
SnapShot-Seq: A Method for Extracting Genome-Wide, In
Vivo mRNA Dynamics from a Single Total RNA Sample
Jesse M. Gray1*., David A. Harmin2., Sarah A. Boswell3, Nicole Cloonan4, Thomas E. Mullen1,

Joseph J. Ling1, Nimrod Miller5, Scott Kuersten6, Yong-Chao Ma5, Steven A. McCarroll1,

Sean M. Grimmond7, Michael Springer3*

1 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Neurobiology, Harvard Medical School, Boston,

Massachusetts, United States of America, 3 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America, 4 Genomic Biology

Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia, 5 Departments of Pediatrics, Neurology, and Physiology, Northwestern University

Feinberg School of Medicine and Lurie Children’s Hospital of Chicago Research Center, Chicago, Illinois, United States of America, 6 Epicentre, Madison, Wisconsin, United

States of America, 7 Institute for Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom

Abstract

mRNA synthesis, processing, and destruction involve a complex series of molecular steps that are incompletely understood.
Because the RNA intermediates in each of these steps have finite lifetimes, extensive mechanistic and dynamical
information is encoded in total cellular RNA. Here we report the development of SnapShot-Seq, a set of computational
methods that allow the determination of in vivo rates of pre-mRNA synthesis, splicing, intron degradation, and mRNA decay
from a single RNA-Seq snapshot of total cellular RNA. SnapShot-Seq can detect in vivo changes in the rates of specific steps
of splicing, and it provides genome-wide estimates of pre-mRNA synthesis rates comparable to those obtained via labeling
of newly synthesized RNA. We used SnapShot-Seq to investigate the origins of the intrinsic bimodality of metazoan gene
expression levels, and our results suggest that this bimodality is partly due to spillover of transcriptional activation from
highly expressed genes to their poorly expressed neighbors. SnapShot-Seq dramatically expands the information obtainable
from a standard RNA-Seq experiment.
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Introduction

The expression level of an individual mRNA species depends on

the rates of key events at three phases of its lifecycle: pre-mRNA

transcription, pre-mRNA processing, and mRNA degradation [1].

Each of these steps has the potential to be regulated to control

gene expression. Yet the dynamics and regulation of the mRNA

lifecycle in vivo are poorly characterized, limiting our ability to

understand the mechanisms by which gene expression is regulated

by chemical compounds, biological signals, or as-yet-uncharacter-

ized RNA-binding proteins, which may number in the thousands

[2].

The power of genome-wide approaches in defining key sites of

regulation has been demonstrated by recently developed methods

for quantifying the in vivo occupancy of RNA polymerase across

the entire genome [3–5]. Building on older single-gene studies [6],

these technologies have revealed that transcription is extensively

regulated beyond the initial step of RNA polymerase recruitment

to promoters [4,7]. However, the kinetics of other stages of the

mRNA lifecycle, such as splicing, are less understood. For

example, the estimated time required for splicing ranges from 30

seconds [8]to 12 minutes [9] in studies of individual introns [8–12]

_ENREF_10. It is unclear whether this variability reflects intron-

to-intron variation, species-to-species variation, or the differences

in the methods used. The ability to assess in vivo splicing rates

genome-wide could reveal new modes of gene regulation and

identify functions for the many putative splicing factors whose

functions remain unknown.

In this study, we describe a new method – SnapShot-Seq – for

quantifying mammalian mRNA dynamics, using only standard

RNA-Seq data that can be easily generated from any total cellular

RNA sample. We introduce a quantitative model that relates the

densities of total RNA sequencing (RNA-Seq) reads across exons,

introns, and splice junctions to the lifetimes of pre-mRNA

intermediate species and mature mRNAs. We describe experi-

mental tests of key assumptions of our method, as well as of its

ability to detect specific defects in transcription and splicing.

Finally, we apply our method to reveal that the intrinsic

bimodality of metazoan gene expression results from a bimodality

of mRNA synthesis rates, which in turn may result in part from

gene neighbor effects.

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e89673

http://creativecommons.org/licenses/by/4.0/


Results

A quantitative model to measure lifetime from
abundance

Our goal was to develop a model that would allow us to

simultaneously determine the rates of each step in the mRNA

lifecycle solely from a single measurement of total RNA-Seq read

densities. A critical first step in this effort was based on the

observation that the number of RNA-Seq reads aligning to the 59

end of an intron is larger than the number of reads aligning to the

39 end. These decreases in apparent expression level are observed

in nascent RNA, nuclear RNA, and total RNA (Fig. 1A) [13–16].

We suspected that these decreases could be used to directly infer a

gene’s rate of pre-mRNA synthesis. This relationship between

decreases in expression level along the length of an intron and

synthesis rate could then anchor a model for determining the

lifetimes of a variety of mRNA intermediates.

We reasoned that the decrease in expression level across an

intron should be directly proportional to the number of RNA

polymerases transcribing the intron. This proportionality arises

because each polymerase actively transcribing the intron has

transcribed the 59 but not the 39 end of the intron (Fig. 1A).

Notably, the decrease in expression level across individual introns

does not translate into a decrease in intronic expression level along

genes, from one intron to the next. Instead, because introns can be

spliced and degraded as soon as they are transcribed, the pattern

of intronic expression along genes takes the form of a sawtooth

pattern [16]. The pre-mRNA synthesis rate should equal the

change in RNA-Seq read density across an intron, divided by the

time required to transcribe the intron (Tt, constant for a given

intron) and a constant c0 that relates read density to transcript

number per cell (Fig. 1A, Eq. 1; Materials and Methods).

In relating the pre-mRNA synthesis rate to the rate of intron

processing, we found it useful to consider the intronic expression

profile as an inverted guillotine blade with a rectangular base. The

height of the blade is proportional to the time required to

transcribe an intron (Tt; Fig. 1A–B, green) and depends solely on

the abundance of nascent introns. The height of the base is

proportional to the time required for intron processing (splicing

plus intron degradation, Tp; Fig. 1A–B, black) and depends solely

on the abundance of completely transcribed (but not yet degraded)

introns. The pre-mRNA synthesis rate affects the height of both

the base and blade proportionally, and therefore it does not affect

the ratio between these two measurements. Thus, the relative

times required for intron transcription and intron processing can

be inferred from the relative abundances of nascent introns (blade)

and completely transcribed introns (base) (Fig. 1A–B).

Building on this framework, we developed a full model relating

the times required for transcription and mRNA processing to the

abundances of introns and splice sites. For example in Eq. (2a)

(Fig. 1C), the 59 splice site of an intron is created by RNA

polymerase as it begins to transcribe the intron at time t = 0; the

site exists during transcription of the intron (which lasts until time

Tt) and persists until the 59 splice site is cleaved to form the lariat

intermediate (which takes an additional time T5). Thus, the density

of RNA-Seq reads across the 59 splice site (D59SS) is proportional to

the total duration Tt + T5 and the pre-mRNA synthesis rate S. To

directly solve for the time required for lariat formation (T5), we can

substitute Eq. (1) into Eq. (2a), yielding Eq. (2b). Via a similar

procedure, the relationship between RNA-Seq read density and

time can be used to infer the times of exon ligation (T3) and intron

degradation (Tc) (Eqs. 3–4 in Fig. 1C) (Materials and Methods).

Given literature values for transcription elongation rate [11,17],

this set of equations can be solved to obtain the times T5, T3, Tc,

and the pre-mRNA synthesis rate (a general and detailed

treatment appears in Materials and Methods).

Caveats and limitations to the model
One potential caveat to our model is that the decrease in

expression level across introns could be caused in part by

exonucleolytic degradation of excised intron lariats (Fig. S1A–D).

To address the potential influence of lariat degradation, we

compared the decrease in expression level from 59 to 39 across

introns to the decrease between the 59 and 39 splice sites. Both the

intron and splice site decreases in expression level should be

influenced by the number of polymerases actively transcribing an

intron. However, because the splice sites are destroyed during

splicing, only the intron decrease should be sensitive to excised

lariat degradation (Fig. S1B–D). We performed total RNA-Seq on

HeLa cells using strand-specific sequencing of rRNA-depleted

total cellular RNA [18,19]. We observed that the decreases across

introns and splice sites were similar, suggesting that exonucleolytic

lariat degradation does not contribute to the shape of the intronic

expression profile (Fig. S1D–E).

A second caveat is that the intronic expression profile could also

be influenced by alternative splice isoforms (e.g., splicing of non-

consecutive exons or exon-skipping). To assess this possibility, we

quantified the expression levels of alternative splice isoforms. We

found that 97–99% of all exon-exon splice junction reads in HeLa

cells and mouse neurons were between consecutive annotated

exons (Fig. S1F). While apparently surprising, this result is

consistent with previous findings: although most genes are

alternatively spliced in at least one cell-type or tissue, most exon

splicing events do not involve alternative splicing [20]. In addition,

alternative splice forms tend to be tissue-specific and expressed at

lower levels than constitutive isoforms [21]. Thus on average it

appears that the contribution of alternatively spliced forms to the

total RNA population is fairly low. Nonetheless, we assessed each

of the different classes of alternative mRNA isoforms to determine

how each would affect our analysis of the intronic expression

profile and found that intronic expression profiles would be

minimally affected. (Materials and Methods).

A third caveat is that our model assumes that the rate of

transcription elongation is similar among introns and between

genes. This is a reasonable assumption on multi-kilobase length

scales [5,11]. On smaller length scales, and in particular near

promoters, the effects of pausing can be significant [22], so we

included in our analysis only introns larger than 5 kb that start

more than 5 kb from the transcription start site. Deviation from

linearity will also occur for a short period of time after gene

induction [15,22], but our model is only intended to be applicable

under steady-state conditions.

A significant limitation is that although our model should

eventually be applicable to individual genes, current datasets do

not enable single gene resolution. Instead, to overcome sequence

bias and counting noise, both of which can contribute significant

error when examining short RNA features such as individual 59

splice sites (Materials and Methods), it is necessary to average read

densities across multiple genes. Given currently available datasets,

therefore, our model can be used to produce average processing

times, and distributions of these times, for sets of multiple genes.

Applying SnapShot-Seq to obtain rates of pre-mRNA
processing

We used our model to determine mRNA processing times (T5,

T3, and Tc, as defined in Fig. 1C) for ten human tissues after

performing strand-specific total RNA-Seq [23] from ribosomal

RNA-depleted total RNA isolated from each tissue (Fig. 2A).

