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Abstract. Intercellular adhesion molecule (ICAM)-3, a 
recently described counter-receptor for the lymphocyte 
function-associated antigen (LFA)-I integrin, appears 
to play an important role in the initial phase of 
immune response. We have previously described the 
involvement of ICAM-3 in the regulation of LFA-1/ 
ICAM-l-dependent cell-cell interaction of T lympho- 
blasts. In this study, we further investigated the func- 
tional role of ICAM-3 in other leukocyte cell-cell in- 
teractions as well as the molecular mechanisms 
regulating these processes. We have found that 
ICAM-3 is also able to mediate LFA-1/ICAM-I-inde- 
pendent cell aggregation of the leukemic JM T cell 
line and the LFA-1/CD18-deficient HAFSA B cell line. 
The ICAM-3-induced cell aggregation of JM and 
HAFSA cells was not affected by the addition of 
blocking mAb specific for a number of cell adhesion 
molecules such as CDlla/CD18, ICAM-1 (CD54), 
CD2, LFA-3 (CD58), very late antigen t~4 (CD49d), 
and very late antigen/~1 (CD29). Interestingly, some 
mAb against the leukocyte tyrosine phosphatase CD45 

were able to inhibit this interaction. Moreover, they 
also prevented the aggregation induced on JM T cells 
by the proaggregatory anti-LFA-lot NKI-L16 mAb. In 
addition, inhibitors of tyrosine kinase activity also 
abolished ICAM-3 and LFA-l-mediated cell aggrega- 
tion. The induction of tyrosine phosphorylation through 
ICAM-3 and LFA-1 antigens was studied by immu- 
nofluorescence, and it was found that tyrosine- 
phosphorylated proteins were preferentially located at 
intercellular boundaries upon the induction of cell 
aggregation by either anti-ICAM-3 or anti-LFA-lot 
mAb. Western blot analysis revealed that the engage- 
ment of ICAM-3 or LFA-1 with activating mAb en- 
hanced tyrosine phosphorylation of polypeptides of 
125, 70, and 38 kD on JM cells. This phenomenon 
was inhibited by preincubation of JM cells with those 
anti-CD45 mAb that prevented cell aggregation. Al- 
together these results indicate that CIM5 tyrosine 
phosphatase plays a relevant role in the regulation of 
both intracellular signaling and cell adhesion induced 
through ICAM-3 and/32 integrins. 

EUKOCYTE ~/2 integrins (lymphocyte function-associated 
antigen [LFA]I-1, Mac-l, and p150,95) (Hynes, 
R. O., 1992) are one of the most important families 

of adhesion molecules involved in immune response. Three 
counter-receptors for LFA-1, which belong to the immuno- 
globulin superfamily, have been described: intercellular 
adhesion molecule (ICAM)-I, a widespread and cytokine- 
inducible molecule; ICAM-2, constitutively expressed in 
several cell types but noninducible; and ICAM-3, that has re- 
cently been characterized (de Fougerolles and Springer, 
1992). ICAM-3 (CD50) contains five Ig domains and it is 
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1. Abbreviations used in this paper: ICAM, intercellular adhesion mole- 
cules; IL, interleukin; LFA, lymphocyte function-associated antigen; PHA, 
phytohaernagglntinin; RT, room temperature; VLA, very late antigen. 

structurally homologous to ICAM-1 and -2 (Fawcett et al., 
1992; Vazeux et al., 1992; de Fougerolles et al., 1993). 
ICAM-3 expression is restricted to the leukocyte cell lin- 
eage, and its presence on resting T cells points out to a role 
for this antigen in the initial phases of immune response (de 
Fougerolles and Springer, 1992; Acevedo et al., 1993). Re- 
cently, we have reported the ability of ICAM-3 to regulate 
both the LFA-1/ICAM-l-dependent homotypic aggregation 
of T lymphoblasts and the affinity of LFA-1 for ICAM-1 
(Campanero et al., 1993). Moreover, ICAM-3 induces T 
lymphocyte activation, expression of the activation antigens 
CD25 and CD69, and T cell proliferation (Campanero et al., 
1993; Hermtndez-Caselles et al., 1993). 

The functional involvement of the integrin LFA-1 in adhe- 
sion events during the immune response has been well 
demonstrated. LFA-1 plays a role in T cell activation facili- 
tating cell-cell interactions (Springer, T.A., 1990). In this 
regard, LFA-1 can be considered not only as one of the most 
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important leukocyte adhesion molecules but also as an ac- 
cessory coactivation receptor for antigen-driven T lympho- 
cyte-mediated responses. Accordingly, LFA-1 participates in 
the induction of [Ca2+]i changes, DNA synthesis, and inter- 
leukin (IL)-2 production by peripheral blood T cells (Pardi 
et al., 1989; Wacholtz et al., 1989; Van Seventer et al., 1991; 
Hem~tndez-Caselles et al., 1993). In addition, it has recently 
been reported that/32 integrin engagement triggers actin po- 
lymerization and phosphatidylinositol triphosphate forma- 
tion in nonadherent human neutrophils (L6fgren et al., 
1993). 

