene length (bp) Total number Percentage

100–500 2,099 6.80%

500–1,000 5,264 17.06%

1,000–1,500 6,260 20.29%

1,500–2,000 6,181 20.03%

�2,000 11,054 35.82%

Total 30,858 100%

doi:10.1371/journal.pone.0141613.t002
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developmental stages. As shown in Fig 3A, the number of genes commonly expressed between
the two adjacent ovule stages was 21,808 (OVR1 and OVR2), 21,699 (OVR2 and OVR3) and
21,667 (OVR3 and OVR4), indicating that the number of commonly expressed genes was simi-
lar among the ovule developmental stages. When comparing the overall ovule (the union of
OVR1, OVR2, OVR3 and OVR4) with LEAF (Fig 3B), 22,838 genes were expressed in both of
the ovule and leaf. A total of 5,890 genes were expressed only in the ovule and 2,130 genes were
expressed only in the leaf, indicating the gene expression difference between the vegetative
organ and the female reproductive organ of rice.

Analysis of DEGs
To identify genes that showed significant changes in expression between each library, DEGs
with 10 comparisons (LEAF-vs-OVR1, LEAF-vs-OVR2, LEAF-vs-OVR3, LEAF-vs-OVR4,
OVR1-vs-OVR2, OVR1-vs-OVR3, OVR1-vs-OVR4, OVR2-vs-OVR3, OVR2-vs-OVR4
and OVR3-vs-OVR4) were identified by a strict algorithm that stipulates the following:
FDR�0.001 and the absolute value of log2Ratio�1. The statistical analysis of DEGs for each
comparison was shown in Fig 4. Greater disparity was found in the comparisons between leaf
and ovule than that between neighboring developmental stages of the ovules. For example, the
number of DEGs between OVR1 and LEAF was 13,279, which was considerably more than
that between OVR1 and OVR2. When comparing OVR1 with OVR2, 3,425 genes were

Fig 2. Circos diagram depicting the gene expression in leaf and ovules of four developmental stages.
In this figure, the entire rice chromosomes were displayed by the first outer ring. Five concentric rings
represented the five samples (LEAF, OVR1, OVR2, OVR3, OVR4), respectively. Colors represented (from
black to red) the expression levels of all detected transcripts in every sample based on the RPKM value.

doi:10.1371/journal.pone.0141613.g002
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Fig 3. a Venn diagram showing the genes expressed in each of the four stages of rice ovule development and leaf. b Venn diagram showing the genes
expressed between the union of four stages of ovule and the leaf.

doi:10.1371/journal.pone.0141613.g003

Fig 4. Different expressed genes identified between 10 comparisons (OVR1-vs-OVR2, OVR1-vs-OVR3, OVR1-vs-OVR4, OVR2-vs-OVR3, OVR2-vs-
OVR4, OVR3-vs-OVR4, LEAF-vs-OVR1, LEAF-vs-OVR2, LEAF-vs-OVR3, LEAF-vs-OVR4). The numbers of up-regulated and down-regulated genes
were revealed.

doi:10.1371/journal.pone.0141613.g004
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identified as DEGs, of which 1,036 genes were up-regulated and 2,389 down-regulated. Com-
pared with OVR2, the OVR3 stage had 157 up-regulated and 43 down-regulated DEGs. When
comparing OVR3 with OVR4, 1,232 DEGs were up-regulated and 785 were down-regulated in
OVR4. The expression trend of DEGs during ovule development may reflect the molecular
mechanism that controls ovule development.

GO analysis of all detected genes and DEGs among the ovule
developmental stages
GO analysis, a common method of classifying gene functions that enables a scientific and
straightforward elucidation of identified genes, has three ontologies that describe the biological
process, molecular function and cellular component of genes. To facilitate the global analysis
of gene expression, all identified genes were mapped to the GO terms in the database (http://
www.geneontology.org/) to identify significantly enriched GO terms (Fig 5). Of the 30,858
detected genes, 18,391 (60.0% of the total genes) had at least one gene annotation. According
to the secondary classification of GO terms, all annotated genes were classified into 45 func-
tional groups of the three main GO classification categories. Among them, the terms cell
(GO: 0005623), cell part (GO: 0044464) and organelle (GO: 0043226) were dominant in the
cellular component category. The terms binding (GO: 0005488), catalytic (GO: 0003824) and

Fig 5. GO classification of all 30,858 genes in leaf and four developmental stages of ovule. The results are summarized in three main GO categories
(cellular component, molecular function and biological process. The x-axis represents the name of GO sub-categories. The left y-axis represents the percent
of a specific category of genes in that main category. The right y-axis represents the number of genes expressed in the given sub-category.

doi:10.1371/journal.pone.0141613.g005
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translation regulator (GO: 0045182) were prominent groups in the molecular function cate-
gory. The terms cellular process (GO: 0009987), metabolic process (GO: 0008152) and estab-
lishment of localization (GO: 0051234) were highly represented in the biological process
category.

