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Background. The test-negative design is commonly used to estimate influenza and coronavirus disease 2019 (COVID-19) vac-
cine effectiveness (VE). In these studies, correlated COVID-19 and influenza vaccine behaviors may introduce a confounding bias 
where controls are included with the other vaccine-preventable acute respiratory illness (ARI). We quantified the impact of this bias 
on VE estimates in studies where this bias is not addressed.

Methods. We simulated study populations under varying vaccination probabilities, COVID-19 VE, influenza VE, and propor-
tions of controls included with the other vaccine-preventable ARI. Mean bias was calculated as the difference between estimated and 
true VE. Absolute mean bias in VE estimates was classified as low (<10%), moderate (10% to <20%), and high (≥20%).

Results. Where vaccination probabilities are positively correlated, COVID-19 and influenza VE test-negative studies with in-
fluenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ARI controls, respectively, underestimate VE. For 
COVID-19 VE studies, mean bias was low for all scenarios where influenza represented ≤25% of controls. For influenza VE studies, 
mean bias was low for all scenarios where SARS-CoV-2 represented ≤10% of controls. Although bias was driven by the conditional 
probability of vaccination, low VE of the vaccine of interest and high VE of the confounding vaccine increase its magnitude.

Conclusions. Where a low percentage of controls is included with the other vaccine-preventable ARI, bias in COVID-19 and 
influenza VE estimates is low. However, influenza VE estimates are likely more susceptible to bias. Researchers should consider po-
tential bias and its implications in their respective study settings to make informed methodological decisions in test-negative VE 
studies.
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Phase 4 observational studies are essential to examine the di-
rect effects of vaccination in a real-world setting. Due to its 
relative simplicity, the test-negative study design is the pre-
dominant observational design to estimate vaccine effective-
ness (VE) for influenza [1], and increasingly, coronavirus 
disease 2019 (COVID-19) [2–4]. In these studies, test-negative 
participants are persons who seek healthcare for an acute res-
piratory illness (ARI) and are tested for the disease of interest. 
Participants who test positive are classified as “cases,” while 
participants who test negative are “controls.” VE is estimated 
using the formula (1 – odds ratio) × 100, where the odds ratio 
(OR) compares the vaccination odds between cases and con-
trols [5].

Similar to other case-control studies, controls in the test-
negative design are used as a proxy to estimate the true vac-
cination odds in the source population of cases [5, 6]. Since 
COVID-19 and influenza VE test-negative designs select ARI 
controls who are negative for the disease of interest, a founda-
tional design assumption is that the risks of alternative causes 
of ARI are independent of exposure status (ie, vaccination) [7]. 
Where this assumption is violated, VE estimates are biased un-
less independence is established by deconfounding.

To date, work examining this assumption in influenza test-
negative VE studies has focused on direct, biological mechan-
isms by which influenza and/or vaccination influences the risk 
of alternate ARI causes [8, 9]. However, a relationship between 
influenza vaccination and alternate ARI need not be causally 
related to violate this assumption; violation can also occur 
due to a relationship established by an indirect, confounding 
pathway [10].

Recent systematic reviews and surveys among healthcare 
workers and the general population have demonstrated a posi-
tive correlation between influenza and COVID-19 vaccination 
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probabilities, with persons receiving an influenza vaccination 
3 times more likely to accept COVID-19 vaccination [11–14]. 
Because of this relationship, the risks of influenza and severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are 
no longer independent of the vaccination probabilities for the 
other vaccine-preventable ARI (ie, COVID-19 and influenza 
vaccination, respectively). Therefore, where test-negative con-
trols in either influenza or COVID-19 VE studies include per-
sons with the other vaccine-preventable ARI, vaccination for 
these diseases acts as a confounder. Where this confounder is 
unaccounted for, the fundamental assumption of exposure in-
dependence in control selection is violated, leading to biased 
VE estimates.

Since SARS-CoV-2 and influenza are likely to co-circulate in 
upcoming influenza seasons and test-negative VE results may 
be used to inform vaccination policies, it is important to un-
derstand the scope and magnitude of this confounding bias on 
COVID-19 and influenza VE estimates. Here, we aim to con-
tribute to this knowledge by examining its theoretical basis and 
deconfounding methods to remove bias, and quantifying bias 
in COVID-19 and influenza VE estimates using simulations, 
where this bias is not otherwise addressed.