The triggering of tyrosine protein phosphorylation upon 
the engagement of TcR/CD3 complex or other accessory 
molecules has previously been described (Hsi et al., 1989; 
Veillette et al., 1989). On the other hand, the tyrosine phos- 
phatase CD45 has also been involved in T cell activation 
(Bernabeu et al., 1987; Ledbetter et al., 1988; Kiener et al., 
1989; Pingel and Thomas, 1989; Koretzky et al., 1990, 
1991; Samelson et al., 1990; Volarevic et al., 1990; Marvel 
et al., 1991). Phosphotyrosine signaling has also been de- 
scribed to play an important role in/31 and/33 integrin- 
mediated cellular aggregation (Lipfert et al., 1992; S(mchez- 
Mateos et al., 1993). Nevertheless, the induction of protein 
tyrosine phosphorylation through /32 intagrins or their 
ligands had not been investigated. 

We report herein the existence of an alternative ICAM- 
3-mediated intercellular adhesion pathway in human leuko- 
cytes that is independent of LFA-I/ICAM-1. This homotypic 
aggregation can be regulated by anti-CD45 tyrosine phos- 
phatase mAb. We also demonstrated that this regulatory 
effect is related to the triggering of protein tyrosine phos- 
phorylation through either ICAM-3 or LFA-1. The ICAM-3 
and LFA-l-mediated enhancement of tyrosine phosphoryla- 
tion is modulated by the CD45 tyrosine phosphatase. 

Materials and Methods 

Cells and Cell Lines 
Human T leukemic JM and Jurkat cell lines were grown in RPMI 1640 
medium (Whittaker Labs., Walkersville, MD) supplemented with 5% FCS 
(Semmed, Biokhrom, Berlin, Germany), 2 mM L-glutamine, 50 U/ml peni- 
cillin, and 50/~g/mi streptomycin (Semmed). The LFA-1/CD18-deficient 
HAFSA B cell line has been described (L6pez-P.~Irlguez et al., 1993). 

Human T lymphoblasts were obtained from peripheral blood mono- 
nuclear ceils by treatment with phytohaemaggiutinin (PHA) at 5/~g/mi for 
48 h. Then, cells were washed and cultured in RPMI 1640 (Whittaker 
Labs.) containing 10% FCS, and 50 U/mi IL-2. T lymphoblasts cultured 
by 7-12 d were typically used in the experiments. 

Mouse 300-19 pre-B cells fines tmnsfect~ with the pZipneo plasmid 
vector or with cDNAs coding for different CD45 isoforms containin~ either 
the constant region of CD45 alone or in combination with different protein 
regions encoded by the variable exous (ABC, AB, BC, and B isoforms) were 
kindly provided by Dr. Michel Streuli (Dana Farber Cancer Institute, Bos- 
ton, MA) and grown as described (Streuli et al., 1988). 

Reagents 
Genistein was purchased from Sigma Chem. Co. (St. Louis, MO). Herby- 
micin A and tyrphostin 25 were purchased from Calbiochem (La Jolla, CA). 

Monoclonal Antibodies 
Anti-ICAM-3 HP2/19 and TPl/25; anti-LFA-lc~ TP1/40 and NKI-LI6; 
anti-~2 Lia3/2; anti-CD3 SPV-T3b; anti-ICAM-1 RR1/I; anti- very late an- 
tigen (VLA)-4 HP2/1; anti-VLA-/~l TS2/16; anti-CD2 TS2/18; anti-LFA-3 
TS2/9; and anti-CIM3 TP1/36 mAb have been described (S~nchez-Madrid 

et al., 1982, 1986; Hemler et al., 1984; Spits et al., 1985; Rothlein et al., 
1986; Keizer et al., 1988; Campanero et al., 1991, 1993). The anti-CD45 
TPI/41 mAb was obtained in our laboratory from a fusion with splenocytes 
from mice immunized with activated human T lymphocytes and its precise 
specificity is described in this report. The other anti-CD45 mAb used in 
this study have been previously described (Pulido et al., 1988, 1989; Zapata 
et al., 1994). The anti-CD45RO UCHL.1 mAb was kindly provided by Dr. 
P. Beverley (Imperial Cancer Research Fund, London, U.K.). mAb were 
purified from ascites fluid using affinity chromatography on protein 
A-Sepherose column~ (Phermacia Fine Chemicals, Uppsala, Sweden). The 
anti-phosphotyrosine 4¢310 and Py20 mAb were purchased from Upstate 
Biotechnology (Lake Placid, NY) and ICN Biochemicals (Cleveland, OH), 
respectively. 

Aggregation Assays 
Homotypic cell aggregation assays were performed as previously described 
(Campanero et al., 1990). Briefly, lO s cells/well were incubated in com- 
plete medium in flat-bottomed 96-well plates (Costar, Cambridge, MA) in 
the presence ofmAb (1 ~g/ml), and cells were allowed to settle at 37°C and 
5 % CO2 atmosphere. Aggregation was then determined at different periods 
of time by direct visualization of the plate with an inverted microscope and 
counting free cells in at least five randomly chosen fields of 0.025 mm 2, 
using a special grid under the plate. The assays were performed by dupli- 
cate. Results were expressed as percent of aggregated cells. For inhibition 
assays, cells were pretreated with different mAb for 10 min at room temper- 
ature (RT) before the addition of the inducing mAb. 