SnapShot-Seq: In Vivo mRNA Dynamics from RNA-Seq
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Using a Monte Carlo approach, we repeatedly randomly sampled

sets of five genes and solved for the RNA processing times

(Materials and Methods), which produced a distribution for each

processing time. Across ten human tissues, we find lariat formation

(T5) takes an average of 1–2 minutes, exon ligation (T3) takes an

average of 30–70 seconds, and intron degradation (Tc) takes an

average of 20–30 seconds. These results are consistent with the

results of complementary techniques that have examined specific

steps in the mRNA lifecycle at small numbers of introns or genes

[8,11,24–26]. We also used our model to calculate mRNA

lifetimes (Tm). Across the same ten human tissues, the average

mRNA lifetime varied from just under 1 hour to nearly 4 hours

(Table S1 in File S1). These values are similar to the ,5 hour

average mRNA lifetime found by previous studies in mouse and

human samples [27].

To address the consistency of SnapShot-Seq across different

technological platforms, we performed total RNA sequencing from

HeLa cells while varying the library preparation method, the

ribosomal RNA removal method, and the sequencing platform.

We also addressed biological variability (Fig 2B). HeLa total RNA

Figure 1. A model for calculating mRNA dynamics from an RNA-Seq snapshot. (A) The decrease in expression from 59 to 39 along an intron,
shown as the height of the green ‘‘guillotine’’ blade, is a product of the rate of intron synthesis (S) and the time required to transcribe the intron (Tt).
The abundance of the fully transcribed intron at steady state, shown as the height of the black guillotine base, is a product of S and the intron
processing time (Tp). Tp consists of the two steps of splicing and intron degradation. Changes in S and Tp both affect total intron expression level;
however, only changes in S affect the difference in RNA-Seq read density across an intron. The conversion factor c0 has units of RNA-Seq read density
per initiated RNA transcript per cell. (B) A detailed timeline of pre-mRNA maturation indicating the four lifetimes (Tt, T5, T3, Tc) that can be inferred
from RNA-Seq read densities across three genomic features (INT, 59SS, 39SS). (C) Equations (2a) – (4) relating the times of lariat formation, exon
ligation, and intron degradation to total RNA-Seq read densities. Additional details are provided in the Materials and Methods section.
doi:10.1371/journal.pone.0089673.g001
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prepared using the dUTP-RiboZero method on the Illumina

platform [19] was consistent between biological samples, exper-

imental days, library preparation batches, and sequencing flow-

cells. We found a 2-fold increase in pre-mRNA processing times

when we directly compared the Illumina method to a double-

stranded ligation, RiboMinus-based method [23] (Whole Tran-

scriptome Sequencing) on the SOLiD platform (Fig. 2B). This

difference may reflect differences in the relative biases of these two

sample preparation strategies. While the absolute change in rates

was two-fold, the relative rate of each of the individual pre-mRNA

processing steps was consistent between platforms. To accurately

compare samples in subsequent experiments, we only compared

samples prepared in the same batch with the same sample

preparation pipeline.

Our results represent the first in vivo determination of the rates

of lariat formation, exon ligation, and excised lariat degradation

based on genome-wide data. From our full model, lariat formation

is 2–4 times slower than exon ligation and 4–6 times slower than

lariat degradation (Fig. 2A,B), suggesting that it is typically the

rate-limiting step in vivo. Lariat formation is similar to the average

time it would take to transcribe the next intron (,1.5 minutes for a

4.5 kb intron) and faster than the median time required to

complete transcription of the gene (,5 minutes), based on an

assumed average elongation rate of 3.6 kb per minute [11]. These

results imply that lariat formation frequently occurs before the

transcription of the subsequent intron is complete. Thus,

alternative splicing events such as exon skipping are likely to

require special mechanisms to prevent the conventional splicing of

consecutive exons during transcription of a subsequent intron.

SnapShot-Seq detects a global decrease in the rate of
lariat formation upon treatment of cells with the splicing
inhibitor isoginkgetin

To address whether our method could detect specific pertur-

bations in mRNA processing, we treated HeLa cells with the

splicing inhibitor isoginkgetin (30 mM), presumed to block splicing

by inhibiting the transition from spliceosomal complex A to B (i.e.,

tri-snRNP binding) [8,28]. We performed total RNA-seq on three

biological replicates of isoginkgetin-treated samples and their

paired controls. Consistent with the expectation that isoginkgetin

interferes with splicing, RNA-Seq data from isoginkgetin-treated

cells showed increased global expression of introns and splice

junctions relative to exons (Fig. 3A). The increases were not gene-

specific, as most or all expressed genes were affected (Fig. S2A).

These results are consistent with isoginkgetin-induced accumula-

tion of unspliced pre-mRNAs.

To measure the decrease in splicing rates caused by isogingke-

tin, we returned to the analysis described above (Fig. 1A). In the

intronic expression profile, the guillotine ‘‘blade’’ is derived from

nascent introns, and the ‘‘base’’ represents fully transcribed introns

that have not yet been degraded. If isoginkgetin were slowing

splicing, we should observe an increase in the height of the base.

As expected, the height of the base increases ,2.5-fold with

isoginkgetin treatment, indicating a 2.5-fold lower rate of splicing

(Fig. 3B). Absent any feedback of splicing inhibition on pre-mRNA

synthesis rates, the guillotine blade and intronic slope should

remain unchanged. Consistent with these predictions, there are no

detectable isoginkgetin-dependent changes in the guillotine blade

or intronic slope. Finally, the sawtooth pattern between adjacent

introns is still observed in isoginkgetin treated cells, as expected

unless splicing were 100% inhibited (Fig. S2B). These results

suggest that the intronic expression profile is a useful method for

assessing global splicing rates.

Because isoginkgetin is thought to block splicing before its first

catalytic step, we tested whether our full kinetic model would

detect a specific defect in lariat formation. With isoginkgetin

treatment, we observed a nearly two-fold increase in the time

required for lariat formation (Fig. 3C, T5), with no significant

effects on exon ligation (Fig. 3C, T3) or excised lariat degradation.

In total, these isoginkgetin-dependent changes in rates would be

expected to increase intron processing time (Tp) by ,2.5-fold,

consistent with our conclusions above (Fig. 3B). Our observation,

based on in vivo genome-wide data, that the rates of lariat

formation but not exon ligation are affected by isoginkgetin

accords well with the in vitro observation that isoginkgetin blocks

the formation of spliceosomal complex B.

Application of SnapShot-Seq to infer genome-wide rates
of mRNA synthesis and decay

As discussed above, current sequencing methodologies do not

support the application of our full model to individual genes.

Figure 2. SnapShot-Seq-derived timescales for ten human tissues and technical controls. (A) Lifetimes obtained from total RNA-Seq
performed on ten human tissues, using the SOLiD Whole Transcriptome Sequencing method [23] with RiboMinus rRNA-depletion. T5, T3, and Tc are as
defined as in Fig. 1. (B) A comparison of lifetimes across different sequencing methodologies. We performed sequencing on SOLiD (S) or Illumina (I);
hybridization-based rRNA depletion with RiboMinus (M) or RiboZero (Z); and compared RNA samples isolated and prepared into libraries on several
different days. We performed Illumina total RNA-Seq using the dUTP method [19]. Error bars indicate 95% confidence from Monte Carlo simulations
from individual biological samples.
doi:10.1371/journal.pone.0089673.g002
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However, we explored whether a simplified version of our model,

based on total RNA-Seq read densities in introns, could be

immediately useful for analysis of the synthesis and degradation

rates of individual mRNAs. One way to simplify the model might

be to use intron read density (DINT) as a proxy for pre-mRNA

synthesis rate and to calculate the degradation rate by dividing the

mRNA abundance by the synthesis rate. The assumption that

DINT can act as a proxy for synthesis rate has been made before

[29], but has not been validated theoretically or experimentally.

As seen in Eq. (5) (Fig 4A), a caveat to using DINT to estimate

mRNA synthesis rate is that intron expression is dependent not

only on the mRNA synthesis rate but also on the intron processing

time (Tp) and intron length (which affects the intron transcription

time, Tt). Using DINT as a proxy for synthesis rates would

therefore introduce a significant bias. Specifically, this bias could

result in an artifactual correlation between gene length and

synthesis rate [30], since longer genes tend to have longer introns,

and the read density of long introns is inflated by the longer time it

takes to transcribe the intron. To avoid this bias, we estimated the

synthesis rate of each gene using the average total RNA-Seq read

density of the 39-most 10 kb of each of its introns (D39INT, derived

from the entire intron for introns shorter than 10 kb). On this

10 kb length scale, the contribution of Tt/2 (,80 seconds, based

on 3.6 kb/min [11]) is less than Tp (,3.5 minutes, sum of times

from Fig. 2A), and the influence of intron length is negligible

(Fig. 4A, Eq. 6). While sequences shorter than 10 kb could be used

to further minimize the contribution of Tt, in this case each intron

would be represented by fewer reads. Our strategy balances the

benefits of the increased accuracy of quantifying expression using

longer sequences while minimizing the length-dependent inflation

of intron density.

Using D39INT as a proxy for pre-mRNA synthesis rate minimizes

the bias caused by intron length, but the apparent synthesis rate

based on D39INT still depends on the relative processing times of

each intron (Tp in Fig. 4A, Eq 6). Therefore, for this proxy to be

useful, the variation in mRNA synthesis rates (S) must be much

larger than the variation in intron processing times (Tp). A

maximal bound on the variation in Tp can be directly assessed by

comparing D39INT for introns from the same gene (Fig. 4B). Intron

levels in a single gene are set by S?Tp, with S constant for all

introns synthesized from a common promoter. In contrast,

variation in mRNA synthesis rate can be assessed by comparing

introns from different genes. Variation in intron levels between

genes again depends on S?Tp, but now S is not constant (Fig. 4B).

We found that the intergenic variation in D39INT was at least an

order of magnitude larger than the intragenic variation in D39INT

(Fig. 4C). Thus, D39INT is a reliable proxy for relative mRNA

synthesis rate and is influenced comparatively little by intron

processing rates (Fig. 4A, Eq 7). This method is practical for single

gene measurements because D39INT is easy to measure accurately

using total RNA-Seq. In further support of our analysis, we found

that D39INT is directly proportional to intronic slope, another

measure of synthesis rate (Figs. S3A,B).