METHODS

Theoretical Basis

In Figure 1A, we examine the theoretical basis for bias 
from inclusion of controls with a nonindependent expo-
sure in COVID-19 or influenza VE test-negative designs. In 
the directed acyclic graph, COVID-19 vaccination (Vcovid)  
and influenza vaccination (Vflu) are related to a common 
ancestor we refer to as an individual’s motivation to seek 
vaccination ( M ). Here, (M) represents a set of unobserved 
variables, including beliefs and acceptance of vaccines; ex-
ternal vaccination pressures that influence the uptake of 
both vaccines, such as vaccine mandates or policies; and 
perceived vulnerability/risks of vaccine-preventable diseases 
to oneself or vulnerable contacts. Through this common an-
cestor, a correlation is established between influenza and 
COVID-19 vaccination probabilities through the pathway 
Vflu ← (M) → Vcovid , which extends to their causal descend-
ants, including infection (I), creating the confounding path-
ways (i) Vflu ← (M) → ISARS−CoV−2 , violating the assumption 
of exposure independence in influenza VE test-negative de-
signs with SARS-CoV-2 controls; and (ii) Vcovid ← (M) → Iflu,  
violating this assumption in COVID-19 VE test-negative de-
signs with influenza controls.

In Figure 2, we demonstrate how these relationships lead to 
bias in VE estimates. Where test-negative controls with the al-
ternate, vaccine-preventable ARI are included, unvaccinated 
persons are overrepresented among controls, leading to a higher 
OR and lower VE estimates.

Mitigation of Bias in VE Estimates

Given this causal structure, we propose 2 options to mitigate 
confounding bias in COVID-19 and influenza test-negative 
designs, where co-circulation of SARS-CoV-2 and influenza is 
present: (i) deconfounding in the analysis, or (ii) deconfounding 
in the study design. Alternatively, a third option is to ignore 
bias if it is small and not meaningful to VE estimates. We ad-
dress options (i) and (ii) in the following section; in subsequent 
sections, we quantify bias using simulations to understand the 
implications of option (iii).

(i) Deconfounding in the analysis: In Figure 1B, we demon-
strate how exposure independence can be restored in a COVID-
19 VE study by statistical adjustment or stratification for 
influenza vaccination. Similarly, in Figure 1C, we demonstrate 
how statistical adjustment for COVID-19 vaccination restores 
the validity of this assumption in influenza VE studies. Although 
these mechanisms can recover unbiased estimates of VE, they 
may interfere with Wacholder and colleagues’ “efficiency 

Figure 1. A, Simplified directed acyclic graph illustrating the relationship be-
tween coronavirus disease 2019 (COVID-19) and influenza vaccination probabilities. 
Vaccination motivation Mis a common ancestor of influenza vaccine uptake Vflu  
and COVID-19 vaccine uptake Vcovid . The parentheses indicate that Mis unmeas-
ured. Through Ma forked, confounding pathway exists linking Vcovid  to medically 
attended influenza acute respiratory illness (ARI) Iflu (Vcovid ← (M) → Iflu),  
and Vflu  to medically attended severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) ARI ISARS−CoV−2 (Vflu ← (M) → ISARS−CoV−2). B, 
Adjustment in the statistical model for Vflu  closes the confounding pathway from 
Vcovid ← (M) → Iflu in COVID-19 vaccine effectiveness (VE) test-negative 
studies that include influenza controls. C, Similarly, adjustment for Vcovid  in an in-
fluenza VE test-negative study that includes SARS-CoV-2 controls closes the con-
founding pathway from Vflu ← (M) → ISARS−CoV−2.
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principle” in case-control designs [15]. Where Vcovid and Vflu are 
highly correlated, statistical adjustment for the confounder Vcovid 
in an influenza VE study or Vflu in a COVID-19 VE study also 
reduces conditional variability of the exposure in the strata of 
the confounder [15]. Therefore, although adjustment removes 
bias, precision of VE estimates may be reduced [15]. This may be 
of particular concern in studies that explore subpopulation VE 
or waning VE, which require additional statistical power.