Immunoprecipitation 
Cells were nSI-radiolabeled, lysed, and immunoprecipitated with different 
monoclonal antibodies as previously described (S(mchez-Medrid et al., 
1983). Samples were subjected to SDS-7% PAGE under nonreducing con- 
ditions. 

Cytofluorometry Analysis 
Fluorescence flow cytometry analysis was performed on a FACScan 
cytofluorometer (Becton Dickinson, Mountain View, CA). Cells were in- 
cubated at 4*C with 100 ~tl hybridoma culture supernatant, followed by 
washing and labeling with and F r rC-~ed  goat anti-mouse Ig (Dttvpet¢, 
Copenhage~ , Denmark). Data were collected in a logarithm/c scale and the 
percentage of positive cells was determined by ~ the 
fluorescence given by the negative control mouse myeloma P3X63. 

Immunofluorescence Staining 
JM cells were incubated in flat-bottomed, 24-well mlcrotiter plates (Coster) 
at 2 x 106 cells/mi in a final volume of 500/d of complete medium, mAb 
were added at a final concentration of 1 ;tg/nd and cells were allowed to 
settle in an incubator at 37°C and 5% CO2 atmosphere. After the induction 
of aggregation, the cells were fixed with 3.7% formaldehyde in PBS for 10 
rain RT and rinsed in TBS (50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.1% 
NAN3). To directly visualize the mAb-inducing cell aggregation, 1:50 dilu- 
tion of the FITC-laheled rabbit F (ab92 anti-mouse IgG (Pierce Chemical 
Co., Rockford, IL) was ~da~. In order to detect tymsine-phosphorylated 
proteins, cells were fixed and permeabilized with 0.2% Triton X-100. Then 
cell aggregates were incubated with biotinylated anti-phosphotyrosine Py20 
mAb (ICN Biochemicals, Inc., Costa Mesa, CA) at a final concenffafion 
of 1 ~8/ml. The cells were washed and incubated with an 1:1,000 dilution 
of TRrIC-avidin D (Vector, Burllngmne, CA), then with an 1:100 dilution 
of anti-avidin D-biotin (Vector), and again with an 1:1,000 dilution of 
TRrIC-avidin D (Vector). Cells were observed using a Nikvn Labophot-2 
photomicruscope with a 60 × oil immersion objective and photographed 
on TMAX 400 film (Eastman ~ Co., Rochester, NY) processed to 
800-1600 ASA with TMAX developer (Easmum Kodak Co.). 

Western Blot Analysis 

JMcells (5-I0 × I06) were incubated in culttwe medium in presence of ac - 
tivatin8 mAb for 5 min on ice bath. In some ezpefime~, the cells were 
pretreated with ~ anfi-CD45 mAb for 1 min at RT. A sheep 
anti-mouse Ig (Sigma Chem. Co.) at 20 ~g/mi wus used as crms-linker dur- 
ing the time indic~_t_ed~. After stimulation, cells were lysed by adding a buffer 
containin~ 137 mM NaCI, 20 mM Tris, pH 7.5, 1 mM MgCI2, 1 mM 
CaCl2, 10% glycerol, 1% NP-40, 150/~M sodium orthowmulm,, 1/tg/mi 
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leupaptin, and 1 mM PMSF during 15 min on ice, and then centrifuged. 
Lysates were incubated with the anti-phosphotyrosine Py72 mAb at 5 
/~g/sample and imm,mocomplexes were then isolated by addition of 187 .1  

anti-mouse kappa chain mAb and protein A-Sephasose. After washing, 
phosphoproteins were specifically ehted by 20 mM phenylphosphate incu- 
bation. Then samples were subjected to SDS-8 % P A G E  under reducing 
conditions and electrou'ansferred onto Immobilon-P membrane (Millipore, 
Bedford, IdA) in Tris-Glycine-Methanol as buffer, for 12 h at 0.2 A, 50 V 
at 4oc. After blocking the membrane with 10% BSA in TBS (20 mM Tris, 
pH 7.5, 150 mM NaCI), protein bands were visualized by incubation with 
an 1251 anfi-phosphotyrosine 4G10 mAb (Upstate Biotechnology, Inc., 
lake Placid, NY), about 106 cpm/ml during 2 h. Membranes were ex- 
posed to AGFA Curix film, and developed after 48 h. 

Results 

Homotypic Cell Aggregation Induced by 
Anti-ICAM-3 mAb Involves LFA-1/ICAM-1--dependent 
and-independent Pathways 
To ascertain the role of ICAM-3 in leukocyte intercellular in- 
teractions, we studied the ability of anti-ICAM-3 mAb to in- 
duce intercellular adhesion in normal T lymphoblasts, leu- 
kemic JM T cells, and HAFSA B cells which are deficient 
for /32 integrins. As shown in Fig. 1, the anti-ICAM-3 
HP2/19 mAb was capable to induce cell aggregation of the 
three different cell types (Fig. 1, top). In contrast, the 
anti-ICAM-3 TP1/25 rnAb, that recognizes a different epi- 
tope than HP2/19 (Campanero et al., 1993), did not aggre- 
gate these cells (Fig. 1, bottom). 