To determine the functional differences of genes expressed during ovule development and
identify genes that may play important roles at each ovule developmental stage, the GO analy-
sis of the DEGs was focused on the adjacent ovule developmental stages (OVR1-vs-OVR2,
OVR2-vs-OVR3 and OVR3-vs-OVR4). Using Web Gene Ontology Annotation Plot
(WEGO), we categorized the DEGs between OVR1 and OVR2, OVR2 and OVR3, OVR3 and
OVR4, and 12, 23 and 9 secondary GO terms were found in cellular component, molecular
function and biological process categories, respectively (Fig 6A). The terms metabolic process
(GO: 0008152) and cellular process (GO: 0009987) were dominant in the biological process
category, demonstrating the probable metabolism and cell activities (such as cell division and
differentiation) in ovule during development. In the molecular function category, the terms
catalytic (GO: 0003284) and binding (GO: 0001882) were dominant categories. In the cellular
components category, cell (GO: 0005623) and organelle part (GO: 0044422) were highly repre-
sented (Fig 6A). GO analyses of up-regulated and down-regulated DEGs in the three compari-
sons were shown in Fig 6B–6D. As observed in Fig 6B, analysis of GO terms in the DEGs of
OVR1-vs-OVR2 showed GO terms exhibited statistically significant differences including cell
part (GO: 0044464), extracellular region part (GO: 0044421), membrane-enclosed lumen (GO:
0031974), enzyme regulator (GO: 0030234), structural molecule (GO: 0005198), cellular com-
ponent biogenesis (GO: 0044085), establishment of localization (GO: 0051234), localization
(GO: 0051179), organelle (GO: 0043227) and organelle part (GO: 0044422). In Fig 6C, only
two terms, membrane-bounded organelle (GO: 0043227) and vesicle (GO: 0031982), showed
statistically significant differences. As shown in Fig 6D, a total of 12 GO terms exhibited statis-
tically significant differences in OVR3-vs-OVR4: envelope (GO: 0031075), macromolecular
complex (GO: 0032991), organelle (GO: 0043226), organelle part (GO: 0044422), binding
(GO: 0005488), catalytic (GO: 0003824), structural molecule (GO:0005198), translation regula-
tor (GO: 0045182), cellular process (GO: 0009987), reproduction (GO: 0000003), response to
stimulus (GO: 0050896) and rhythmic process (GO: 0048511).

The results of GO annotations indicated that the DEGs of the ovule developmental process
encode diverse structural, regulatory and metabolic proteins, which may participate in various
biological processes during the ovule development. The GO annotation of DEGs may provide
more insight into the development of the ovule functionally.

KEGG pathway analysis of DEGs in ovules at four developmental
stages
KEGG is a knowledge base for systematic functional analysis of the genes that connects geno-
mic information with higher functional information by computerizing current knowledge on
cellular processes and standardizing gene annotations and consists of three databases, GENES,
PATHWAY and LIGAND [26]. Genomic information (collection of gene catalogs for all
completely sequenced genomes and several partial genomes) is stored in the GENES database;
the higher functional information (graphical representation of cell processes, such as metabo-
lism or signal transport) is stored in the PATHWAY database; the LIGAND database stores
information regarding chemical compounds, enzyme molecules and enzymatic reactions. To
conduct the pathway assignment and functional classification of DEGs during the ovule devel-
opment, a KEGG analysis was performed.
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By mapping to the reference canonical pathways, all DEGs between ovule developmental
stages (OVR1-vs-OVR2, OVR2-vs-OVR3 and OVR3-vs-OVR4) were assigned to 125 path-
ways (S1 Table). The number of pathways significantly enriched with DEGs (Q value�0.05) in
the three comparisons (OVR1-vs-OVR2, OVR2-vs-OVR3 and OVR3-vs-OVR4) was 14, 3 and
4, respectively. In OVR1-vs-OVR2, plant hormone signal transduction, plant-pathogen inter-
action, starch and sucrose metabolism as well as amino sugar and nucleotide sugar metabolism
were significantly enriched pathways. In OVR2-vs-OVR3, the genes were significantly enriched
in the pathways of pentose and glucuronate interconversion, plant hormone signal transduc-
tion, starch and source metabolism. In OVR3-vs-OVR4, plant hormone signal transduction,

Fig 6. GO classification of DEGs among the adjacent development stages of ovule. aGO classification of all DEGs among the three comparisons
(OVR1-vs-OVR2, OVR2-vs-OVR3 and OVR3-vs-OVR4). bGO classification of up- and down-regulated DEGs between OVR1 and OVR2. cGO
classification of up- and down-regulated DEGs between OVR2 and OVR3. dGO classification of up- and down-regulated DEGs between OVR3 and OVR4.

doi:10.1371/journal.pone.0141613.g006
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starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism and plant-path-
ogen interaction were significantly enriched by DEGs.