To independently assess the accuracy of using D39INT as a proxy

for mRNA synthesis rates, we performed sequencing of newly

synthesized RNA using 4-thiouridine (4SU) labeling [30–32]. We

compared our estimate of mRNA synthesis rates based on D39INT

from total RNA-Seq to estimates of mRNA synthesis rates based

on quantification of newly synthesized 4SU-labeled RNA.

Estimates of synthesis rates from the two methods were linearly

correlated (Spearman’s r= 0.87, Fig. 4D), unlike 4SU-labeled

RNA and total RNA-Seq exon densities (Figs. S3C).

Together, accurate measurements of mRNA levels and

synthesis rates can be used to estimate mRNA lifetimes for

individual genes (Fig 5A). Our estimates of mRNA lifetime varied

significantly among genes, in agreement with mRNA half-life

estimates ranging from 16 minutes to 790 minutes for inducible

transcripts [33]. Similarly, high-throughput estimates of mRNA

turnover from 4SU-labeled RNA experiments reveal distributions

of mRNA turnover rates shaped similarly to our own, with our

method having a 5-fold larger full-width at half-max [27]. This

larger variance in mRNA lifetimes between genes in our method

could result from biological differences, from biases due to the sets

of genes examined, or from or the techniques themselves. Overall,

these comparisons show that measurements of D39INT can be a

Figure 3. The rate of lariat formation is decreased two-fold by isoginkgetin treatment. (A) Genome-wide expression of 59 splice sites, 39
splice sites, and introns are increased relative to exons upon treatment of HeLa cells with isoginkgetin (30 mM, 18 hours), based on total RNA-Seq
(dUTP method [18], Illumina). The height of each bar indicates the fold change, from vehicle- to isoginkgetin-treated cells, in the mean fraction of
reads aligning to each genic feature (p,0.02 from two-tailed t-tests for all ratios). (B) Isoginkgetin treatment increases the ‘‘guillotine’’ base height
(p = 10212) of intronic expression without increasing the blade height (p = 0.5), consistent with a splicing defect (compare to Fig. 1A). Only introns
longer than 50 kb from genes with at least 10 introns are included in these meta-intron profiles, which show the last 50 kb of each aggregated intron.
Introns of different lengths are aligned at their 39 ends. RNA-Seq density is normalized as read counts per 10M uniquely aligning reads. The indicated
values are from an average of three biological replicates, and p-values are from two-tailed t-tests based on mean values for aggregated introns 2–10
(n = 9). (C) Isoginkgetin treatment leads to a decreased rate of lariat formation (* indicates p = 0.02) without affecting exon ligation or excised lariat
degradation (p = 0.22, 0.08), with calculations as in Fig. 1. p-values are from two-tailed t-tests with n = 3 biological replicates. Error bars in (A, C)
represent s.e.m. from three biological replicates.
doi:10.1371/journal.pone.0089673.g003
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powerful method for extracting mRNA synthesis and decay rates

from easily obtainable total RNA-Seq data.

Bimodality of gene expression reflects genome
organization

We applied our ability to assess genome-wide rates of mRNA

synthesis and decay to investigate the poorly understood

phenomenon of gene expression bimodality. In metazoans,

expressed genes fall into one of two categories: a, ,1 mRNA

per cell (low) mode or a . ,1 mRNA per cell (high) mode [34].

We asked whether this bimodality could be cleanly attributed

either to mRNA synthesis or degradation. Using D39INT to assess

synthesis rates, we observed a bimodal distribution of synthesis

rates, but not of mRNA stabilities, in a variety of tissues and cells

(Figs. 5A, S4A,C–E), strongly suggesting that pre-mRNA synthesis

rates are the sole determinant of the observed bimodality. This

interpretation is supported by the fact that genes segmented into

high and low expression levels are simultaneously segmented into

high and low mRNA synthesis rates respectively (Fig. S4B).

We asked whether low mode genes and high mode genes fall

into distinct functional categories. Using RNA-Seq data from

mouse neurons or HeLa cells, low mode genes specifically are

enriched for gene ontology (GO) categories associated with

membrane and extracellular compartments (Table S2). These

same categories are also enriched among tissue-specific genes

(those expressed in only 1-2 of the 10 human tissues we examined).

This extensive set of shared categories suggests that the low mode

of expression may simply reflect incomplete repression of genes

that are not needed in the tissue of question, rather than a need for

very low levels of the product of these genes. Supporting this

hypothesis, unexpressed genes are similarly enriched for GO

categories associated with membrane and extracellular compart-

ments (Table S2).

We therefore sought to identify a mechanism that could explain

why some genes are expressed in the low mode while others are

not detectably expressed. One cause of the low expression mode

could be the presence of nearby genes that are highly expressed.

Neighboring genes are more likely to be co-expressed and co-

regulated in a variety of organisms including S. cerevisae [35–38],

C. elegans [39], and humans [39,40]. To investigate whether the

low expression level of some genes could result from their genomic

proximity to highly expressed genes, we examined the distances

Figure 4. Average expression of the 39 ends of introns across a gene is an accurate measure of mRNA synthesis rate. (A) Equations
relating the mRNA synthesis rate S to RNA-Seq density across introns (DINT) or across the 39 ends of introns (D39INT). Tp is intron processing time, and c0

is a constant relating RNA-Seq read density to transcript number per cell. In Eq. (7), subscripts 1-2 and superscripts 1-2 refer to separate genes. (B) The
expression levels of the 39 ends of introns are a useful proxy for mRNA synthesis rates, assuming that the variation in intron processing times among
introns is smaller than the variation in mRNA synthesis rates among genes. The schematic shows the contributions of mRNA synthesis and intron
processing to expression at the 39 ends of introns across two hypothetical genes, each with three introns. The second gene is transcribed at a higher
rate. (C) The assumption stated in (B) holds true: the within-gene standard error of intron densities at the 39 ends of the (D39INT, red) is much smaller
than the range of average D39INT among genes (blue). For clarity, the distribution of standard errors of D39INT is shown for the subset of genes with
mean intron log-densities within 10% of -5 on the x-axis. Data is from mouse neuron RNA-Seq using SOLiD. (D) Quantification of mRNA synthesis
using RNA labeling with 4-thiouridine (4SU, vertical axis) versus total RNA-Seq (D39INT, horizontal axis). The two methods are correlated with a
Spearman’s r of 0.87. Each point represents one gene and is an average of three total RNA-Seq and three 4SU RNA-Seq samples (biological replicates)
from a lymphocyte cell line. Cells were exposed to 4SU for five minutes before cell lysis. Sequencing was performed using the dUTP/Illumina method
(total RNA) or standard Illumina RNA-Seq (4SU).
doi:10.1371/journal.pone.0089673.g004

SnapShot-Seq: In Vivo mRNA Dynamics from RNA-Seq

PLOS ONE | www.plosone.org 6 February 2014 | Volume 9 | Issue 2 | e89673



from genes in the unexpressed, low, and high modes to the nearest

high mode gene. We found that low mode genes are far more

likely than unexpressed genes to be within 100 kb of a high mode

gene (Fig. 5B). This effect occurs both for tail-to-tail and head-to-

tail gene pair architectures, indicating that the effect cannot be

attributed solely to shared, bidirectional promoters or to

transcriptional read-through (Fig. 5C). To evaluate the extent of

this potential effect, we considered what happens when a low-

expressed gene in one tissue converts to an unexpressed gene in a

different tissue. In these cases, the distance to the nearest high-

expressed gene increases 45% of the time, compared to a 27%

chance expectation (Fig. 5D). The magnitude of this effect suggests

the hypothesis that at least 15% of the low expressors are

expressed only because of their genomic proximity to high

expressors. The strand-independence of these gene neighbor

effects suggests that they could be mediated by long-range

chromatin interactions, such as DNA looping.

Discussion

We have developed a new computational method, SnapShot-

Seq, for measuring the dynamics of RNA production and

processing. The method relies on the fact that the abundances

of intermediate RNA species are proportional to their lifetimes.

Relying on this proportionality, it is possible using only standard

total RNA-Seq data to: derive rates of pre-mRNA synthesis and

timescales for specific pre-mRNA processing steps (Fig. 1), detect

in vivo alterations in the rates of specific steps of splicing (Fig. 3),

and obtain genome-wide measurements of mRNA synthesis and

degradation rates (Fig. 4). Our approach has several advantages

over the existing state-of-the-art methods. First, it requires only

standard RNA-Seq data and can thus be performed post hoc on

existing total RNA-Seq data sets. Second, it does not require any

of the perturbations previously needed to determine kinetics of

splicing and mRNA degradation, e.g., cellular uptake of a

chemical label [41] or interference with RNA polymerase II

Figure 5. Bimodality of mRNA synthesis rates reflects genome organization. (A) Distributions of gene expression levels (DEXN), mRNA
synthesis rates (D39INT), and mRNA stability (DEXN/D39INT) reveal two modes of gene expression. DEXN and D39INT refer to the RNA-Seq read densities
across exons and the 39-most 10 kb of introns respectively. (B) Compared to genes that are not expressed, low and high expressors are found closer
to highly expressed genes. The x-axis indicates the distance from a gene’s transcription start site (TSS) to the TSS of the nearest high expressor; *
indicates p,1023 by a two-sample K-S test. (C) Genes adjacent to high mode genes are disproportionately more likely to be in the low mode and less
likely to be in the off mode of gene expression, for both head-to-tail and tail-to-tail gene pair architectures (* indicates p,1026 from a bootstrap
simulation with one million iterations, in which expression classes were permuted). (D) Between tissues, when genes transition from low expressors
to non-expressors, their average distance to the nearest high expressor increases (p,2.2610216, based on a chi-square test). The ,15% difference
between the data and the randomized control suggests that at least 15% of the changes from low to off are due to a nearby gene being up-
regulated. RNA-Seq data is from mouse cortical neurons sequenced using SOLiD [53] (A–C) and ten human tissues (D).
doi:10.1371/journal.pone.0089673.g005
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[11,42–44]. Nor does our method require immunoprecipitation

[5] or rely on in vitro enzymatic activity [4]. Unlike many

competing methods, our method is easily applied to whole tissues,

including quantity-limited diseased and normal tissue biopsies

from patients. Our method should prove informative for

examining splicing rates in diseases – such as retinitis pigmentosa,

myelodysplastic syndrome, and lymphocytic leukemia – whose

etiologies involve RNA processing defects that remain poorly

understood [45–48]. Finally, our method is unique in simulta-

neously assessing many aspects of mRNA dynamics, an advantage

that could prove useful in understanding the interconnections

among different steps in pre-mRNA processing.