We have previously reported that the ICAM-3-induced 
cell aggregation of T lymphoblasts is LFA-1/ICAM-1 depen- 
dent (Campanero et al., 1993). Since HAFSA cells do not 
express LFA-1, the only counter-receptor described for 
ICAM-3, it is possible that other adhesion molecular path- 
ways could be involved in the intercellular interaction trig- 
gered by ICAM-3. Therefore, we tested several blocking 
rnAb directed to adhesion receptors involved in leukocyte in- 
teractions, including CD2, LFA-3, LFA-1, ICAM-1, VLA~4, 
and VLA/~I. As shown in Table I, cell aggregation induced 
by the anti-ICAM-3 HP2/19 mAb in JM and HAFSA cells 
was inhibited with another anti-ICAM-3 mAb, but not with 
mAb against any of the other adhesion molecules explored. 
In T lymphoblasts, the induced cell aggregation was also in- 
hibited by mAb anti-ICAM-1 and anti-LFA-1 (Table I), as 

Table L Inhibition of ICAM-3-induced Cell Aggregation 
by Different mAb 

Cell Types (% aggregation) 

mAb Specificity JM HAFSA T blasts 

- - 73 80 51 
TS2/16 VLA-/~I 81 87 58 
HP2/1 VLA-c~4 76 78 N.D. 
Lia3/2 LFA-I~ 63 82 12 
TP 1/40 LFA- 1 c~ 50 82 8 
RR1/1 ICAM-1 65 79 1 
TP1/25 ICAM-3 14 47 17 
TS2/18 CD2 66 83 38 
TS2/9 LFA-3 70 76 45 

JM cells were prelncubated with the different mAb indicated prior to the addi- 
tion of the proaggregatory anti-ICAM-3 H_P2/19 mAb. Cell aggregation was 
quantified as described under Materials and Methods at 2 h, 30 rain, and 5 h 
for JM, HAFSA, and T blasts, respectively. Arithmetic mean of six indepen- 
dent experiments performed in duplicate is shown. SD was less than 10%. 

previously described (Campanero et al., 1993). Anti-CD2, 
anti-LFA-3, anti-VLAt~4, and anti-VLAfll mAb showed no 
inhibitory effect on any of the different cell types tested (Ta- 
ble I). 

Altogether, these data indicated the existence of two differ- 
ent pathways involved in homotypic lymphocyte aggregation 
triggered through ICAM-3, including both LFA-1/ICAM- 
1-dependent and -independent interactions. 

The CD45 I)~osine Phosphatase 
Regulates ICAM-3-induced Intercellular Adhesion 
on JM Cells 
To identify the molecules involved in the regulation of 
ICAM-3-mediated homotypic cell aggregation, a wide num- 
ber of mAb of different specificities was screened by their 
ability to inhibit the anti-ICAM-3-triggered cell aggregation 
of JM cells. Interestingly, one mAb, termed TP1/41, was able 
to abrogate this intercellular adhesion phenomenon (Fig. 2 
B). Anti-ICAM-3 TP1/25 and anti-LFA-lot TP1/40 mAb 
were included as positive and negative control for inhibition 
(Fig. 2C and D, respectively). The viability of cells was not 
affected after treatment with these mAb as assessed by 
trypan blue exclusion (data not shown). 

Figure 1. Induction of homo- 
typic aggregation by anti- 
ICAM-3 mAb in different 
lymphoid cells. JM, HAFSA 
cells, and T lymphoblasts (,4, 
B, and C, respectively) were 
incubated with 1/~g/ml of ei- 
ther HP2t19 or TP1/25 anti- 
ICAM-3 mAb. Cell aggrega- 
tion was determined at 2 h, 30 
rain, and 5 h for the three 
different cell types, respec- 
tively. A representative out of 
10 independent experiments is 
shown. Bar, 150 t ~ m .  
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Figure 2. CD45 tyrosine 
phosphatase regulates ICAM- 
3-mediated cell aggregation 
on JM cells. JM cells were 
preincubated with none (A), 
1 /~g/ml anti-CD45 TPI/41 
mAb (B), 1:10 dilution super- 
natant anti-ICAM-3 TPl/25 
mAb (C), or anti-LFA-lc~ 
TPl/40 mAb (D), before addi- 
tion of the prmggegatory anti- 
ICAM-3 HP2/19 mAb used at 
1/~g/ml. Aggregation was de- 
termined at 2 h. A representa- 
tive out of five independent 
experiments is shown. Bar, 
150 tzm. 