(ii) Deconfounding in the design: Deconfounding may also be 
achieved in the design via study restriction. To avoid violation of 
the efficiency principle here [15], ample controls must exist who 
are independent of the exposure probability. In a test-negative de-
sign, restriction may be implemented by excluding influenza con-
trols from COVID-19 test-negative VE designs or SARS-CoV-2 
controls from influenza test-negative VE designs. Practically, 
these are achieved by testing and only enrolling controls who 
test negative for both diseases. Another alternative restriction 
method is to enroll controls who test positive for a different ARI 
cause, presumed independent of the exposure probability.

Simulations to Quantify Bias in VE Estimates

Yet, a third option is to ignore VE bias if it is anticipated to 
be small and not meaningful (ie, option iii). However, it is 

important to understand the magnitude of confounding bias 
to make this determination. We used simulated adult popula-
tions where COVID-19 and influenza vaccination were pos-
itively correlated to estimate mean bias in COVID-19 and 
influenza VE estimates. While simulations were performed 
for each disease separately, the following input parameters 
were included in both analyses:

Covflu = influenza vaccination coverage
Covcovid = COVID-19 vaccination coverage
IPflu = incidence proportion (risk) of medically attended 

influenza ARI in the unvaccinated population during the 
study period

IPcovid = incidence proportion (risk) of medically at-
tended COVID-19 ARI in the unvaccinated population 
during the study period

VEflu = true influenza VE to prevent medically attended 
influenza ARI

VEcovid = true COVID-19 VE to prevent medically at-
tended COVID-19 ARI

Pcontrols = proportion of ARI controls who represent the 
alternate vaccine-preventable ARI

Figure 2. Exploration of bias in coronavirus disease 2019 (COVID-19) test-negative vaccine effectiveness (VE) studies that include influenza controls (A) and influenza 
test-negative VE studies that include severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) controls (B). Under the 2 assumptions that (i) influenza and COVID-19 
vaccinations are protective against their respective diseases, and (ii) influenza and COVID-19 vaccination behaviors are positively correlated, inclusion of controls with the 
other vaccine-preventable acute respiratory illness will overrepresent unvaccinated controls (d ). Overrepresentation of (d ) increases the odds ratio (OR) comparing vaccina-
tion odds between cases and controls, and underestimates true VE given the formula VE = (1 – OR) × 100. 
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For all simulations, we assumed Covflu  = 55% and Covcovid  = 70%, 
which approximates 2020–2021 influenza vaccination cov-
erage and 2-dose COVID-19 vaccine coverage among US 
adults at the time of our analyses [16, 17]. We also assumed 
IPflu = 5% and IPcovid = 5%, based upon previous simulations 
investigating bias in test-negative designs [1]. We examined  
3 scenarios for VEfluof 40%, 50%, and 60% against medically 
attended influenza ARI, consistent with VEflu data from re-
cent influenza seasons [18]. Furthermore, for VEcovid , we 
examined 3 scenarios of 40%, 65%, and 90% effectiveness 
against medically attended SARS-CoV-2 ARI to encom-
pass recent 2-dose COVID-19 VE estimates in Delta- and 
Omicron-predominant periods [4, 19–23]. For each scenario, 
we examined a range for Pcontrols  of 0, 0.1, 0.25, 0.5, 0.75, 0.9, 
and 1.0 to explore the maximum bias and underlying shape 
of the bias curve.

For COVID-19 VE studies, we provide several examples of 
bias estimates assumingPcontrols = 0.3; this level was selected 
considering the proportion of influenza cases identified among 
ARI participants in historical influenza test-negative VE studies, 
which used similar ARI definitions as recent COVID-19 studies 
[4, 24, 25].