Based on the total RPKM value of the pathway genes at different developmental stages, we
identified eight expression types among all pathways (Fig 7 and S1 Table). The genes in the
anthocyanin biosynthesis, glycolysis/gluconeogenesis, ether lipid metabolism and histidine
metabolism pathways were classified as Type 1, showing up-regulation throughout all four
developmental stages. Type 2 contained genes in zeatin biosynthesis, non-homologous end-
joining and photosynthesis-antenna protein pathways; gene expression in Type 2 was up-
regulated from OVR1 to OVR3 and down-regulated from OVR3 to OVR4. The genes in 16
pathways were classified as Type 3, which were up-regulated from OVR1 to OVR2 and down-
regulated from OVR2 to OVR3 and then up-regulated from OVR3 to OVR4. Type 4 contained
the genes in 34 pathways, and they were up-regulated from OVR1 to OVR2 and down-regu-
lated from OVR2 to OVR4. The expression of genes in amino sugar metabolism, nucleotide
sugar metabolism and base extension repair pathways and the other 32 pathways were classi-
fied as Type 5, and they were down-regulated from OVR1 to OVR2 and up-regulated from
OVR2 to OVR4. Type 6 contained the genes from five pathways with the expression down-reg-
ulated from OVR1 to OVR2, up-regulated from OVR2 to OVR3 and finally down-regulated
from OVR3 to OVR4. Type 7 comprised genes from 23 pathways with down-regulated from
OVR1 to OVR3 and up-regulated from OVR3 to OVR4. The genes of six pathways were classi-
fied as Type 8, and they were down-regulated throughout the entire ovule developmental
process.

A summary of the KEGG analysis was shown in Table 3 and S1 Table. The genes in the
pathways associated with regulation and metabolism showed significant expression change
during ovule development, suggesting the potential roles of these genes in the developmental
process of ovule.

The MapMan package (http://MapMan.gabipd.org) was used for a more comprehensive
analysis of gene expression in various pathways allowing for more thorough visualization of
the pathways involved in ovule development. MapMan uses input from several experts to
curate specific biological processes using information from the TIGR database (http://
compbio.dfci.harvard.edu/tgi/). According to the gene classification in 35 major pathways and
211 branch pathways, MapMan was used to visualize the pathways during the rice ovule devel-
opment. To investigate the overall gene expression in terms of cellular metabolism and regula-
tion pathways throughout the entire developmental process of the ovule, we focused on the
DEGs between OVR1 and OVR4 (Fig 8). The figure was customized to depict the biological
processes of interest and then log2 RPKM-normalized expression counts were displayed as pic-
torial diagrams. As shown in Fig 8, the expression of genes related to transcription factors, pro-
tein modification, protein degeneration, receptor kinases, calcium regulation, jasmonate and

Fig 7. An overview of eight types of expression patterns of the genes from different pathways.

doi:10.1371/journal.pone.0141613.g007

Gene Expression Profiles in Rice Developing Ovules

PLOS ONE | DOI:10.1371/journal.pone.0141613 October 27, 2015 12 / 24

http://MapMan.gabipd.org
http://compbio.dfci.harvard.edu/tgi/
http://compbio.dfci.harvard.edu/tgi/


GA were down-regulated, while genes related to the biosynthesis and transport of cytokinins
were up-regulated throughout the developmental process. These visual annotations provided
valuable information for understanding the pathways involved in ovule development and sug-
gested that potential genes act cooperatively.

Expression pattern analysis of DEGs in ovules at four developmental
stages using hierarchical clustering
Genes with similar expression patterns usually indicate functional correlations. Cluster analysis
of gene expression patterns was performed using the cluster software and JAVA tree view

Table 3. The summary of KEGG pathways with the significantly change of gene expression in ovule development.

Top10 of expression (OVR+OVR2+OVR3
+OVR4)a

Top 10 of up-regulated pathways (OVR4–
OVR1)b

Top 10 of down-regulated pathways (OVR4–
OVR1)c

1 Metabolic pathways (25,354.6) Ribosome (5808.3) ABC transporters (-3,946.2)

2 Ribosome (24,867.4) Ribosome biogenesis in eukaryotes (995.7) Plant hormone signal transduction (-3,800.8)

3 Biosynthesis of secondary metabolites
(13,954.3)

RNA transport (573.9) Metabolic pathways (-3,016.8)

4 Plant hormone signal transduction (12,830.6) Protein processing in endoplasmic reticulum
(552.8)

Plant-pathogen interaction (-2,933.6)

5 ABC transporters (10,612.1) Pantothenate and CoA biosynthesis (497.5) Biosynthesis of secondary metabolites (-1,319.7)

6 Protein processing in endoplasmic reticulum
(8,070.7)

Valine, leucine and isoleucine biosynthesis
(475.4)

Starch and sucrose metabolism (-905.6)

7 Plant-pathogen interaction (7,693.5) Oxidative phosphorylation (381.1) Phenylpropanoid biosynthesis (-785.4)

8 Ribosome biogenesis in eukaryotes (4,147.1) Ascorbate and aldarate metabolism (319.0) SNARE interactions in vesicular transport
(-706.1)

9 RNA transport (3,999.3) Biosynthesis of unsaturated fatty acids (266.3) Glutathione metabolism (-703.4)

10 Starch and sucrose metabolism (3,995.8) Glyoxylate and dicarboxylate metabolism
(187.4)

Phagosome (-624.8)

a represents the total RPKM value of the genes identified in one pathway of four developmental stages.