The specificity of the TP1/41 mAb was investigated by im- 
munoprecipitation assays from t2q-labeled Jurkat cell ly- 
sates. The pattern of polypeptides precipitated by the TP1/41 
mAb (Fig. 3, lanes 1 and 2) was identical to that obtained 
with the anti-CD45 D3/9 mAb (Fig. 3, lane 3). The 
specificity of the TP1/41 mAb was further demonstrated by 
analyzing its reactivity with cells transfected with cDNAs 

encoding for the different isoforms of the CD45 antigen. As 
shown in Table II, the TP1/41 mAb recognized cells trans- 
fected with any isoform of CD45 but not the mock-trans- 
fected cells. These data demonstrated that the specificity of 
the TP1/41 mAb was coincident with that of conventional 
anti-CIM5 mAb. 

The ability of other anti-CD45 mAbs to inhibit ICAM- 
3-triggered homotypic cell aggregation was also tested. The 
conventional anti-CD45 D3/9 and HP2/23 mAb and the anti- 
CD45RB RP2/21 mAb were also able to inhibit the aggrega- 
tion of JM cells (Table 111). In contrast, other conventional 
anti-CIM5 mAb and mAb that recognize other isoforms of 
CD45 did not exert any inhibitory effect (Table HI, and data 
not shown). 

Figure 3. Immunopreeipitation analysis with TP1/41 mAb. Jurkat 
cells were radioiodinated, and the cell lysates were immtmopreeipi- 
tated with different mAb: TP1/41 hybridoma culture supernatant 
(lane 1); TPU41 purified mAb (lane 2); anti-CD45 D3/9 mAb 
(lane 3); anti-LFA-lo~ TPI/40 mAb (lane 4); anti-LFA-1/3 Lia 3/2 
mAb (lane 5); anti-ICAM-3 TPl125 rnAb (lane 6); and P3X63 as 
negative control 0ane 7). Note the identical pattern immunoprecip- 
itated by TPI/41 and D3/9 mAb. Molecular mass markers are 
shown on the left (M). 

Table IL Reactivity of 77'1/41 mAb with 
CD45-transfected Cells 

% positive cells 

mAb CD ABC AB BC B O 

D3/9 CIM5 67 99 51 73 99 1 
UCHL- 1 CIM5RO 2 1 3 3 93 0 
MC5/2 CD45RB 53 98 56 98 4 1 
RPI/11 CD45RA 94 99 4 3 4 1 
TP1/41 CD45 63 98 47 66 97 0 

Mouse 300-19 pre-B cells transfected with CD45 cDNA coding for different 
isoforms of CD45 were assayed for the reactivity with several anti-CD45 mAb 
recognizing the distinct isoforms of this antigen. Cytofluoronmtric analysis was 
performed as described under Materials and Methods. Note that the TPI/41 
mAb reacts with all the transfected cells, and thus corresponds to a conven- 
tional anti-CD45 mAb. 
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Table IlL Effects of Different Anti-CD45 mAb on 
ICAM-3-induced Aggregation of JM Cells 

mAb Specificity % cell aggregation 

- -  - -  78 
TP1/41 CIM5 7 
D3/9 CIM5 12 
HP2/23 CIM5 18 
RP1/10 CIM5 65 
RP2/16 CIM5 71 
RP1/11 CIM5RA 74 
RP2/7 CD45RA 78 
RP2/23 CD45RB 62 
RP2/21 CD45RB 13 
MC5/2 CIM5RB 69 
UCHL-1 CD45RO 77 

JM cells were preincubated with different anti-CD45 mAb for 10 rain at RT 
before the addition of the proaggregatory anti-ICAM-3 HP2/19 mAb. Cell 
aggregation was quantified after 2 h. Arithmetic mean of three independent ex- 
periments performed by duplicate is shown. SD was less than 10%. 

[32 Integrin-induced JM T Cell Aggregation Is Also 
Regulated through CD45 Phosphatase 

We next investigated whether anti-CIM5 TP1/41 mAb also 
regulates JM cellular aggregation induced through antigens 

different from ICAM-3. To this end, the proaggregatory 
ant i -LFA-la  NKI-L16 mAb was used to induce aggregation 
of  JM ee ls .  As shown in Fig. 4, the ant i-CD45 TPI/41 mAb 
was able to inhibit this intercellular adhesion pathway. A 
similar blocking effect of  the TP1/41 mAb was observed on 
the cell aggregation triggered by the anti-if2 KIM127 mAb 
(Robinson et al., 1992) (data not shown). In contrast, other 
cellular aggregation pathways including that triggered by the 
ant i-CD43 TP1/36 mAb were unaffected by the ant i-CD45 
TP1/41 mAb (Fig. 4). 

l~rosine Phosphorylation Is Induced in 
Cell-CeU Contacts upon ICAM-3- and 
LFA-l-triggered JM Cell Aggregation 

The CD45 molecule displays tyrosine phosphatase activity 
in its cytoplasmatie tail (Trowbridge, 1991). The results 
shown above, indicating the inhibitory effects of  anti-CIM5 
mAb on ICAM-3-  and LFA-l-triggered JM cell aggregation 
might be related to this enzymatic activity. Therefore, we in- 
vestigated the possibility that the induction of JM cell aggre- 
gation through ICAM-3 and LFA-1 antigens could correlate 
with triggering of protein tyrosine phosphorylation. In this 
regard, the presence of  tyrosine-phosphorylated proteins at 
intercellular contacts on cell aggregates induced through 