We also included an input variable representing the con-
ditional probability of vaccination given vaccination with the 
other ARI vaccine. Specifically, RRCovid vx|flu vx  was used to sim-
ulate bias in COVID-19 VE studies, and RRflu vx|covid vx  was 
used to simulate bias in influenza VE studies. These variables 
were defined as the following:

RRcovid vx|flu vx = risk ratio comparing the uptake (risk) of 
COVID-19 vaccine between persons who did and did not 
receive influenza vaccination

RRflu vx|covid vx = risk ratio comparing the uptake (risk) 
of flu vaccine between persons who did and did not receive 
a COVID-19 vaccination

We used a range of input values for RRcovid vx|flu vx  of 1.5, 2.0, 
and 3.0; a range of 2.0, 5.0, and 8.0 was used for RRflu vx|covid vx .  
With the exception of RRcovid vx|flu vx = 3.0, estimates were 
based on conditional probabilities of influenza and COVID-
19 vaccination from a recent, nationally representative survey 
of US adults sponsored by the Centers for Disease Control 
and Prevention (Supplementary Appendix 1) [14]. A value of 
RRcovid vx|flu vx = 3.0 was selected to supplement survey data 
because it represented the upper limit for this value based on 
input values of Covflu= 55% and Covcovid  = 70%. Since we as-
sumed Covflu was lower than Covcovid, a reasonable upper limit 
of RRflu vx|covid vx  could not be estimated. Table 1 contains infor-
mation on all input values for simulations.

Simulated populations of COVID-19 and influenza test-
negative studies were created using 3 sequential steps that dif-
fered slightly for each disease. Specifically, to explore bias in 
COVID-19 VE test-negative designs, we simulated the (i) mar-
ginal probabilities of COVID-19 and influenza vaccine uptake in 
the source population, given Covflu, Covcovid , and RRcovid vx|flu vx ;  
(ii) odds of COVID-19 vaccination among SARS-CoV-2 cases, 
given IPcovid, VEcovid , and Covcovid vx ; and (iii) odds of COVID-
19 vaccination among influenza controls, given the marginal 
probabilities from step (i), IPflu, VEflu, and Pcontrols. To ex-
plore bias in influenza VE test-negative designs, we modified 
the 3  steps to simulation of the (i) marginal probabilities of 
COVID-19 and influenza vaccination in the source popula-
tion, given Covflu, Covcovid , and RRflu vx|covid vx ; (ii) odds of in-
fluenza vaccination among influenza cases, given IPflu, VEflu,  

Table 1. Input Parameter Values for Simulations

Parameter Description Values Reference(s) 

Covflu Flu vaccination coverage 55% [16]

Covcovid COVID-19 vaccination coverage 70% [17]

IPflu Incidence proportion of medically attended influenza ARI 
among persons unvaccinated for influenza

5% Consistent with previous test-negative design 
simulations [1]

IPcovid Incidence proportion of medically attended COVID-19 ARI 
among persons unvaccinated for COVID-19

5% Consistent with previous test-negative design 
simulations [1]

VEflu Influenza vaccine effectiveness 40%, 50%, 60% [18]

VEcovid COVID-19 vaccine effectiveness 40%, 65%, 90% [4, 19–23]

Pcontrols Proportion of controls who represent the alternate vaccine-
preventable ARI

0, 0.1, 0.25, 0.5,

0.75, 0.9, 1.0

NA—full range to examine maximum bias and 
shape of bias curve

RRcovid vx|flu vx Risk ratio comparing the uptake of COVID-19 vaccination 
among persons receiving and not receiving influenza 
vaccination

1.5, 2.0, 3.0 Estimated based on [14], except for 3.0 (max 
value based on coverage estimates)

RRflu vx|covid vx Risk ratio comparing the uptake of influenza vaccination 
among persons receiving and not receiving COVID-19 
vaccination

2.0, 5.0, 8.0 Estimated based on [14]

Where multiple values are specified, populations were simulated for each value separately.

Abbreviations: ARI, acute respiratory illness; COVID-19, coronavirus disease 2019; NA, not applicable.

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciac234#supplementary-data
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and Covflu vx ; and (iii) odds of influenza vaccination among 
SARS-CoV-2 controls, given the marginal probabilities simu-
lated in step (i), IPcovid, VEcovid , and Pcontrols.