Our current SnapShot-Seq analyses rely in many cases on

average abundances across multiple introns in order to precisely

compute the intron slopes and splice site read densities that are

crucial inputs to our dynamical model. As sequencing technologies

and library preparation methods improve, SnapShot-Seq will

allow the dynamics of each step of splicing to be precisely

determined for individual genes and individual introns (Materials

and Methods). Eventually, increased sequencing read depth and

reduced bias should provide accurate read densities at single-

nucleotide resolution, making it possible to extend our method to

measure nucleotide-by-nucleotide RNA polymerization rates.

Even at current sequencing depths, applying our method to assess

the results of a larger set of pharmacological and genetic

manipulations of pre-mRNA processing factors will likely reveal

new mechanisms of pre-mRNA processing and clarify intercon-

nections between the stages of the mRNA lifecycle.

Materials and Methods

Accession numbers
We performed both SOLiD and Illumina RNA sequencing,

available under GEO accession number GSE48889. We also rely

on previously published data from GSE21161.

Cell culture and sample preparation
RNA sources. Human tissue RNA-Seq was performed on

total RNA from the Ambion FirstChoice Human total RNA

Survey Panel. HeLa RNA-Seq was performed on HeLa total RNA

isolated from HeLa cells (sequenced on Illumina for the IsoG

experiments) or purchased from Ambion (cat # AM7852,

sequenced on SOLiD). Mouse cortical neuron RNA-Seq data

was taken from previously published work, where E16.5 mouse

cortical neurons from C57B6 mice were cultured for seven days in
vitro before isolating RNA [49]. Our human tissue analysis is IRB

exempt because RNA samples were purchased as de-identified

samples.

HeLA cell culture, RNA extraction, and qRT-PCR. HeLa

cells were obtained from ATCC and were not authenticated for

this study. Hela cells were maintained in DMEM supplemented

with 10% fetal bovine serum, 1% Penicillin-Streptomycin, 1%

non-essential amino acids. Cells were plated to about 70%

confluence the day before any drug treatments on 10 cm plates.

Cells were treated overnight with 30 uM Isoginketin (IsoG,

Millipore) for 18 hours. For RNA extraction, cells were washed

1x with PBS then lysed with RLT buffer. Samples were

immediately processed with Qiashreddar and RNeasy kits

(Qiagen) and frozen until further use. 9 ug of RNA was DNAse

treated and cleaned up with RNeasy Minelute kit (Qiagen). RNA

quality was assessed by Bioanalyzer (Agilent) and all samples had

RINs of 9.0 or higher.

Isolation of newly synthesized transcripts using 4SU

labeling. Newly synthesized transcripts were isolated using

modified methods previously described [32,50–52]. Briefly,

lymphoblastoid cells were pulse-labeled with 200 mM of 4-

thiouridine (4SU) for 5 minutes. Cells labeled in DMSO (without

4SU) served as negative controls. Following incubation in 4SU,

cells were harvested by centrifugation and RNA extracted using

Trizol (Invitrogen). Extracted RNA was further purified using

RNeasy columns (Qiagen) and eluted to a concentration .0.4 ng/

ml. Purified RNA was denatured, and the 4SU-incorporated sites

were biotinylated using 1 mg/ml EZ-link biotin-HPDP [52] by

incubating at 65uC for 1.5 hours and then 25uC for an additional

1.5 hours. Unincorporated biotin-HPDP was removed twice using

chloroform-isoamyl alcohol (24:1) and centrifuging the mixture in

phase-lock-gel tubes (Eppendorf) as described [51]. Biotinylated

RNA was captured and purified using MyOne streptavidin C1

beads (Invitrogen) and eluted in 5% b-mercaptoethanol as

described [52]. RNA-seq libraries were constructed using TruSeq

library preparations (Illumina).

Sequencing library preparation
Illumina library construction and sequencing. RNA-seq

libraries were constructed using the strand specific dUTP method

[18], with minor modifications. Briefly, 3 ug of DNAse treated

RNA was depleted of rRNA using Ribozero (Epicentre). Two

batches of rRNA-depleted samples were combined, cleaned by

RiboMinus concentration module (Invitrogen) and fragmented at

90uC for 3 min (NEB fragmentation buffer). First strand synthesis

was followed by cleanup with RNAClean XP SPRI beads

(Agencourt). Second strand synthesis incorporated dUTP, fol-

lowed by sample clean up with MinElute PCR purification Kit

(Qiagen). Fragment ends were repaired, adenylated, then ligated

to True-Seq barcoded adaptors and cleaned up with AMPure XP

SPRI beads (Agencourt). The libraries were then amplified by

PCR for 12 cycles and cleaned up with AMPure XP SPRI beads.

Illumina sequencing (1650 bp read length) was performed on a

HiSeq 2000. 4SU libraries were prepared non-strand-specifically

using standard Illumina RNA-Seq.

SOLiD RNA-Seq library construction and

sequencing. Total RNA was depleted of ribosomal RNA by

hybridization using RiboMinus (Invitrogen) and was heat-

fragmented, end-repaired with T4 PNK, and processed into

SOLiD sequencing libraries using the double-stranded RNA

ligation method in the Small RNA Expression Kit. Sequencing

was performed on SOLiD with 35 bp (human tissues, mouse

neurons) or 50 bp (HeLa) read lengths.

Sequencing methods and sample list
Sequencing was performed on SOLiD using SOLiD V2

chemistry with 35 bp (human tissues) or 50 bp (HeLa) read

lengths. The number of aligned reads is indicated in Table S3 in

File S1.

Summary of SnapShot-Seq model of mRNA processing
times

Fitting the model relating mRNA processing times to

densities of RNA-Seq reads. With 5 unknowns and 6

equations, our model does not have full rank. But in solving the

model for individual genes, noise in the measurements leads to

nonsensical solutions — i.e., negative values for timescales — for

many of the genes. Based on results from simulations, we

developed two methods that reliably give timescales even with

noisy experimental data. In one method, we add noise to empirical

read densities and slopes used to fit the model, under the

assumption that our data have noise and their ‘‘true’’ values lie
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within the noise of our experimental value. We repeatedly solve

the model, each time adding random noise based on experimental

error to the data. We keep only those solutions having all positive

timescales; upon many trials, the resulting distributions for the four

processing times acquire well-defined ranges. This approach does

not work for every individual intron or gene, so we employed for

all figures shown a second, Monte Carlo method, whereby we

aggregated the observed slopes and feature densities from random

subsets of about 4,000 genes that were appropriately pre-filtered

(for expression level and . 5 kb length). Samples of five genes

were picked at random and, based on their aggregated slopes and

densities, timescales were calculated by solving the model. This

was repeated for each tissue or cell type until at least 2,000

solutions with all-positive timescales were found.

Bioinformatics pipeline overview
Sequence alignment. SOLiD reads were aligned in color-

space using Corona (formerly Applied Biosystems, now Life

Technologies), allowing for 0–3 or 0–5 colorspace mismatches

(35 bp and 50 bp respectively). Illumina reads were aligned using

BWA. In each case reads were aligned to the human or mouse

genomes, plus a library of species-specific splice junctions

constructed from all possible splices among annotated exons.

Overview of bioinformatics pipeline. After sequence

alignment, RNA-Seq reads were processed using custom perl,

MATLAB, and R scripts. For all analysis of RNA-Seq data by

genic features, RNA-Seq data was processed by MAPtoFeatures,

described below.

Assigning RNA-Seq reads to genic features using
MAPtoFeatures

MAPtoFeatures is a collection of custom-built perl scripts for

assigning RNA-Seq reads to genomic features based on a given

annotation. There are a number of scripts used for this work that

are available upon email request. The approach is gene-centered,

so alternative transcripts are merged into a representative ‘‘Gene’’

whose features include exons (coding and noncoding), introns, and

their junctions (both before and after splicing). Reads are of fixed

length (e.g., 35 bp, 50 bp) and strand-specific. The principal input

files include (1) one or more Reads files, (2) a Features file, and, if

available, (3) a splice library key file and (4) mappability-index files.

The Reads file contains reads that have been mapped uniquely in

a strand-specific manner to a genomic locus (chromosome and

coordinate) or splice library. For this study, features are based on

NCBI’s RefSeq for mouse 37.1 or human 37.1 with exonic

coordinates for annotated transcripts, namely, chromosome,

strand, and locus for individual UTRs and coding exons. For

each gene, reads will be assigned to the following feature

categories: UTR5, UTR3, CDS (and their union, EXN), and

INT; their loci are given in the Features file. Additional features

that span the junctions between other features are defined to

capture any reads crossing specific boundaries. These junction

features include exon-intron (JXN5) and intron-exon (JXN3) splice

sites and all possible intragenic exon-exon splice junctions (SPL)

based on the given annotation. Existence of alternative transcrip-

tion — alternative exon lengths or alternate transcriptional start

sites — can obscure some features. When ambiguity exists reads

are mapped to exons, e.g., if a read is mapped to the sequence for

an intron in one splice variant and to an overlapping exon in

another variant, the read will be assigned to the exon. The Splice

library key file annotates a pseudochromosome comprising every

potential splice variant between two or more exons in a gene, each

with minimal sequence for the junction(s) to be spanned by reads.

Splice variants were derived from 27,854 RefSeq transcripts in the

mouse 37.1 genome, producing 2,197,375 distinct potential splices

mappable with 35-bp reads; for the human 37.1 genome, 29,149

transcripts were used to produce 2,318,291 splices. Not every

feature of a gene is perfectly mappable. Mappability indices, which

allow one to compensate for differences in the ability to map

random reads to each feature, are created by attempting to map

every potential read against all features in the Features file and

splice library. In total, about 85% of EXN, 75% of INT, 60% of

SPL, and 80% of JXN5 and JXN3 features are mappable with

35 bp colorspace (SOLiD) reads. The read density (coverage per

target base) can then be adjusted in total or on a feature-by-feature

basis to correct for mappability. Features, Reads, and splice key

files can then be used to calculate the number of reads overlapping

each feature of a gene. To be able to directly compare between

different sequence runs, which can contain different total reads or

different read lengths, read densities are renormalized for a

standard total 10 million reads of length 35 bp. To obtain

normalized reads densities in units of rpkm, divide our density

values by 0.35.

Determining the slope in intron density, and filtering
methods

To determine the slope in intronic density, each intron was

divided into 100 bins of equal sequence length, and the reads were

distributed into these bins based on sequence alignment. Linear

least-squared regression was used to calculate the slope of this line.