b and c represent the total RPKM value of the genes indentified in the pathway in OVR4 minus that in OVR1.

doi:10.1371/journal.pone.0141613.t003

Fig 8. MapMan overview of cellular metabolism (a) and regulation (b)in OVR1-vs-OVR4.Each square represented a gene, and the color key
represented the value of RPKM normalized log2. Redmeant down-regulation of the gene and the blue color meant up-regulation.

doi:10.1371/journal.pone.0141613.g008
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software. Using the Pearson correlation as the distance metric, a cluster analysis of gene
expression patterns was performed (Fig 9 and S2 Table). Expression disparities were visualized
as different colors; red indicated up-regulation and green down-regulation. The hierarchical
clustering can provide an overall understanding of DEGs. A large proportion of genes were
down-regulated in OVR1-vs-OVR2, up-regulated in OVR2-vs-OVR3; and the number of up-
regulated genes was approximately identical to the number down-regulated in OVR3-vs-
OVR4.

Based on the expression level of genes at different developmental stages, 4,405 DEGs from
three comparisons (OVR1-vs-OVR2, OVR2-vs-OVR3 and OVR3-vs-OVR4) were classified
into eight clusters according to their expression patterns. Cluster 1 consisted of 107 genes
whose expression was up-regulated from OVR1 to OVR4. Cluster 2 had 370 genes that were
up-regulated from OVR1 to OVR3 and down-regulated from OVR3 to OVR4. Cluster 3 con-
tained 281 genes whose expression was up-regulated from OVR1 to OVR2, down-regulated

Fig 9. Hierarchical cluster analysis of gene expression based on log ratio RPKM data. The color key
represented RPKM normalized log2transformed counts. The green color represented lower expression, and
the red color represented higher expression. Each column represented an experimental condition, each row
represented a gene.

doi:10.1371/journal.pone.0141613.g009
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from OVR2 to OVR3 and then up-regulated to OVR4. Genes that were up-regulated from
OVR1 to OVR2 and down-regulated from OVR2 to OVR4 were defined as Cluster 4, which
contained 772 genes. Cluster 5 comprised the largest number of genes (1,460 genes), and the
expression of which was down-regulated from OVR1 to OVR2 and up-regulated to OVR4.
Cluster 6 contained 752 genes that were down-regulated from OVR1 to OVR2, up-regulated
from OVR2 to OVR3 and down-regulated from OVR3 to OVR4. Genes that were down-regu-
lated from OVR1 to OVR3 and up-regulated to OVR4 were classified as Cluster 7, which con-
tained 503 genes. Cluster 8 consisted of 160 genes with down-regulated expression throughout
the four developmental stages.

Transcription factor (TF) gene expression analysis during the ovule
developmental stages
Transcriptional regulation of gene expression depends on the recognition of promoter ele-
ments by TFs. Thus, TFs play an important role in regulating a series of events, such as growth,
development and response to stress. To identify the TF genes expressed during the develop-
ment of rice ovule and determine those crucial for ovule development, we blasted our data to
the rice TF database (http://drft.cbi.pku.edu.cn/). In total, 1,431 putative TF genes were identi-
fied from the 28,728 genes detected in the ovule and they were classified into 56 gene families.
According to the RPKM, 394 genes of the 1,431 identified putative TF genes showed signifi-
cantly differential expression, accounting for 27.5% of all TF genes (S3 Table).

According to the overall changes in total RPKM value of ovules in the four developmental
stages for each family, genes encoding the 56 transcription families were classified into eight
different expression patterns (S4 Table).

The overall gene expression pattern encoding the ARF family was classified as pattern 1,
which showed an up-regulated trend throughout the entire developmental process. The C2H2
family and five other families were classified as expression pattern 2, which were up-regulated
from OVR1 to OVR3 and down-regulated from OVR3 to OVR4. The Whirly family was classi-
fied as pattern 3, which was up-regulated from OVR1 to OVR2, down-regulated from OVR2
to OVR3 and up-regulated from OVR3 to OVR4. The genes encoding the VOZ family and two
other families were classified as pattern 4, which were up-regulated from OVR1 to OVR2 and
down-regulated from OVR2 to OVR4. The BES1 family and the other 18 families were classi-
fied as pattern 5 and exhibited down-regulation from OVR1 to OVR2 and up-regulation from
OVR2 to OVR4. Pattern 6 had the largest number of families, which included those in AP2
and 19 other TF families that showed down-regulation from OVR1 to OVR2, up-regulation
from OVR2 to OVR3, followed again by down-regulation. The EIL family was classified as pat-
tern 7, which was down-regulated from OVR1 to OVR3 and then up-regulated at OVR4. The
BBR-BPC family and four other families were classified as pattern 8, expression of which was
down-regulated throughout ovule development. More detailed information regarding the TF
gene expressions involved in the ovule development was shown in S4 Table.