For each scenario, we performed 10 000 simulations with a 
population of 200 000 subjects. Based on IPcovid, this starting 
population approximated the number of cases in COVID-19 
test-negative VE studies [4, 20]. From the simulated popula-
tions we estimated V̂E  as (1 – OR), where OR compares the vac-
cination odds among cases (step ii) and controls (step iii). Mean 
bias in VE test-negative studies was estimated as the difference 
of (V̂E − VE), or the difference between observed and true VE; 
95% confidence intervals (CIs) were calculated as the 2.5th and 
97.5th quantiles of the simulated data. We used a priori thresh-
olds to classify absolute mean bias of <10% as low, 10% to <20% 
as moderate, and ≥20% as high. For all parameters with a range 
of plausible input values, separate populations were simulated 
for each scenario.

To examine bias associated with only the inclusion of con-
trols with the other vaccine-preventable ARI, we ignored other 
sources of bias arising from misclassification, unmeasured con-
founding, and selection bias. Similarly, we did not consider 
situations of influenza and SARS-CoV-2 coinfection. All ana-
lyses were conducted using RStudio with R version 4.1.0 (R 
Foundation for Statistical Computing, Vienna, Austria).

RESULTS

Bias in COVID-19 VE Estimates

Figure 3 examines mean bias in COVID-19 VE estimates under 
varying levels of RRcovid vx|flu vx ,VEflu, VEcovid , and Pcontrols. In 
all scenarios, inclusion of influenza controls underestimated 
true COVID-19 VE. In general, there was greater bias in VE 
estimates with increasing RRcovid vx|flu vx , lower VEcovid, higher 
VEflu, and increasing influenza Pcontrols. As an example, in a 
study with Pcontrols = 0.3, VEcovid = 40%, and VEflu = 60%, 
where RRcovid vx|flu vx  was changed from 3.0 to 1.5, V̂Ecovid  was 
9.7% (95% CI: 5.5%–14.7%) and 4.7% (95% CI: .9%–8.8%) 
lower, respectively, than VEcovid , with V̂Ecovid  of 30.3% (95% CI: 
25.3%–34.5%) and 35.3% (95% CI: 31.2%–39.1%), respectively. 
Similarly, using the above scenario where RRcovid vx|flu vx = 3.0 
and VEcovid  was modified from 40% to 90%, V̂Ecovid  was only 
1.7% (95% CI: .7%–2.7%) lower than VEcovid , or 88.3% (95% 
CI: 87.3%–89.3%). In all scenarios, where Pcontrols with influenza 
represented ≤25% of the control populations, mean bias was 
low. Bias was also low for all scenarios where VEcovid = 90%. 
Moderate to high bias in COVID-19 VE estimates was observed 
in some scenarios where influenza Pcontrols approached 50%.

Bias in Influenza VE Estimates

In all scenarios, inclusion of SARS-CoV-2 controls underesti-
mated influenza VE (Figure 4). Patterns of bias in influenza VE 
estimates were similar to those in COVID-19 studies, where 

greater bias was observed with lower values of VEflu (ie, the vac-
cine of interest), higher VEcovid  (ie, the confounding vaccina-
tion), increasing RRflu vx|covid vx , and increasing Pcontrols. While 
bias was low for all scenarios with ≤10% of SARS-CoV-2 Pcontrols

, there was moderate bias in some scenarios where SARS-
CoV-2 Pcontrols approached 25%. High bias was observed for 
several scenarios with 50% Pcontrolsof SARS-CoV-2, and nearly 
all scenarios had moderate to high bias with ≥75% Pcontrols of 
SARS-CoV-2.

DISCUSSION

In this article, we provide the theoretical basis and quantifi-
cation of confounding bias in COVID-19 and influenza VE 
test-negative designs related to the inclusion of influenza and 
SARS-CoV-2 controls, respectively. While positive correlation 
in the uptake of influenza and COVID-19 vaccination con-
sistently led to VE underestimation, there was minimal bias 
in scenarios with low percentages of controls with the other 
vaccine-preventable ARI. Specifically, bias in COVID-19 VE 
estimates was low for scenarios with ≤25% of influenza controls 
and for influenza VE in scenarios with ≤10% of SARS-CoV-2 
controls. Where controls with the other vaccine-preventable 
ARI exceeded these levels, moderate to high bias in VE esti-
mates can occur.