Segmenting an intron into bins does not affect the calculation of

slopes as compared to directly calculating a slope from the read

density across a full intron. It also allows us to assess if there are

aberrant regions of an intron. Accordingly, introns with spikes

(often from non-coding RNA) were removed; introns whose slopes

have high error were also removed.

Read depth, counting noise, and accuracy of our model
As noted in the manuscript, our method is not applicable at

single introns. We wished to determine whether this limitation was

due to counting noise or technical biases. Furthermore we wished

to understand the increase in read depth necessary to allow our

model to be used at single intron resolution if other biases were

eliminated. To calculate the expected error in our model we used

Monte Carlo simulations of introns of varying lengths, with

different RNA processing time scales, and different read depths. At

our current average read depth, we should be able to detect intron

densities, exon densities, and introns slope with 25% error for

introns longer than 1 kb and a 1 minute intron degradation time.

This error goes up to 160% if the intron processing time goes to 10

minutes, and drops to 8% error at intron processing times of 6

seconds. Increasing the intron to 10 kb drops the error to 7%

while an intron of 100 bp increases the error to 80%. As our

experimental error is significantly larger than these estimates, bias

is a major limitation in our method and highlights the need for

improvements in library preparation and sequence methodologies.

For splice site quantification, while biases probably also exist,

measurement of 59 and 39 splice sites are limited by counting noise.

In order to achieve single intron resolution rates for the first and

second step of splicing at 25% accuracy we would need

approximately 50-fold more sequencing depth.

Assessing the potential impact of alternative splicing on
the calculation of timescales

Our model (Fig. 1 and Eq. 21) assumes that each intron is

spliced independently, with splicing being possible as soon as all

the needed intron features (59SS and 39SS) are transcribed. This
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situation is complicated by the fact that there are multiple

mechanisms of alternative splicing which break this assumption.

We sought to understand the potential impact of alternative

splicing and other kinds of mRNA isoform diversity on our ability

to calculate the timescales for each of the steps of mRNA

processing. We thus assessed the frequency and potential impact of

a variety of alternative isoforms, taken from the literature [20]:

1. Skipped exons. We cannot accurately filter skipped exons

out of our analysis, but according to our analysis of exon junction

RNA-Seq reads, only ,2% of exon junctions detected in total

RNA correspond to skipped exons (Fig. S1F), limiting the effect of

skipped exons on our lifetimes to 2%. Skipped exons will increase

the 59SS, 39SS, and intron density and thereby the apparent

lifetime of each feature by the same amount – namely the time

required to transcribed the skipped exon and the following intron.

The exonic density and splice junctions will decrease. While, in

theory, T5 is included in equation 21e, in practice Tm dominates

this equation, as it is the longest times scale. Hence, the change

cause by skipped exons can be lumped total into the T5 – this is the

term shared between equations 2–4. This makes intuitive sense in

that a delay in splice will also add the same amount of density to

the 59 SS, 39SS and intron. Importantly, this means that our

calculation for T5 is an upper bound on the rate. The decrease in

Tm should be minimal as only a small portion of a gene’s exonic

density comes from any one exon.

2. Alternative 59 or 39 SS. There are two scenarios: one

where the alternative splice-site shortens the intron, and one where

it lengths in the intron. When the intron is lengthened, the exon

density will decrease slightly (because it is degraded with the

intron) and the 59 or 39SS will increase slightly as they will now live

as long as the intron. 59 alternative splice sites will result in a slight

over-estimate of synthesis rates and an underestimate of T3 and

Tc. 39 alternative splice sites will result in T3 being over estimated

and Tc being underestimated. If the intron is shorter than

expected the 59SS and 39SS will become part of the intron leading

to significantly higher density and the potentially to greatly

overestimate the T5 and T3. Luckily, shorter introns can be filtered

out as it causes the 59SS and 39SS density to increase from a level

that is similar to the intronic read density to a level that is similar

to the exonic read density.

3. Unannotated alternative first/last exon. These events

should have no effect on our model because we treat each intron

or splice unit independently.

4. Unannotated tandem 39 UTRs won’t affect our model,

since they are found outside the genic regions we consider.

5. Mutually exclusive exons are a special case of skipped

exons and will have them same effects on rate calculations as

skipped exons.

6. Retained introns are relatively rare [20]and would behave

similarly to skipped exons except that the increase in signal is now

large as it depends on the lifetime of the mRNA as opposed to the

time required for alternative splicing. This could lead to a major

over-estimate of T5, but again, we can filter out retained introns as

it causes the 59SS and 39SS density to increase from a level that is

similar to the intronic read density to a level that is similar to the

exonic read density.

In summary, most alternative splicing can be either ignored, as

it doesn’t affect our model (e.g. unannotated first exons), or can be

filtered out because of its observable effect on read density (e.g.

retained introns). The remaining alternative splicing events (e.g.,
skipped exons) affect our model but do this by causing us to

overestimate T5 or slightly underestimate Tm. As T5 is already

relatively low, the fact that alternative splicing serves as an upper-

bound gives increased confidence that the true value is at most the

value we calculate. While our Tm could be an underestimate, the

amount of decrease in this rate should be proportional to the

frequency of skipped exons which is a relative small portion of total

exonic counts (Fig. S1F) [20].

The SnapShot-Seq model relating mRNA processing
times to densities of RNA-Seq reads across genic features

Our model of the eukaryotic mRNA life cycle aims to extract

dynamical information about RNA transcription, processing and

degradation from a single pool of RNA-Seq reads. The organizing

assumption of this model — that the biological sample, or samples,

from which the reads are derived has attained a steady state with

respect to these processes — allows us to assert that all species of

nascent, premature, or mature RNA and their derivatives are

present in the RNA-Seq library in direct proportion to their mean

lifetimes in the cells from which they were obtained. Thus, if we

know relative abundances of the different RNA species that arise

in our model, we should conversely be able to infer RNA-

processing lifetimes from experimentally determined feature

abundances. Equivalently, specific genomic features such as

introns, exons, and their junctions acquire different relative

abundances in the various stages of RNA processing and so allow

us to predict lifetimes from genomic locus-specific RNA-Seq data.

Our model is based on the following assumptions about the

structure, creation, splicing, and degradation of mRNA tran-

scripts:

– Each gene comprises N+1 exons separated by N introns (N$0),

whose lengths are all arbitrary, unless otherwise indicated.

– Transcription of each gene g is initiated randomly at a fixed

rate of Sg transcripts per second. This rate is independent of

how long the polymerase complex might have been ‘‘loaded’’

at the transcriptional start site. Once begun at the 59-most

exon, transcription proceeds uniformly and continuously

through all features at an average, transcript-independent rate

a= 3.6 kb/min, i.e., with a characteristic time constant

Ta = 1/a= 1 sec per 60 bp. If transcriptional pausing occurs,

we assume that it arises randomly throughout the transcript

and effectively lowers the value of a; pausing that preferentially

occurs at specific features, e.g., at the beginning of exons, can

in principle be identified as a consistent kink in the differential

slope across those features. Transcription terminates when the

polymerase reaches the 39 end of the 39-most exon — we

ignore details concerning the transcript’s 59 cap and polyA tail.

– Splicing out of each intron takes place in two steps, each with

its own characteristic time. (1) Lariat formation occurs at a time

T5 after the polymerase has transcribed the 39 end of the

intron; at that time the 59 splice site (59SS) between the intron

and its upstream exon is cleaved and hence the junction feature

there is destroyed. (2) Exon-exon splicing is completed at a time

T3 after lariat formation, whereby the 39 splice site (39SS)

between the intron and its downstream exon is cleaved, that

junction feature is destroyed, and the adjacent exons are ligated

together. We assume for now that these two events simply cut

the first and last bases in the intron from their neighboring

exonic bases but that the entire intron remains accessible to

RNA-Seq. This standard model of splicing assumes that

transcription proceeds apace, without locus-specific pausing,

even during the time T5+T3 these splicing steps are carried out.

As a result, each intron is spliced out in sequence but

independently. Once an intron has been removed, it is

assumed to persist in the sample for a further length of time

Tc, at which point it is degraded and no longer detectable. We

ignore alternative splicing here; our data suggest that, although
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some exons may be occasionally skipped in most genes, only

2% of all splicing events involve nonadjacent exons (not

shown).

– The lifetime of a mature mRNA transcript is taken to begin as

soon as the 39-most pair of exons have been ligated following

intron excision. The mRNA is assumed to exist, and all of its

constituent exons to be detectable, for a time Tm, after which it

is considered degraded and undetectable.

– Excised lariat degradation does not contribute to the intron

expression profile. Although this assumption is consistent with

the observations in Fig. S1, the precise mechanism of excised

lariat degradation is unknown, and these observations do not

rule out every possible contribution of lariat degradation to the

intron expression profile.

From this model we can predict the duration of every single

transcribed base, from the primary transcript’s synthesis until the

introns’ and mature transcript’s degradation. The abundances of

bases at individual loci or throughout genomic regions are

quantified here by their relative coverage by RNA-Seq reads of

length r. The times {T5, T3, Tc, Tm} and synthesis rates Sg are to

be determined.