Expression of plant hormone-related genes in rice ovule
Plant hormones regulate many aspects of plant life. As the messengers of cross-talk between
sporophyte and female gametophyte in the ovule, plant hormones, especially auxin and cytoki-
nin, are important during the regulation of developmental processes [27, 28]. Thus, we focused
on these two important plant hormone-related genes, which encode proteins participating in
the biosynthesis, transport, perception and response of these hormones. These genes may play
important roles in the cross-talk between sporophyte and female gametophyte. In total, 135
auxin-related genes and 43 cytokinin-related genes were identified during ovule development.
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Auxin regulates cell division, elongation and differentiation in plants [29]. In Arabidopsis,
manipulation of auxin responses or synthesis induces switching of gametic and nongametic
cell identities [30]. Based on the transcriptome data, 27 of the 135 identified auxin-related
genes were related to the efflux of auxin; and the majority of the others were related to the
auxin response. In the OVR1-vs-OVR2 comparison, 29 auxin genes were significantly differ-
ently expressed and 18 genes were down-regulated. In the OVR2-vs-OVR3 comparison, only
four up-regulated auxin-related DEGs were found. Compared with OVR3, 16 auxin genes were
significantly differently expressed and 9 genes were up-regulated in OVR4. The results indicate
that most genes related to the biosynthesis of auxin were expressed at the initial developmental
stage of the ovule and then showed down-regulation. The genes related to the transport of
auxin showed an expression pattern similar to that of the auxin biosynthesis-related genes,
while the genes related to the response regulator showed relatively constant expression. The
expression of these genes at various developmental stages suggests that auxin may act as a sig-
nal molecule between sporophytic ovule tissue and the female gametophyte in the developing
ovule.

Cytokinin is another plant hormone signal involved in cross-talk between sporophyte and
female gametophyte during the ovule development [31]. Among the 43 identified cytokinin-
related genes, 33 genes were related to the modification of cytokinin, which may regulate its
activity. In the OVR1-vs-OVR2 comparison, one up-regulated DEG and four down-regulated
DEGs were found. Compared with OVR2, no cytokinin-related gene exhibited differential
expression in OVR3. Two cytokinin-related DEGs were identified in the OVR3-vs-OVR4 com-
parison; one was up-regulated and another one was down-regulated. According to the statisti-
cal data, the genes related to the biosynthesis of cytokinin exhibited higher expression in OVR1
and OVR2, and the genes related to cytokinin transport showed a similar expression pattern.

Consequently, genes related to the response to these two plant hormones exhibited constitu-
tive expression during ovule development. However, the DEGs were related mainly to the bio-
synthesis and transport of plant hormones. Although expression level diversities existed
between the two plant hormone-related DEGs, the expression levels of transport-related and
biosynthesis-related genes were closely correlated, possibly reflecting the different demands of
these two plant hormones during specific developmental stages and pointing out the potential
mechanisms of plant hormone regulation during the ovule development.

Validation of RNA-seq data using quantitative real-time PCR (qRT-PCR)
To validate the obtained RNA-seq data, qRT-PCR was performed. A total of 19 genes were
selected stochastically. Gene-specific primers for qRT-PCR were designed using the Primer 5.0
software (S5 Table). The validation results were shown in S3 Fig. The expression patterns of
the selected genes determined by qRT-PCR were consistent with the RNA-seq data, indicating
the reliability and accuracy of the RNA-seq data.

Discussion

Establishment of an overall transcriptome analysis for rice ovule
development
The transcriptome data presented here establish a genome-wide transcriptional landscape for
studies of developmental and molecular aspects of ovule development in rice. The transcrip-
tome data obtained using Illumina RNA-seq in our research was larger in comparison to a
recent microarray-based analysis of rice ovule transcriptome [20] and more genes were
detected at each stage of ovule development. Several similarities and differences exist between
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our and the previous studies. These differences may be caused by the use of two different tech-
nologies (RNA-seq or microarray), which may affect the results. Second, two different subspe-
cies of rice (Oryza sativa ssp. indica or ssp. japonica) were used as the experimental plant
material, respectively. Third, we focused not only on the ovule gene expression before fertiliza-
tion but also the ovule gene expression at two days after fertilization. Additionally, DEGs
between developmental stages were identified and analyzed; thus genes potentially involved in
ovule development were identified. DEGs between developmental stages were also classified
into several pathways to facilitate identification of those involved in physiological activities.

Previous research demonstrated that some genes were stage-specifically or cell-type-specifi-
cally expressed while other genes had relatively constant expression level in the ovule [32]. In
this study, we also identified genes expressed at only one developmental stage, and 1,230, 401,
485 and 532 genes were found to be expressed in ovules at the four developmental stages,
respectively. The OsDMC1 gene (LOC_Os11g04954) is regarded as essential for meiosis and
plays an important role in homologous pairing [33]. We identified this gene in the ovule tran-
scriptome and its expression level was highest in OVR1, providing new genetic evidence for its
importance in meiosis. TheMEL1 gene regulates the proper modification of meiotic chromo-
somes [34], and it was identified in OVR1. In situ MEL1 was expressed at a high level in the
megaspore mother cell in the developing ovule [34]. According to the ovule transcriptome
results,MEL1 expression was significantly higher in OVR1, suggesting it may be a marker of
OVR1. However, few genes have been reported as markers of the OVR2stage. From the rice
ovule transcriptome data, we identified 401 genes that were expressed only in OVR2; these
may include candidate marker genes of this stage. The BLH1 gene identified in Arabidopsis
could affect cell fates in the mature embryo sac [23]. Its homolog was identified in the rice
ovule transcriptome, and was highly expressed in OVR3. Genes expressed in OVR4 were the
subjects of the last part of the discussion.