Figure 4. LFA-l-mediated JM 
cell aggregation is also regu- 
lated by the CD45 tyrosine 
phosphatase. JM ceils were 
preincubated with either none 
or 1 /~g/ml TPI/41 mAb. 
Then, cell aggregation was in- 
duced by treatment with anti- 
ICAM-3 HP2/19, anti-LFA-lt~ 
NK1-L16, or anti-CIM3 TP1/ 
36 mAb for 2 h. A representa- 
tive out of four independent 
experiments is shown. Bar, 
150/zm. 
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Figure 5. Tyrosine phosphorylation is induced in cell-cell contact areas upon induction of JM cell aggregation through ICAM-3 and LFA-1. 
Aggregation of JM cells was induced by anti-ICAM-3 HP2/19 (,4 and C) or anti-LFA-hx NKI-L16 (B and D) mAb. Tyrosine phosphoryla- 
tion (a) or ICAM-3 and LFA-1 antigen localization (b) was determined by immunofluorescence as described under Materials and Methods. 
Bar, 25 ttm. 

ICAM-3 or LFA-lo~ NKI-L16 mAb was easily detected by 
immunofluorescence (Fig. 5 a, A and B, respectively). The 
ICAM-3 and LFA-1 antigens were also detected in cell-cell 
boundaries, as assessed by using the HP2/19 and the NKI- 
LI6 mAb (Fig. 5 b, A and B, respectively). These data sug- 
gest a direct involvement of these molecules in the triggering 
of tyrosine phosphorylation. Moreover, similar results were 
obtained when ceil aggregation was studied on normal T 
lymphoblasts (data not shown). Although tyrosine pbos- 
pborylation was induced on both JM T ceils and T lympho- 
blasts upon ICAM-3 or LFA-1 mediated aggregation, no : '°° 
regulatory effect of anti-CD45 mAb was observed on T : 
blasts, thus reinforcing the existence of different intracellular . 
signaling pathways in these two cell types. ~ 

ICAM-3- and LFA-l-mediated homotypic aggregation 
was inhibited by pretreatment of JM cells with the tyrosine- = 
kinase inhibitors herbymicin A, tyrphostin 25, and genistein o 
in a dose-dependent manner (Fig. 6). In contrast, the CD43- ~ ~o 
mediated aggregation was almost unaffected (Fig. 6). Al- 
together these results indicate that protein tyrosine phos- 
phorylation is an important intracellular signaling event 
during ICAM-3- and LFA-l-triggered homotypic cell aggre- ~,hbb~,o~: 
gation, and suggest a role for the tyrosine phosphatase activ- 
ity of CD45 in regulating these processes, s,~o~ : 

CD45 Regulates the ~yrosine Phosphorylation Induced 
by Engagement of  lCAM-3 or LFA-1 on JM T Cells 

Western blot studies were performed to investigate the 
changes in the tyrosine phosphorylation protein pattern upon 
cell treatment with proaggregatory anti-ICAM-3 and anti- 
LFA-1 mAb. As shown in Fig. 7 A, the e n ~ m e n t  of ICAM-3 
or LFA-1 molecules with the HP2/19 and NKI-L16 mAb, re- 
spectively, induced the enhancement of tyrosine phosphory- 

lation of several polypeptides of 125, 70, and 38 kD. The ki- 
netics of this effect was very rapid, beginning after 1 rain and 
declining after 15 rain of either ICAM-3 or LFA-1 crosslink- 
ing (Fig. 7 A). The pbosphorylation pattern induced through 
LFA-1 or ICAM-3 resembled that triggered through the CD3/ 
TcR complex but at lower degree (Fig. 7 A). Preincubation 