Although confounding in influenza and COVID-19 VE esti-
mates is driven by correlated vaccine behaviors, we found that 
the magnitude of bias was highly dependent upon true VE of 
the vaccine of interest and the confounding vaccination. In ge-
neral, where true VE was high for the vaccine of interest and 
low for the confounding vaccine, there was less bias in VE es-
timates. These principles may be generalized to other vaccine-
preventable ARI etiologies as well. For example, inclusion of ARI 
controls with vaccine-preventable serotypes of Streptococcus 
pneumoniae may similarly bias COVID-19 and influenza test-
negative VE estimates, where probabilities of pneumococcal 
vaccination and the vaccine of interest are correlated.

In general, we found greater bias in influenza test-negative 
VE studies in comparison with COVID-19. This is because, in 
most scenarios examined, true influenza VE was lower than true 
COVID-19 VE [4, 18–22], which exacerbates bias arising from 
a greater conditional probability of vaccination. Particularly 
in a COVID-19 pandemic setting, where ARI controls may be 
more likely to have SARS-CoV-2, these relationships suggest re-
searchers should consider deconfounding to avoid meaningful 
bias in influenza test-negative VE estimates.

While our findings may be viewed as reassuring regarding 
COVID-19 test-negative VE studies, these results are subject to 
several important limitations. First, we caution that COVID-19 
test-negative VE study populations likely include subgroups for 
whom the conditional probability of vaccination differs. Where 
this occurs, bias in VE estimates also varies. For example, older 
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persons or persons who are at higher risk of severe disease may 
have a higher conditional probability of vaccination in compar-
ison with younger or healthy persons. Using the parameters we 
specified in our results, if we assume a conditional probability of 
vaccination of 3.0 among older persons vs 1.5 among younger 
persons, COVID-19 VE would be estimated as only 30.3% (95% 
CI: 25.3%–34.5%) among older populations vs 35.3% (95% CI: 
31.2%–39.1%) among younger persons, when true VE for both 
populations is 40%. Similarly, regional variation in COVID-19 
and influenza vaccination coverage arising from health inequi-
ties or common attitudes toward vaccinations may also affect 
the conditional probability of vaccination [16, 17]. Additionally, 

even where the conditional probability of vaccination is similar, 
we found that bias varies by true VE. In the case of COVID-19, 
where true VE likely varies by vaccine product, SARS-CoV-2 
strain, or time since vaccination [4, 20, 23], bias in VE estimates 
will also differ. For example, if strain-specific VEcovid  is 90% vs 
40%, using the parameters we applied in our results section, 
COVID-19 VE would be estimated as 88.3% (95% CI: 87.3%–
89.3%) for a strain where true VE is 90% vs only 30.3% (95% CI: 
25.3%–34.5%) for a strain where true VE is 40%. Similarly, bias 
in COVID-19 VE estimates may also differ by outcome, such as 
symptomatic disease vs hospitalization. Collectively, these ex-
amples highlight the importance of deconfounding to promote 

Figure 3. Mean bias and 95% confidence intervals in coronavirus disease 2019 vaccine effectiveness estimates derived from a test-negative study with influenza controls 
under varying scenarios of RRcovid vx|flu vx , VEflu, VEcovid , and Pcontrols. Abbreviations: COVID-19, coronavirus disease 2019; RR, risk ratio; VE, vaccine effectiveness. 
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comparability in VE estimates, even in situations where bias is 
low.

It is important to acknowledge a deconfounding require-
ment may impact the feasibility of a test-negative study, that 
is, a design commonly implemented using administrative 
data [2, 4]. A challenge of deconfounding in the analysis is 
that it requires measurement of both vaccinations, which may 
not be reliably recorded in a vaccine registry. Furthermore, 
deconfounding by study design requires additional costs as-
sociated with testing for other pathogen(s), unless this testing 
is routinely performed. This may not be possible in current 

limited-resource settings or in the future, if other causes of 
ARI, such as respiratory syncytial virus, become vaccine pre-
ventable. Furthermore, since VE may differ due to health 
inequities, the systematic exclusion of these settings is prob-
lematic. However, where additional efforts are made to im-
plement deconfounding, an advantage is that influenza and 
COVID-19 test-negative VE studies can be run in parallel 
without much additional effort.