For purposes of illustration, we begin by assuming that a

transcript has N+1$2 exons of equal length L and N$1

intervening introns of equal length L..1. Consider first the fate

of any one of the introns. After transcription brings into existence

the RNA bases at its 59 end, those bases will continue to exist as

part of nascent transcripts while the remainder of that intron

continues to be transcribed, for some duration Tt. They further

persist throughout intron processing — during the two stages of

splicing and until the whole intron has been degraded, i.e., with an

additional duration equal to the total processing time

Tp = T5+T3+Tc. Bases near the 39 end, on the other hand, are

created at the termination of the transcription ‘‘clock’’ and so

endure only for the time Tp following transcription. In general, a

base located at a distance x from the intron’s 59 end (0#x,L) has

a ‘‘transcription waiting time’’ Tt,INT(x) = Ta(L–x) during which

it is part of some nascent transcript in which that intron has not yet

been completely transcribed. The total duration of such an

intronic base is

tINT(x)~Tt,INT(x)zTp~Ta L{xð ÞzT5zT3zTc ð1Þ

The abundance of this base in a real sample will be proportional

to this total time — derived for a single transcript — times the rate

Sg at which transcripts were initiated in the sample. The number

of such bases therefore equals tINT(x)?Sg. We quantify feature

abundances from RNA-Seq data with single-base resolution in

terms of reads ‘‘Density’’ D (see the Methods section on

MAPtoFeatures). Since this quantity depends on the concentration

of total RNA in the sample, depth of RNA sequencing, and

normalization of total reads number, we must introduce a sample-

specific proportionality constant c0 (units Density per transcript

base counted) to rescale the relative abundances of all features

measured in the same sample to Densities:

DINT(x)~c0
:Sg
:tINT(x)~c0

:Sg ½Ta(L{x)zT5zT3zTc� ð2Þ

The Density of reads over the entire intron follows from

averaging Eq. (2) over all x:

DINT~c0
:Sg
:tINT~c0

:Sg ½Tt,INTzT5zT3zTc�,

Tt,INT~
1

2
TaL

ð3Þ

where tINT is the average duration of intronic bases. Note that

Tt,INT, the average transcription waiting time for all bases in the

intron, employs half its length. This result applies to every

individual intron of length L. Moreover, the average Density over

all intronic bases in the gene is trivially the same in this case,

because all introns have the same length. The change in Density

per unit length across each intron is given by the slope

SlopeINT~dDINT=dx~{c0
:Sg

:Ta ð4Þ

which offers a direct readout of a gene’s relative mRNA synthesis

rate. (As a rule of thumb, for each gene g, the value 3600?|Slopeg|

gives c0Sg in units of normalized Density accumulated per minute

of feature duration.) In this model, the Density in an intron always

falls from its 59 to its 39 end, at a constant rate.

Junctions between exons and introns, the 59SS and 39SS

features, behave similarly to the introns’ ends except they do not

last until intron degradation. Each intron’s 59 splice site is created

as soon as transcription of the intron begins, waits a time TaL for

the entire intron’s transcription, and then disappears at the first

splicing step, after time T5, so its total duration is t59SS = TaL+T5.

Its 39 splice site is instead created after the intron’s transcription

and is destroyed after t39SS = T5+T3, the time it takes for both

splicing steps. The associated Densities are

D50SS~c0
:Sg

:t50SS~c0
:Sg ½Tt,50SSzT5�, Tt,50SS~TaL ð5Þ

D30SS~c0
:Sg

:t30SS~c0
:Sg ½T5zT3� ð6Þ

These expressions relate the abundance of reads that cross

either splice site to the lifetimes of these junctions. If all splice-site

features in the genome can be regarded as having equal length

s= r–1, then Eqs. (5) and (6) also characterize the average

Densities of reads crossing all splice-site junctions of either kind in

a gene. It is also useful to compare the change in Density between

intron ends,

DDINT~D30INT{D50INT~DINT(L){DINT(0)~{c0
:Sg

:TaL ð7Þ

to the difference between the Densities at a pair of splice sites:

D30SS{D50SS~c0
:Sg ½T3{TaL� ð8Þ

The former extrapolates to zero as L R 0 whereas the latter

equals zero when L = T3/Ta, which is exploited to directly infer

processing times from Densities binned by intron length.

The durations and Densities of exons and splices are only

slightly more complicated. Consider the first exon. Precisely as

described above for introns, the base at position x1 in this exon

(0#x1,L) has a transcription waiting time Ta(L–x1) for the rest of

that exon. Unlike introns, however, the next relevant step is not

intron processing but rather more transcription. In particular,

every base in the first exon further endures for the whole time it
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takes to transcribe the N downstream introns and exons. If we

count all but the 39-most exon, the total transcription waiting time

for this base, up to the end of the last intron, equals

Tt,EXN(x1)~Ta ½(L{x1)z(N{1)LzNL� ð9Þ

The countdown to degradation of the mature transcript after a

time Tm begins once the splicing of the final exon pair has been

completed. This depends on the longer of two processes: the total

time T5+T3 to splice out the final intron vs. the time TaL for

transcription of the final exon. The median length of 39-most

exons in mouse and human (which are generally long 39UTRs) are

905 bp and 1036 bp, respectively; their exon transcription times

are typically less than 20 seconds, whereas we find that in all

tissues the mean total splicing time is over 3 minutes. Thus, after

the last intron, it will be usually correct to assume that there is an

additional waiting time T5+T3, followed by the (much longer)

lifetime Tm of the mature mRNA proper until its degradation.

Generalizing to exon number e (1#e#N), the base at position xe

in that exon has total duration

tEXN(xe)~Tt,EXN(xe)zT5zT3zTm ,

Tt,EXN(xe)~Ta (L{xe)z(N{e)Lz(Nz1{e)L½ �
ð10Þ

To be consistent, durations for bases in the very last exon

(e = N+1) have to be treated as a special case. The 59-most base of

this exon is transcribed just after transcription of the last intron has

completed, so this base waits the full time T5+T3 for splicing of

that intron to finish. However, bases lying farther downstream of

the intron, at exonic position xN+1 .0, are created later and thus

have durations that are shorter than that of the 59-most base by an

amount equal to the lag in transcription start time for the base at

xN+1. Hence bases in the final exon have total duration

tEXN(xNz1)~Tt,EXN(xNz1)zT5zT3zTm ,

Tt,EXN(xNz1)~{TaxNz1

ð11Þ

[Of course no duration here is actually negative; this exon’s

bases have lifetimes equal to the total given in Eq. (11).] Since Eq.

(10) with e = N+1 yields the same results as Eq. (11), Eq. (10) can

now be applied to all exons (1#e#N+1). The Density at base xe of

any exon e is therefore

DEXN(xe)~c0
:Sg

:tEXN(xe)

~c0
:Sg Ta (L{xe)z(N{e)Lz(Nz1{e)Lf gzT5zT3zTm

� �ð12Þ

The average Density over an entire exon follows from averaging

Eq. (12) over all xe:

DEXN,e~c0
:Sg ½Tt,EXN,ezT5zT3zTm� ,

Tt,EXN,e~Ta (Nz
1

2
{e)Lz(Nz1{e)L

� � ð13Þ

For the average Density over all exons in a gene, we turn to our

definition of Density as total rdbp, the total count of all bases of all

reads of length r that overlap exons, divided by bp, the total

number of bases available in exons (see the MAPtoFeatures

section). For exon number e, with length bpe =L, we have rdbpe

= DEXN,e ? bpe, so the ratio of their totals (sums over e = 1,

…,N+1) gives the average exonic Density

DEXN~c0
:Sg ½Tt,EXNzT5zT3zTm� ,

Tt,EXN~
1

2
Taf (N{1)LzNL g

ð14Þ

Unlike Eqs. (3) and (5) for introns and 59 splice sites, for which

the transcription waiting time involves a single intron, Eq. (14)

shows how newly transcribed exons persist while all downstream

exons and introns (half, on the average) are also transcribed.

Finally, exon-exon splice junctions come into being as soon as

the second step of joining splice sites is complete; these junctions

survive as part of the mature transcript until it is degraded. The

duration of splice number s (1#s#N), from transcription of the

next exon up through the last intron, equals the total transcription

waiting time of N–s exons and N–s introns, less the initial time

T5+T3 for this splice to actually have been finished. Its remaining

time, as for the last exon, equals the waiting time T5+T3 for the last

splice to finish (which cancels out in the total) plus the subsequent

time until mature-RNA degradation. In total, the Density of a

single exon-junction feature is

DEXN�JXN,s~c0
:Sg ½Tt,EXN�JXN,szTm� ,

Tt,EXN�JXN,s~Ta (N{s)Lz(N{s)Lf g
ð15Þ

For the average Density over all splices in a gene, we assume for

the moment that each splice has the same effective length bps = r–

1; then the ratio of total rdbps = DEXN-JXN,s?bps and total bps

(sums over s = 1, …,N) yields

DEXN�JXN~c0
:Sg ½Tt,EXN�JXNzTm� ,

Tt,EXN�JXN~
1

2
Ta(N{1) LzLf g

ð16Þ

As for the average exon Density, Eqs. (13) – (14), the average

exon-junction Density includes an average waiting time for

transcription of downstream introns and exons.

This simple version of our model for a generic transcript is

summarized by Eqs. (5), (6), (3), (14), and (16), which express

relations between measurable Densities for the five features {59SS,

39SS, INT, EXN, EXN-JXN} and the unknown synthesis rate Sg

and four processing times {T5, T3, Tc, Tm} (and the constants c0

and Ta). Importantly, a sixth relationship, Eq. (4) or (7), also

expresses Sg directly as a change in Density across single introns.

These six expressions are yet further reduced for presentation in

Fig. 1, where we make the additional assumption that exon length

is negligible compared to intron length (L,,L) and call the

single-intron transcription time Tt = TaL. In all applications of

the model, however, all Densities for a gene remain proportional

to the factor c0Sg.

The general version of our model lifts the artificial equal-length

restriction on exons and introns. For individual features, this only

affects the expressions involving transcription waiting times for

exons and exon-exon splice junctions, Eqs. (12) – (13) and (15),

which depend on multiple downstream feature lengths. [Intron

number i and its 59 splice-site junction depend on a single intron
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length L = Li in Eqs. (3) and (5).] Allowing any exon lengths {Le,

e = 1, …,N+1}, intron lengths {Li, i = 1, …,N}, and effective

splice-feature lengths {ls#r–1, s = 1, …,N}, we find

Tt,EXN,e~Ta
1

2
Lez

XN

k~ez1
Lkz

XN

i~e
Li

� �
,

e~1, . . . , N{1 ,

Tt,EXN,N~Ta
1

2
LNzLN

� �
,

Tt,EXN,Nz1~Ta {
1

2
LNz1

� �
ð17Þ

[where again it is understood that the negative time for e = N+1

will be added to T5+T3+Tm, as in Eq. (11)] and

Tt,EXN�JXN,s~Ta

XN

k~sz1
Lkz

XN

i~sz1
Li

n o
,

s~1, . . . , N{1 ,

ð18Þ

with Tt,EXN-JXN,N = 0. To calculate the average Density over all

features of a certain type in a gene, we again note that the total

contribution of reads to a feature’s bases equals rdbpi = Di?bpi for

feature number i with density Di and length bpi; from these we

find the average Density by dividing the reads’ total contributions

to all feature bases by the total number of bases available for

mapping:

D:

X
i

rdbpiX
i

bpi

~

X
i

Di
:bpiX

i
bpi

ð19Þ

Thus, from the individual introns’ Densities in Eq. (3) we obtain

(with bpi = Li)

DINT~

XN

i~1
c0Sg

1

2
TaLizT5zT3zTc

� �
:Li

XN

i~1
Li

~c0Sg Tt,INTzT5zT3zTc

� �
, Tt,INT~

1

2
Ta

XN

i~1
L2

iXN

i~1
Li

ð20Þ

Squared lengths appear here and for other features because

both the average transcription waiting time per base and the

number of bases in the feature are proportional to feature lengths.