Approximately 27,000 genes have been identified in rice egg cells [35], and 28,728 genes
were detected in rice ovule in this study, indicating that a greater number of genes were
expressed in the whole ovule than in the egg cell, probably because the egg cell accounts for a
very small proportion of the ovule. Although many genes in the whole ovule and embryo sac
showed similar expression levels [36], the expression levels of some genes actually differed and
displayed different enrichment of GO items. Genes were enriched in the GO terms protein
binding, nucleus and mitochondrion in the egg cell, and enriched in terms membrane, trans-
porter activity and endoplasmic reticulum in the synergid. In contrast, genes were enriched in
the GO terms cell part, metabolic process, cellular component organization and organelle in
the ovule. The different enrichment of GO terms among cell types or tissues is suggestive of
their various biological functions during the developmental process.

In addition, genes involved in starch and sucrose metabolism, ABC transporters, and amino
sugar and nucleotide sugar metabolism pathways showed specific enrichment, likely with the
purpose of guaranteeing the energy and material necessary for ovule and embryo sac develop-
ment. In particular, 26 genes were identified in the starch and sucrose biosynthesis pathways
and 27 genes were identified in the pentose and glucuronate conversion pathways. Based on
KEGG analysis, genes involved in the pentose and glucuronate interconversion pathways and
starch and sucrose pathways were significantly up-regulated from OVR2 to OVR4 (S1 Table),
indicating their potential involvement in utilizing nutrition and increasing energy during the
various stages of ovule development, likely not only for sporophyte tissue but also for female
gametophyte (embryo sac) development.

Overall, the DEGs from developmental stages may play various roles in ovule development
and the identification of several key genes will enable further functional studies.
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Genes expressed in ovule sporophyte tissue may play important roles in
its cross-talk with female gametophyte
In rice ovule, the female gametophyte is embedded and sustained by the sporophytic tissue.
Previous reports showed cross-talk communication between the female gametophyte and the
sporophyte ovule tissue [37]. This communication is particularly important for megasporogen-
esis regulation and female gametophyte development. Recent studies have reported that several
plant hormones (especially auxin and cytokinin) and peptides act as signal molecules in this
cross-talk [16, 27, 29]. Thus, we focused on the hormone-related genes that may play impor-
tant roles in the cross-talk between the sporophyte and female gametophyte during ovule
development.

Auxin gradients have been reported to control female gametophyte cell identity [29]. In the
Arabidopsis ovule, the import and local biosynthesis of auxin are required for cell expansion,
mitotic divisions and cell specification during the development of female gametophyte, and
auxin distribution changes together with embryo sac development [38]. When the functional
megaspore is visible, a strong auxin signal can be detected in the sporophytic ovule tissue, and
the auxin signal peaked at the micropylar end of the embryo sac when the third mitotic division
in the embryo sac was completed [29]. This observation clarified the direction of auxin trans-
duction in the ovule. In our research, 135 auxin-related genes were identified. In particular,
genes from two auxin-related gene families (OsPIN gene family and OsYUCCA gene family)
were the focus of our interests. The OsPIN gene family is the homologue of PIN family in
Arabidopsis. PIN1, which encodes an auxin efflux carrier protein, is expressed at only one side
of the nucellar cell [27]. In our results, four members of the OsPIN gene family were found:
OsPIN1a (LOC_Os06g12610), OsPIN1b (LOC_Os02g50960), OsPIN1c (LOC_Os11g04190)
and OsPIN1d (LOC_Os12g04000). Expression of all of these four genes was higher in OVR1
and was down-regulated significantly in OVR2. The expression of these four genes suggests
that auxin transport in the ovule may be strictly regulated, and this regulation may be impor-
tant in ovule development. The YUCCA genes, encoding a putative flavin monooxygenase (the
key enzyme in auxin biosynthesis), are expressed in the micropylar region of the nucellus [39].
In this study, two members of the OsYUCCA gene family were found: OsYUC3 and OsYUC9,
both of which exhibited higher expression levels in OVR1. OVR1 represented the ovule con-
taining the megaspore mother cell during meiosis; thus, the higher expression of these types of
auxin-related genes suggests that these two auxin-related genes may have the same function as
the PIN and YUCCA genes in sporophytic ovule tissue in Arabidopsis, and they probably par-
ticipate in the cross-talk between sporophyte ovule tissue and female gametophyte.