=- g 
~ z z z 

N o n e  H P 2 / 1 9  N K I - L I 6  T P I 1 3 6  

g 

Figure 6. Homotypic JM cell aggregation induced by anti-ICAM-3 
and anti-LFA-1 mAb is blocked by tyrosine kinase inhibitors. JM 
cells were preincubated with different doses of herbymicin A 
(Herb) or tyrphostin 25 (T25) for 24 h, or genistein (Gen) for 30 
rain at 37°C. Then, cell aggregation was induced by incubation with 
1 /~g/ml of anti-ICAM-3 HP2/19, anti-LFA-lo~ NKI-L16, or 
anti-CD43 TP1/36 mAb. Aggregation was quantified at 3 h. The 
arithmetic mean of five independent experiments performed by 
duplicate is shown. SD was less than 10%. 
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Figure 7. Western blot analysis of phosphotyrosine proteins upon 
engagement of ICAM-3 or LFA-1 antigens on JM cells. Effect of 
anti-CD45 mAb. (A) JM cells were incubated with 10/~g/ml of ei- 
ther anti-CD3, medium alone, anti-ICAM-3 HP2/19, anti-LFA-1 
NKI-L16, or anti-CD45 TPI/41 mAb for 5 min on ice and then 
sheep anti-mouse Ig at 20/zg/ml was added during different times: 
0, 1, 5, and 15 min at 37°C (lanes 1-4, respectively). Phos- 
phoproteins were analyzed as described under Materials and 
Methods. Note the enhanced intensity of bands corresponding to 
125, 70, and 38 kD when anti-CD3, HP2/19, or NKI-L16 were used 
as stimulus. A representative out of six independent experiments is 
shown. In some analysis, the phosphoproteins of 38 kD were 
resolved into two bands. (B) J i  cells were preincubated with 
medium alone or 10/~g/ml of either TPI/41, D3/9, or RP1/10 mAb 
(lanes 1--4, respectively) 1 min at RT before addition of either 
medium alone or 1 /zg/ml anti-ICAM-3 HP2/19, or anti-LFA-lc~ 
NKI-L16 mAb for 5 min on ice. Then, sheep anti-mouse Ig was 
added during 3 min at 370C, and phosphoproteins were analyzed 
as described under Materials and Methods. Note that preincubation 
with the anti-tiM5 TP1/41 or D3/9 mAb inhibited the induction 
of phosphotyrosine of polypeptides of 125, 70, and 38 kD with no 
modifications of other bands. The anti-tiM5 RPI/10 exerted no 
effect. Preincnhation of JM cells with 50/~g/ml of genistein for 30 
min at 37°C before addition of the different stimuli is also included 
(lane 5). A representative experiment out of four independent ones 
is shown. 

of JM cells with the tyrosine kinase inhibitor genistein abro- 
gated the induction of tyrosine phosphorylation through these 
adhesion molecules (Fig. 7 B, lane 5). 

To further explore the role of CD45 in the regulation of 
ICAM-3- and LFA-l-triggered intracellular signaling, we 
performed the induction of tyrosine phosphorylation in the 
presence of different regulatory and nonregulatory anti- 
CD45 mAb. As observed in Fig. 7 B, preincubation with 
TP1/41 or D3/9 but not with the functionally irrelevant 
RP1/10 mAb prevented the tyrosine phosphorylation of the 
125, 70, and 38 kD polypeptides induced by ICAM-3 or 
LFA-1 engagement. Moreover, the dephosphorylation effect 
induced by TP1/41 was abolished by preincubation of JM 
cells with the tyrosine phosphatase inhibitor phenylarsine 
oxyde (data not shown). 

Altogether, these data indicate that ICAM-3 and LFA-1 
trigger specific tyrosine phosphorylation of several cellular 
polypeptides, and that the CIM5 tyrosine phosphatase regu- 
lates this intracellular signaling pathway. 

Discussion 

In this report, we describe the existence of an alternative 
pathway of anti-ICAM-3-induced lymphocyte homotypic 
aggregation which is LFA-1/ICAM-1 independent. This path- 
way, as well as that induced through LFA-1, triggers tyrosine 
phosphorylation, and is regulated by the CD45 tyrosine 
phosphatase. The diagram shown in Scheme 1 represents the 
possible events involved in these intracellular signaling 
pathways. 

We have previously reported that the aggregation of T lym- 
phoblasts triggered by ICAM-3 involves the activation of the 
LFA-1/ICAM-1 pathway (Campanero et al., 1993). We have 
shown herein that anti-ICAM-3 can induce cell aggregation 
of both LFA-1 + cells and /32-deficient (LFA-1-) HAFSA 
cells, thus indicating that this molecule triggers an LFA- 
1/ICAM-l-independent cell adhesion pathway. The ICAM- 
3-mediated cell aggregation of LFA-1 + JM T or LFA-1- 
HAFSA B cells was not affected by cell prelxeatment with 
mAb against different molecules involved in intercellular in- 
teractions. Only an anti-ICAM-3 mAb recognizing a differ- 
ent epitope was able to inhibit this interaction. Cross- 
inhibitory effects of mAb directed to different epitopes on the 
same molecule have already been reported for other antigens 
such as LFA-1, VLAa4, or VLA~I (Keizer et al., 1988; Pu- 
lido et al., 1991; Campanero et al., 1992). Several mecha- 
nisms may account for the LFA-l-independent ICAM-3- 
induced homotypic cell aggregation including the existence 
of other ligands for ICAM-3, or the triggering of intracellular 
signals through ICAM-3 that would activate other adhesion 
molecules. 

When searching for molecules involved in the regulation 
of the LFA-l-independent ICAM-3-induced cell aggrega- 
tion, we found that the TPU41 mAb inhibited this process. 
Both immunoprecipitation analysis and binding assays with 
transfected cells revealed that this mAb is directed against 
the CD45 antigen. We have also demonstrated that this mAb, 
as well as other anti-CD45 mAb are able to inhibit the homo- 
typic cell aggregation induced through either ICAM-3 or the 
LFA-1 integrin. In contrast, other intercellular adhesion 
pathways, as that induced by anti-CD43 mAb, remained 
unaffected, thus indicating that CD45 has a specific regula- 
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Scheme 1. Representation of the possible involvement of CD45 tyrosine phosphatase in ICAM-3- and LFA-l-mediated T cell aggregation 
and intracellular signaling. The molecular interactions likely involved in this homotypic cell aggregation are also represented (dotted lines). 
The putative interaction between LFA-1 and ICAM-3 (*) in this system could be a transient one as recently reported for T blasts (Campanero 
et al., 1993), since no blocking effects of anti-LFA-1 mAb are detected in anti-ICAM-3-triggered JM cell aggregation. 

tory role in the aggregation events mediated by ICAM-3 and 
LFA-1. A minor inhibitory effect of these anti-CIM5 mAb 
was observed in VLA-4-mediated homotypic cell aggrega- 
tion (A.G. Arroyo, unpublished observations). 