In conclusion, our work suggests low bias in VE estimates de-
rived from COVID-19 and influenza test-negative studies with 
influenza and SARS-CoV-2 controls, respectively, in situations 

Figure 4. Mean bias and 95% confidence intervals in influenza vaccine effectiveness estimates derived from a test-negative study with severe acute respiratory syndrome 
coronavirus 2 controls under varying scenarios of RRflu vx|covid vx , VEflu, VEcovid , and Pcontrols. Abbreviations: COVID-19, coronavirus disease 2019; RR, risk ratio; SARS-
CoV-2, severe acute respiratory syndrome coronavirus 2; VE, vaccine effectiveness.
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where these controls represent a low proportion of total test-
negative controls. Nonetheless, we encourage researchers to 
consider this potential bias and its implications. Where re-
searchers determine that bias is not meaningful and do not 
undertake deconfounding, adequate justification should be 
provided to promote critical interpretation and confidence in 
study results.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding author.

Notes
Financial support. This work was supported by a new faculty startup 

award from the Albany College of Pharmacy and Health Sciences. 
Potential conflicts of interest. M. K. D. has received subaward grant 

funding from the US National Institutes of Health and the St Luke’s Wood 
River Foundation for unrelated research. All other authors report no poten-
tial conflicts of interest. 

All authors have submitted the ICMJE Form for Disclosure of Potential 
Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References
 1. Jackson ML, Rothman KJ. Effects of imperfect test sensitivity and specificity on 

observational studies of influenza vaccine effectiveness. Vaccine 2015; 33:1313–6.
 2. Butt AA, Omer SB, Yan P, Shaikh OS, Mayr FB. SARS-CoV-2 vaccine effectiveness 

in a high-risk national population in a real-world setting. Ann Intern Med 2021; 
174:1404–8.

 3. Dean NE, Hogan JW, Schnitzer ME. Covid-19 vaccine effectiveness and the test-
negative design. N Engl J Med 2021; 385:1431–3.

 4. Thompson MG, Stenehjem E, Grannis S, et al. Effectiveness of Covid-19 vaccines 
in ambulatory and inpatient care settings. N Engl J Med 2021; 385:1355–71.

 5. Halloran ME, Longini IM, Struchiner CJ, Longini IM. Design and analysis of vac-
cine studies. New York: Springer, 2010.

 6. Rothman KJ, Greenland S, Lash TL. Modern epidemiology. Philadelphia: 
Lippincott Williams & Wilkins, 2008.

 7. Jackson ML, Nelson JC. The test-negative design for estimating influenza vaccine 
effectiveness. Vaccine 2013; 31:2165–8.

 8. Wolff GG. Influenza vaccination and respiratory virus interference among de-
partment of defense personnel during the 2017-2018 influenza season. Vaccine 
2020; 38:350–54.

 9. Skowronski DM, Zou M, Clarke Q, et al. Influenza vaccine does not increase the 
risk of coronavirus or other noninfluenza respiratory viruses: retrospective anal-
ysis from Canada, 2010–2011 to 2016–2017. Clin Infect Dis 2020; 71:2285–8.

 10. Wacholder S, Silverman DT, McLaughlin JK, Mandel JS. Selection of controls in 
case-control studies: II. Types of controls. Am J Epidemiol 1992; 135:1029–41.

 11. Grochowska M, Ratajczak A, Zdunek G, Adamiec A, Waszkiewicz P, Feleszko 
W. A comparison of the level of acceptance and hesitancy towards the influenza 
vaccine and the forthcoming COVID-19 vaccine in the medical community. 
Vaccines (Basel) 2021; 9:475.

 12. Li M, Luo Y, Watson R, et al. Healthcare workers’ (HCWs) attitudes and related 
factors towards COVID-19 vaccination: a rapid systematic review [manuscript 
published online ahead of print 30 June 2021]. Postgrad Med J 2021. doi:10.1136/
postgradmedj-2021-140195.