Also note that the constants T5, T3, Tc, and Tm common to all

features will appear linearly; details of feature lengths enter only

into Tt,INT and the other mean transcription waiting times.

Overall Densities for the other types of features are calculated in

the same way, namely, as the length-weighted average of their

individual features’ Densities. We collect all the results here in a set

of equations that defines the most general version of our model of

the mRNA life cycle:

SINT~
dDINT

dx
~

DDINT

L

~{c0Sg Ta slope across any intronð Þ
ð21aÞ

D50SS~c0Sg Tt,50SSzT5

� �
, Tt,50SS~Ta

XN

i~1
Li

N
ð21bÞ

D30SS~c0Sg T5zT3½ � ð21cÞ

DINT~c0Sg Tt,INTzT5zT3zTc

� �
,

Tt,INT~Ta

1

2

XN

i~1
L2

iXN

i~1
Li

ð21dÞ

DEXN~c0Sg Tt,EXNzT5zT3zTm

� �
,

Tt,EXN~Ta

1

2

XN

e~1
Le

� 	2

{
1

2
L2

Nz1z
XN

e~1
Le

XN

i~e
LiXNz1

e~1
Le

ð21eÞ

DEXN�JXN~c0Sg Tt,EXN�JXNzTm

� �
,

Tt,EXN�JXN~Ta

XN{1

s~1
ls

XN

i~sz1
LizLið ÞXN

s~1
ls

ð21fÞ

These six equations generalize those displayed in Fig. 1. This

form of the model applies to genes with one or more introns

(N$1). A singleton exon (N = 0) would have DEXN = c0?Sg

[
1

2
TaL+Tm] and zero Density for the other features; for N = 1,

there is one splice but Tt,EXN-JXN = 0. The dependence of

transcription waiting times on feature lengths tends to be messy;

though their values might be dominated by long introns, the

longest introns are usually the first two, which also happen to

appear least often in the sums in Eqs. (21e–f), so these expressions

do not generally simplify.

In principle, for each gene g, the solution of Eqs. (21a) – (21f) for

the 5 unknowns {Sg, T5, T3, Tc, Tm} depends straightforwardly

on: the precise measurement of expression levels {D} for 5

different kinds of genomic features, the calculation of transcription

waiting times {Tt} from known feature lengths, and acquisition of

experimental values for the transcription time Ta and sample

concentration constant c0. In practice, there are several compli-

cations.

Firstly, this set is overspecified — there are 6 equations for 5

unknowns. If we were to ignore Eq. (21a), the remaining 5

equations could be divided by Sg to yield 5 equations linear in 5

unknowns: the inititation time 1/Sg and the four processing times,

which we abbreviate {T} = {T5, T3, Tc, Tm}. These equations

are, however, all homogeneous in these 5 variables, in which case

at most 4 of the variables are independent, leaving us once more

with an overspecified set of equations. Equivalently, we could

substitute the value for c0Sg obtained directly from Eq. (21a) into

Eqs. (21b–f), which would yield 5 inhomogeneous equations in the

4 unknowns {T}. One could solve such sets of equations using

linear least-squares methods or some other optimization procedure

to obtain ‘‘best’’ values of {T} for individual genes, including
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errors of these estimates, along with the measured synthesis rates

Sg.

Furthermore, two features of the data conspire to defeat this

approach: (1) the Density data for single genes are fairly noisy,

most especially the slopes SlopeINT, and (2) the ‘‘degree of

independence’’ between Eqs. (21e) and (21f), for exons and exon-

exon junctions, is minimal. The latter point hinges on the fact that

mature-transcript degradation times Tm typically turn out to be an

hour or more — always much greater than the transcription times

Tt or processing times {T5, T3, Tc}, which are usually just a few

minutes. The righthand sides of the equations for DEXN and

DEXN-INT therefore tend to be nearly equal, relegating these

expressions to a consistency check rather than independent

information towards a solution. Noisiness in the Density data is

a by-product of the RNA-Seq technique and biological variability,

but to the extent that it is due to counting noise this should be less

of an issue at greater sequencing depth. Also, note that each rate

Sg cannot be determined in absolute units of transcripts initiated

per second — only in the combination c0Sg (Density per time) —

unless sample preparation has allowed for an estimation of c0.

The precise measurement of intron-Density slopes SlopeINT,

Eq. (21a), in order to obtain relative synthesis rates c0Sg, presents

several obstacles. The distribution of our measured Densities

across single introns always has a lot of scatter from sequencing

noise, variations in mappability, and spikes from randomly

inserted repetitive elements. Nevertheless, the longer the intron,

the more likely a straight-line fit would yield a negative slope

significantly different from what would be expected from random

Densities. Such fits produce roughly log-normal distributions of

negative-slope magnitudes |DDINT/L| centered around 1026 –

1025 (i.e., c0Sg ,0.01 min21) but spread out over 3–4 orders of

magnitude. Despite this wide range of values, when introns of

approximately the same length are aggregated together, their

median slope values are remarkably consistent between length

bins; moreover, aggregated introns generally exhibit the expected

negative slope as a function of distance from either 59 or 39 end.

(Short introns have Density distributions that are so noisy,

however, that positive or negative slopes mostly occur randomly

— another reason for aggregation.) These results suggest that a

practical approach to extracting realistic solutions from the model

Eqs. (21a–f) should involve the aggregation of synthesis rates.

Introns specifically from the same gene, which share the same

synthesis rate, ideally should have negative slopes that reflect this

common rate, taking into account their fitting errors — but even

within genes our data for intron Densities have enough noise to

impose excess variability on slopes.

We employed the following heuristics, first to decide whether

slopes Slopeg,i fit to individual introns were sufficiently informa-

tive, and then to combine intra-genic slopes to estimate a

representative value of c0Sg = –Slopeg,i/Ta for each gene g. As

described in the MAPtoFeatures section, each intron was divided

into 100 equally-spaced bins to which normalized read Densities

were assigned. The slope Slopeg,i of every intron i and the slope’s

standard error eg,i (SE) were calculated from a simple linear least-

squares fit to bins with nonzero Densities {DINT,g,i}. A goodness-

of-fit parameter was taken to be the true-discovery rate (TDR)

under a null model, defined here as equal to one minus the one-

tailed P-value for obtaining this slope value or less with this error

from random data; more significant negative values thus

correspond to TDRg,i R 1. Within each gene, only introns at

least 5 kb in length and with slopes fit to at least 20 bins were

considered usable. Genes that had no such introns were not used

in solving the model for {T}. Candidate genes were assigned a

single slope Slopeg equal to the arithmetic mean of the slopes

{Slopeg,i} of their surviving introns; a propagated error eg for

Slopeg was calculated by combining these introns’ slope errors

{eg,i} in quadrature (the SEs were weighted in proportion to intron

lengths and squared TDRs); and a final TDRg for Slopeg was

calculated from a z-score Slopeg/eg. Further filters applied to

genes used to solve the model were TDRg $0.90 (only the best-

consensus slopes), average DINT,g #1.00 (to remove spikes in

Density), average DEXN,g #50 (to avoid bias from a few very

highly expressed genes), and coding genes only. For our data sets

these steps typically left 1,500–4,000 genes {g} having slopes

deemed adequately reliable for input into Eq. (21a).

The system of 5 equations (21b–f) for the 4 unknowns

processing times {T5, T3, Tc, Tm} nevertheless tends to suffer

instabilities in the following sense. Whether we try to fit the times

using this overspecified set or drop Eq. (21f) and solve for the {T}

exactly, solutions based on feature Densities for a single gene often

include one or more negative times. Such solutions are not

interpretable in our model and should be rejected. In order to

sidestep this issue and still extract a representative range of values

for {T} consistent with the assumptions of our model, we

considered two approaches. We could adjust the various Density

distributions in Eqs. (21a–f) by adding some amount of random

noise, within the limits of our empirically observed noise, that

would optimize the number of genes with ‘‘sensible’’ solutions,

namely, with {T.0} (all times positive). After all, it is noise in our

data that is presumably perturbing this system of equations out of

the region of {T}-parameter space that contains ‘‘stable’’

solutions. Or we could perform Monte Carlo simulations, in

which we would sample the set {g} of filtered genes, aggregate

their observed slopes and feature Densities, and solve the model

for such aggregated samples, repeating as necessary.

In order to calculate lifetimes, we adopted the second approach,

leaving out Eq. (21f) for exon-exon splice junctions and solving the

set of Eqs. (21b–e) for {T} using random samples of N genes as

follows. (Note, however, that to account for errors in the estimated

slopes we do add random gaussian noise to each gene’s mean slope

based on its inferred SE.) For each sample, the genes’ slopes are

geometrically averaged and divided by Ta to yield an aggregated

value of their synthesis rate, c0S = –DD/DT. We similarly

aggregate the sample’s nonzero Densities for each feature type via

their geometric mean (zero Densities are ignored; any sample with

only zero Densities for one or more feature types is discarded).

Each sample’s aggregated Densities are regarded as a vector D =

(D59SS, D39SS, DINT, DEXN), as are the unknown processing times

T = (T5, T3, Tc, Tm) and known transcription waiting times Tt =

(Tt,59SS, Tt,39SS = 0, Tt,INT, Tt,EXN), while the coefficients of T on

the righthand side of Eqs. (21b–e) comprise a 464 matrix M of

zeros and ones. This linear system of 4 equations is solved at once

by inverting M:

T~M{1 D=(c0S){Tt½ � ð22Þ

The result is considered valid only if all four processing times are

positive. We gather the valid solutions for many random samples

and characterize their distributions of T5, T3, Tc, and Tm, each of

which tends to be consistent with a log-normal distribution (not

shown). By following this procedure for our pooled data set of 140

million reads from total RNA taken from mouse cortical neurons,

we found 8,517 sets with {T.0} out of 200,000 random samples

of 5 out of 2,338 mouse genes. For each human tissue, we ran

series of 200,000 random samples of size 5 until at least 2,000 valid

solutions were found. Table S4 in File S1 shows the numbers of
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total reads, filtered genes used, Monte Carlo samples, and valid

solutions per tissue.