The plant hormone cytokinin promotes cell proliferation and differentiation [40]. A series
of genes are involved in the sporophyte-gametophyte cross-talk induced by cytokinin; e.g., IPT
(genes encoding isopentenyl transferase, the key enzyme in cytokinin biosynthesis [41]),
AHK2, AHK3, AHK4 (encoding receptor histidine protein kinases [42]), and RR (encoding a
response regulator, promoting rapid induction of cytokinin-related target genes [43]). Specifi-
cally, AtIPT1 (the homologous IPT gene in Arabidopsis) is strongly expressed in the chalazal
part of the ovule, indicating that the source of the cytokinins perceived by the gametophyte is
located in the sporophyte ovule tissue [27]. In our study, OsIPT1 and OsIPT3 were found to be
highly expressed in OVR1. This suggests that the biosynthesis of this plant hormone begin at
the initial stage of ovule development. Regarding hormone regulation, a proper balance of cyto-
kinins is important for ovule organogenesis. ARR-A type genes (ARR3, ARR4, ARR5, ARR6,
ARR7, ARR8, ARR9, ARR15, ARR16and ARR17) play roles as negative regulators of the cytoki-
nin response [44]. In Arabidopsis, mutant arr7 and arr15 showed megagametophyte defects
[45]. In coatlique and sporocytelessmutants (both of which lack a functional embryo sac),
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A-type ARR genes were found to be overexpressed compared with the wild-type, indicating
negative regulation of A-type ARR genes in ovule development. We identified seven homolo-
gous genes of A-type ARR in the rice ovule transcriptome data: OsRR1, OsRR2, OsRR3, OsRR4,
OsRR5, OsRR6 and OsRR10. Of these, OsRR2, OsRR3 and OsRR4 expression peaked in OVR2,
while OsRR1, OsRR6 and OsRR10 expression was lowest in OVR2. OsRR3 was identified only
in OVR3. The expression of these genes possibly proves that the negative regulation of sporo-
phyte-gametophyte cross-talk may also exist during the ovule development, which may play
important roles in guaranteeing the cross-talk functions in orderly manner combined with pos-
itive regulation. Moreover, OsPUP family genes have also been identified. This family encodes
purine permeases, transporters of cytokinin. In this work, nine members of the OsPUP family
were identified: OsPUP2, OsPUP3, OsPUP4, OsPUP5, OsPUP6, OsPUP7, OsPUP8, OsPUP10
and OsPUP11. OsPUP7 was identified in only the later two stages of ovule development before
fertilization, suggesting that OsPUP7may have a special role in ovule development. In a study
of OsPUP7 [46], T-DNA insertion caused multiple phenotypic changes, including increased
plant height and delayed flowering, but the detailed role of OsPUP7 in ovule development has
not been investigated. The above data indicate the complex and highly ordered plant-hor-
mone-mediated cross-talk between the sporophytic ovule tissue and the female gametophyte.
These cross-talk signal molecules may be essential to the process of female gametophyte
formation.

The effects of fertilization on gene expression in the rice ovule
Fertilization is a key process during rice ovule development. Upon double fertilization, a sperm
cell fuses with an egg cell and the resultant zygote develops into an embryo, while the central
cell fuses with a second sperm cell and develops into the endosperm [47]. After fertilization,
three major components of the ovule (sporophytic ovule tissue, primary endosperm nucleus
and zygote) undergo different cell fates [48]. Two days after fertilization, the zygote undergoes
cell division to form a globular embryo with no apparent morphological differentiation. Syn-
chronously, the primary endosperm nucleus undergoes the first division and forms the two
free nuclei of the endosperm, which then undergo further rounds of division. The sporophytic
ovule tissue provides nutritive support for the development of the embryo and endosperm by
undergoing PCD-triggered degradation after fertilization [5].

PCD during the sporophytic ovule tissue degeneration after fertilization is critical for the
proper development of the embryo in flowering plants. In rice, PCD in the tapetum is governed
by the API5-AIP1/2-CP1 pathway [5]. OsAPI5 (APOPTOSIS INHIBITOR5), which encodes a
putative homolog of the animal API5 protein, is a critical positive regulator of PCD. The
knockdown of OsAPI5 resulted in delayed tapetum degeneration [5]. AIP1 (API5-INTERACT-
ING PROTEIN1) and AIP2 are DEAD-BOX ATP-dependent RNA helicases. The protein
encoded by CP1 acts as an executor of the PCD process, resulting in the initiation of cell degen-
eration in Arabidopsis [49]. OsCP1, the homolog of CP1 in rice, plays an important role in the
tapetum PCD process [50, 51]. In the rice ovule transcriptome, the OsAIP1/2 expression level
increased from OVR3 to OVR4 and OsCP1 was up-regulated in OVR3-vs-OVR4, indicating
that the PCD process of ovule sporophytic tissue after fertilization may be mediated by the
same mechanism as the tapetum PCD. This up-regulation of related genes may provide infor-
mation for future studies focusing on the mechanism of the PCD process in ovule sporophytic
tissue after fertilization.

Conversely, the free nuclei of endosperm in ovule undergo several rounds of division after
fertilization. Several genes participate in endosperm development in Arabidopsis, such as
AtTIM9 and AtTIM10, which encode translocases of the inner membrane and regulate
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endosperm free-nuclei division, and dysfunction of AtTIM9 or AtTIM10 leads to arrest of
endosperm division [52]. The RNA-seq results showed that TIM9 and TIM10 were up-regu-
lated in rice ovules at the OVR4 stage, suggesting that these genes may also function to control
endosperm free-nuclei division during early endosperm development in the rice ovule.