Since CD45 is a pan-leukocyte glycoprotein that contains 
two consensus domains of tyrosine-phosphatase in its cyto- 
plasmic tail (Trowbridge, 1991), we next investigated the 
role of tyrosine phosphorylation in ICAM-3 and LFA-1 intra- 
cellular signaling. Our results on ICAM-3- and LFA-l-medi- 
ated signaling by both immunofluorescence staining and 
Western blot analysis, indicate an increase of tyrosine phos- 
phorylation of several proteins upon LFA-1 or ICAM-3 en- 
gagement. The induction of tyrosine phosphorylation of 
different proteins by the engagement of other integrin mem- 
bers from /31 and /33 subfamilies have recently been de- 
scribed (Burridge et al., 1992; Guan and Shalloway, 1992; 
Kornberg et al., 1992; Lipfert et al., 1992; Juliano and 
Haskill, 1993). Moreover, it was recently reported that ot2~l 
integrin activation can result in tyrosine phosphorylation of 
47-52 kD proteins as well as in activation of a signaling path- 
way involving p21 ~' (Kapron-Bras et al., 1993). However, 
the induction of tyrosine phosphorylation by/32 leukocyte 
integrins or their ligands had not previously been inves- 
tigated. The functional significance of this signaling pathway 
in leukocyte intercellular adhesion is reinforced by the inhi- 
bition of ICAM-3- and LFA-l-mediated homotypic aggrega- 
tion by specific tyrosine kinase inhibitors (Scheme 1). 

The nature of the 125, 70, and 38 kD proteins that become 
phosphorylated upon engagement of ICAM-3 or LFA-1 re- 

mains to be determined. Possible candidates of similar mo- 
lecular masses would include proteins known to be phos- 
phorylated through B1 or B3 integrins such as p125 f~ (125 
kD) or paxillin (70 kD) (Burridge et al., 1992), or those 
which are phosphorylated after activation through the 
CD3/TcR complex such as PLC3, (135 kD), the recently de- 
scribed ZAP-70 (70 kD), and different members of MAP ki- 
nase family (about 40 kD) (Nel et al., 1990a,b; Park et al., 
1991; Secrist et al., 1991; Weiss et al., 1991; Chan et al., 
1992; Whitehurst et al., 1992). It would also be very in- 
teresting to investigate the putative tyrosine-kinases involved 
in this signaling pathway, but these issues deserve further re- 
search. 

Regarding the mechanism accounting for the inhibitory 
effect of different anti-CIM5 mAb on anti-ICAM-3- and 
anti-LFA-l-induced JM T cell aggregation, it may involve 
a modulation of CD45 tyrosine phosphatase activity by en- 
gagement of CIM5 with mAb, as suggested by a decrease in 
tyrosine phosphorylation of different polypeptides in West- 
ern blot analysis. This might cause dimerization of the recep- 
tor that could regulate tyrosine phosphatase function by se- 
questration or dephosphorylation of tyrosine phosphatase 
domains, as it has been recently described (Desai et al., 
1993). Interestingly, two of the blocking anti-CD45 mAb, 
D3/9 and HP2/23, have been previously found that inhibit 
PHA-induced T lymphocyte proliferation (Bernabeu et al., 
1987). Recently, the regulatory role of CIM5 mAb in LFA- 
1-independent/tyrosine kinase-dependent B cell aggrega- 
tion, and the inhibitory effect of these mAb on calcium 
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mobilization induced through LFA-1 in NK cells have been 
described (Poggi et al., 1993; Wagner et al., 1993). The 
tyrosine kinases likely involved in this regulation are not 
known yet. In this regard, it has been reported the activation 
of lck and fyn kinases in T lymphocytes by CD45-mediated 
dephosphorylation of tyrosine 505 and 531, respectively 
(Shiroo et al., 1992; Hurley et al., 1993). Moreover, CIM5 
tyrosine phosphatase is also able to regulate activation of 
MAP ldnase (Anderson et al., 1990; Nel et al., 1991). The 
role that these kinases could play in ICAM-3- and LFA- 
1-triggered signaling deserves further research. 

In summary, we have provided data demonstrating the ex- 
istence of LFA-I/ICAM-l-independent homotypic cell aggre- 
gation induced by anti-ICAM-3 mAb in different cell lines. 
Remarkably, this interaction could be regulated by the CD45 
tyrosine phosphatase, and this fact is related to the ability of 
ICAM-3 and LFA-I antigens to induce tyrosine phosphoryla- 
tion of different cellular substrates (Scheme I). 
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