Our chosen sample size of N = 5 was an empirical compromise

balancing the advantage of aggregating several genes — to probe

the range of each processing time with greater precision — against

the rarity of useful solutions for too large a sample (e.g., N.20).

Although widths of the calculated processing-time distributions

depend on sample size, they are ultimately limited by the large

variability of the inferred intronic slopes and, to a lesser extent, the

spread of each kind of feature Density.

Statistics, reagents, and animal models
Sample sizes and Replicate numbers. From prior se-

quencing runs, we had determined that the sequencing depth we

used here (,15 M–100 M reads per sample) would allow us to

obtain variations in expressions levels over at least 7 orders of

magnitude, which was more than sufficient for our analyses.

Similarly, previous analyses had suggested that large differences

between samples could be detected using 2–3 biological replicates.

We sequenced only one biological replicate each for our human

tissue samples, so we do not make any claims about significant

differences between tissues. We sequenced three biological

replicates for our isoginkgetin and control treatments. No samples

were excluded from analyses. For animal experiments, no

randomization was used, and no randomization was used to

determine how samples/animals were allocated to experimental

groups. No blinding was used.

Additional details regarding statistical treatment in

Fig. 2. In Fig. 2, processing times for intron splicing, intron

decay, and mRNA decay are obtained from Monte Carlo

simulations, typically several thousands, as described in our

discussions of implementing the SnapShot-Seq model; displayed

error bars indicate either standard error (SE) or, based on the

assumption of normality, or ,1.96 SEs to illustrate 95%

confidence intervals; sample sizes are enumerated in the table

below supplemental Eq. (22).

Distributions of data and statistical test choice. Most of

the data used to generate our figures involve distributions of RNA-

Seq reads from individual samples whose quantification is mostly a

matter of binning and counting. Explicit mention is made when

technical or biological replicates are pooled. Distributions of

expression levels and most other quantities presented here tend to

be log-normal, though upon sufficiently deep sequencing Density

distributions exhibit an additional low-expression mode discussed

in the text. Other distributions displaying principally log-normal

behavior include: expression fold changes and other ratios, such as

mRNA stability (DEXN/D39INT); distances between genes and

between intragenic features; feature lengths; intronic transcription

times (which are proportional to intron length); and RNA

processing and decay times. We therefore use parametric unpaired

t-tests to compare samples between like distributions, unless

otherwise indicated. Note that read counts within individual

features are proportional to Densities as well as feature lengths and

hence do not obey simple Poissonian statistics. Variation within

data groups was similar unless otherwise noted.

Animal models. All animal experiments were approved by

the Harvard Medical School IACUC committee.

Supporting Information

Figure S1 The decrease in expression across introns is not

affected by excised lariat degradation or alternative splicing. (A–D)

Both transcription and intron degradation could in theory

contribute to the slope of intronic expression. (A) Five timelines

of the intron lifecycle, each with different assumptions about the

mechanisms and rates of intron degradation. Models I and IIa

assume a 39-to-59 intronic exonuclease with a rate either equal to

(I) or 10-fold faster (IIa) than that of RNA polymerase II

(RNAPII). Model IIb assumes such a rapid exonuclease rate

(.. 106 that of RNAPII) that it contributes negligibly to the

intronic expression profile. Models IIc and III assume 59-to-39

exonucleases with rates ten times faster than (IIc) or equal to (III)

that of RNAPII. (B) Models I, IIb, and III from A, with 59 and 39

splice sites (SSs) shown, emphasizing that intron degradation does

not affect splice site abundances. (C) For models I, IIb, and III

from A, the resulting intronic and splice site expression profiles.

(D) For all models, predicted changes in the difference in

expression between 59 to 39 ends of introns (or SSs) with increasing

intron length. Only when the rate of exonucleolytic intron

degradation is much faster than the rate of RNAPII are the

slopes for intron ends and splice sites equal. (E) The decrease in

intron density across introns and the decrease in density between

59 and 39 SSs are similar over a wide range of intron lengths,

ruling out a significant contribution of excised lariat degradation to

the intronic expression profile. Error bars represent s.e.m. from

multiple introns from a single representative biological sample. (F)

Approximately 1% of exon-exon splice events are between non-

consecutive exons, while ,3% of annotated exons are detectably

non-consecutively spliced. We required non-consecutive events to

be detected by at least two sequencing reads. Error bars are s.e.m.

from 3 mouse cortical and 5 HeLa biological replicates. All data

are from mouse neurons (using SOLiD), except where noted.

HeLa data were generated using the dUTP/Illumina method.

(PDF)

Figure S2 Increases in intron relative to exon expression in

isoginkgetin-treated cells are not limited to a few genes, and how to

interpret the sawtooth pattern of intronic expression across genes.

(A) Most or all genes have increased intron to exon expression

levels upon isoginkgetin treatment. The x-axis shows a ratio of

ratios, indicating the increase in the intron to exon ratio upon

isoginkgetin (IsoG) treatment. (B) Co-transcriptional versus

obligate post-transcriptional models of splicing can be distin-

guished by how intron read density changes across a gene. In a

model of co-transcriptional splicing in which splicing can occur at

any point after the 39SS has been transcribed (blue), the density at

the 39 end of each intron in a gene is predicted not to vary

systematically along a gene. In obligate post-transcriptional

splicing, in which splicing can only occur once transcription of

the entire gene is complete (orange), intron density declines

continuously from one intron to the next from 59 to 39. Decreases

in intronic expression due to a uniform rate of premature

termination would also be predicted to match the orange model.

Regardless of the rate of splicing, the blue model holds as long as

splicing is able to occur upon completion of intron transcription.

(PDF)

Figure S3 mRNA synthesis rate can be inferred from the density

of reads across introns. The slope of intron density (DDINT/LINT)

is proportional to the mRNA synthesis rate (Fig. 1A) but is difficult

to measure precisely due to counting noise. Intron density (D39INT)

may be measured with greater precision, but it is proportional not

only to the mRNA synthesis rate but also to the time of intron

processing (Tp = T5 + T3 + Tc). Nonetheless, if the variability in

intron processing rates were low enough relative to the variability

in synthesis rates, D39INT would be a useful proxy for synthesis

rate. (A) To evaluate the utility of intron density (D39INT) as a

proxy for synthesis rate, we plotted DDINT/LINT versus D39INT

(total RNA-Seq, mouse neurons) and found a linear least squares
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log-log slope of ,1, indicating nearly direct proportionality

between DDINT/LINT and D39INT. (B) The relationship shown

in panel A holds across ten human tissues. (C) 4SU-Seq exon

densities and total RNA-Seq exon densities are not linearly related

(i.e., do not have a fit slope of 1 on a log-log scale). This result is in

contrast to that for 4SU-Seq exon densities and total RNA-Seq 39

intron densities (Fig. 4D). To make this distinction more obvious,

panel (D) shows an overlay of scatterplots from Fig. 4D and panel

(C). To confirm that RNA-Seq 39 intron densities are a better

indicator of mRNA synthesis rates than RNA-Seq exon densities

across the full range of expression levels, we computed fits for low

expressors vs high expressors (subsets of the data in panel D). Fit

slopes were 0.88 (low expressors) and 0.84 (high expressors) for

4SU densities vs. RNA-Seq 39 intron densities, and fit slopes were

0.90 (low expressors) and 0.72 (high expressors) for 4SU densities

vs. RNA-Seq exon densities. We speculate that expression levels

correlate more tightly with synthesis rates within the low mode of

gene expression due to the ,5-fold lower (median) mRNA

stabilities in this mode (see panels E–F). (E–F) Within each mode,

synthesis rate and mRNA stability contribute equally to expression

levels, as indicated by the fact that the width of each distribution is

similar (FWHM, Full-Width-Half-Max). While both synthesis rates

and mRNA stability are decreased from the high to the low mode,

synthesis rate decreases more. The high mode is shown in E, and

the low mode is shown in F. RNA-Seq data is from lymphocyte

cell lines in C–D and from mouse neurons in E-F.

(PDF)

Figure S4 Bimodality of gene expression is driven by bimodality

of mRNA synthesis. (A) Distributions of gene expression for each

of ten human tissues sequenced using strand-specific total RNA-

Seq on SOLiD. (B) Genes in the low or high modes of gene

expression are also respectively in the low or high modes of mRNA

synthesis, i.e., the low end of the x-distribution is also the low end

of the y-distribution (data from mouse neurons). (C–E) As a

further test of the bimodality of pre-mRNA synthesis rates but not

mRNA stabilities, we confirmed that our 4SU exon (C) and intron

(D) densities were bimodal. In contrast, mRNA stability was

unimodal (E), even when computed using 4SU data. In (E),

mRNA stability was estimated from total RNA-Seq exon densities

(representing expression) divided by 4SU exon densities (repre-

senting synthesis) from the same lymphocyte cell line.

(PDF)

File S1 Contains Tables S1, S3, and S4. Table S1. Average

mRNA lifetimes by Tissue. Table S3. Counts of uniquely aligned

reads for each RNA-Seq library sequenced. Table S4. Summary

of model solutions by tissue.

(XLSX)

Table S2 Gene Ontology analysis, using DAVID, of high

expressors, low expressors, and genes with no detectable

expression.

(XLS)
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51. Dölken L, Ruzsics Z, Rädle B, Friedel CC, Zimmer R, et al. (2008) High-

resolution gene expression profiling for simultaneous kinetic parameter analysis

of RNA synthesis and decay. RNA 14: 1959–1972. doi:10.1261/rna.1136108

52. Cell Type–Specific Analysis of mRNA Synthesis and Decay In Vivo with Uracil

Phosphoribosyltransferase and 4-thiouracil (2008) Chapter 19 Cell Type–

Specific Analysis of mRNA Synthesis and Decay In Vivo with Uracil

Phosphoribosyltransferase and 4-thiouracil. Methods in Enzymology. Elsevier,

Vol. 448. pp. 379–406. Available: http://linkinghub.elsevier.com/retrieve/pii/

S0076687908026190.

53. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM, et al. (2010)

Widespread transcription at neuronal activity-regulated enhancers. Nature.

doi:10.1038/nature09033

SnapShot-Seq: In Vivo mRNA Dynamics from RNA-Seq

PLOS ONE | www.plosone.org 17 February 2014 | Volume 9 | Issue 2 | e89673

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20835241&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=20835241&retmode=ref&cmd=prlinks
http://linkinghub.elsevier.com/retrieve/pii/S0076687908026190
http://linkinghub.elsevier.com/retrieve/pii/S0076687908026190