After fertilization, the developmentally quiescent egg cell in the ovule is transferred to the
zygote. The synthetic pathways are activated and several receptor kinase-related genes are up-
regulated in the zygote, suggesting that a series of biological processes is also activated follow-
ing fertilization [53]. Based on our findings, 11,958 genes were up-regulated in OVR3-vs-
OVR4, 1,232 of which exhibited significant up-regulation. In the up-regulated DEGs, GO
annotation showed enrichment of binding, organelle, cellular process and response to stimulus,
and genes involved in cell wall biosynthesis, auxin and ethylene exhibited significant up-regula-
tion from OVR3 to OVR4. These data are in agreement with the activation of zygote division
in rice ovule, suggesting a role in pre-embryo development. Wuschel-related homeobox 2
(WOX2) is a key fertilization-induced gene that plays an important role in determining cell
fate of the ovule after fertilization [54, 55]. In the Arabidopsis ovule,WOX2 was expressed only
in the apical cell of the two-celled pro-embryo [56], and is the dominant regulator of apical pat-
terning [57]. The OsWOX2 was also up-regulated in rice from OVR3 to OVR4, suggesting that
this gene may play an important role in the initiation of zygote development in the rice ovule.

Additionally, we were interested in theMET1 gene, which encodes DNAmethyltransferase
1.MET1is induced by fertilization and plays an important role in early zygotic development
[58]. In Arabidopsis,MET1 expression was suppressed in the egg and central cell at the end of
female gametophyte development [59]. After fertilization,MET1 was expressed to maintain
DNAmethylation only in the young embryo [60]. Conversely, the loss-of-function mutant
met1 showed abnormal development beginning at initiation of fertilization [61]. The
above reports indicate that the induction ofMET1 expression may be important for zygotic
development and early embryogenesis in Arabidopsis. In our study, expression of OsMET1
(LOC_Os07g08500), theMET1 homolog in Arabidopsis, was up-regulated from OVR3 to
OVR4. This up-regulation may facilitate the effects ofMET1 expression on zygotic develop-
ment and early embryogenesis in the ovule. Summarily, the expression levels of many genes
associated with embryo and endosperm development were increased from OVR3 to OVR4 in
the ovule, and further research on the exact function of these genes in rice ovule development
after fertilization is needed.

In conclusion, transcriptomic analysis using RNA-seq represented a comprehensive and
intensive method of evaluating rice ovule development. Our study produced sufficient and reli-
able data for the investigation of rice ovule development, and DEGs among the four stages
were identified, indicating their potential roles in the developmental process. GO and KEGG
analysis showed that genes related to cellular component biogenesis, membrane-bounded
organelles and reproductive regulation were highly expressed during the ovule development.
Additionally, we showed the important role of the ovule sporophytic tissue in megasporogene-
sis and development of the female gametophyte by identifying the plant hormone-related
genes and nutrition-related genes with altered expression. The transcriptome data will facilitate
further studies of the complex regulation of gene expression during rice ovule development
and enable elucidation of the molecular mechanisms of female gametophyte development pro-
cesses in rice, as well as other plants.

Supporting Information
S1 Fig. The DIC observation of four developmental stages of ovule. A and B showed mor-
phological features inside the ovule in meiosis stage (OVR1). C showed morphological features
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inside the ovule in mitosis stage (OVR2).D showed morphological features inside the ovule in
mature embryo sac stage (OVR3). E showed morphological features inside the ovule in fertil-
ized stage (OVR4).Mmc, megaspore mother cell.Mt, megaspore tetrad. Ac, antipode cells. Cc,
central cell. Ec, egg cell. S, synergid. Em, embryo.
(TIF)

S2 Fig. The sequencing saturation analysis of the five samples.
(TIF)

S3 Fig. The result of real-time qPCR validation, showing the relative expression of 19
selected genes. The bars represented the standard deviation.
(TIF)

S1 Table. An overview of all DEGs between ovule developmental stages (OVR1-vs-OVR2,
OVR2-vs-OVR3, OVR3-vs-OVR4) assigned to 125 KEGG pathways. The KEGG functional
class, number, RPKM of four stages and expression type were all presented in the table.
(XLS)

S2 Table. The list of the differentially expressed genes (DEGs) during ovule development
(OVR1-vs-OVR2, OVR2-vs-OVR3, OVR3-vs-OVR4).
(XLS)

S3 Table. All 56 TF gene families were found in the result.Of the 1431 putative TF genes, the
genes which showed significantly differential expression among four stages were marked by �.
The TF gene family name, number, RPKM were presented in the table.
(XLS)

S4 Table. A summary of TF gene families. The TF gene family name, number, RPKM, expres-
sion pattern and expression pattern of TF gene family’s members were presented in the table.
(XLS)

S5 Table. Primers used in the analysis of rice ovule development. OsActin1
(LOC_Os03g50885) was used as internal control to standardize the results.
(XLS)
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