 13. Wang Q, Yang L, Jin H, Lin L. Vaccination against COVID-19: a systematic review 
and meta-analysis of acceptability and its predictors. Prev Med 2021; 150:106694.

 14. National Center for Immunization and Respiratory Diseases, Centers for Disease 
Control and Prevention. Cumulative influenza vaccination coverage and in-
tent for vaccination among adults 18 years and older by age, race/ethnicity, 
and COVID-19 vaccination and intent, United States; IPSOS Knowledge Panel 
and NORC AmeriSpeak Omnibus Surveys. Available at: https://data.cdc.gov/
Vaccinations/Cumulative-Influenza-Vaccination-Coverage-and-Inte/6p3a-6xr9. 
Accessed 13 October 2021.

 15. Wacholder S, McLaughlin JK, Silverman DT, Mandel JS. Selection of controls in 
case-control studies: I. Principles. Am J Epidemiol 1992; 135:1019–28.

 16. National Center for Immunization and Respiratory Diseases, Centers for Disease 
Control and Prevention. Flu vaccination coverage, United States, 2020–21 in-
fluenza season. Available at: https://www.cdc.gov/flu/fluvaxview/coverage-
2021estimates.htm. Accessed 13 October 2021.

 17. Centers for Disease Control and Prevention. COVID-19 vaccinations in the 
United States: fully vaccinated population ≥18 years of age. Available at: https://
covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total. 
Accessed 13 October 2021.

 18. National Center for Immunization and Respiratory Diseases, Centers for Disease 
Control and Prevention. Past seasons vaccine effectiveness estimates. Available 
at: cdc.gov/flu/vaccines-work/past-seasons-estimates.html. Accessed 14 October 
2021.

 19. Fowlkes A, Gaglani M, Groover K, et al. Effectiveness of COVID-19 vaccines in 
preventing SARS-CoV-2 infection among frontline workers before and during 
B.1.617.2 (Delta) variant predominance—eight U.S. locations, December 2020–
August 2021. MMWR Morb Mortal Wkly Rep 2021; 70:1167–9.

 20. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of Covid-19 vaccines 
against the B.1.617.2 (Delta) variant. N Engl J Med 2021; 385:585–94.

 21. Nanduri S. Effectiveness of Pfizer-BioNTech and Moderna vaccines in preventing 
SARS-CoV-2 infection among nursing home residents before and during wide-
spread circulation of the SARS-CoV-2 B. 1.617. 2 (Delta) variant—National 
Healthcare Safety Network, March 1–August 1, 2021. MMWR Morb Mortal Wkly 
Rep 2021; 70:1163–6.

 22. Tenforde MW. Sustained effectiveness of Pfizer-BioNTech and Moderna vaccines 
against COVID-19 associated hospitalizations among adults—United States, 
March–July 2021. MMWR Morb Mortal Wkly Rep 2021; 70:1156–62.

 23. Ferdinands JM. Waning 2-dose and 3-dose effectiveness of mRNA vaccines 
against COVID-19–associated emergency department and urgent care encoun-
ters and hospitalizations among adults during periods of Delta and Omicron 
variant predominance—VISION network, 10 states, August 2021–January 2022. 
MMWR Morb Mortal Wkly Rep 2022; 71:255–63.

 24. Flannery B, Chung JR, Monto AS, et al. Influenza vaccine effectiveness 
in the United States during the 2016-2017 season. Clin Infect Dis 2019; 
68:1798–806.

 25. Flannery B, Kondor RJG, Chung JR, et al. Spread of antigenically drifted influ-
enza A(H3N2) viruses and vaccine effectiveness in the United States during the 
2018–2019 season. J Infect Dis 2020; 221:8–15.

https://doi.org/10.1136/postgradmedj-2021-140195
https://doi.org/10.1136/postgradmedj-2021-140195
https://data.cdc.gov/Vaccinations/Cumulative-Influenza-Vaccination-Coverage-and-Inte/6p3a-6xr9
https://data.cdc.gov/Vaccinations/Cumulative-Influenza-Vaccination-Coverage-and-Inte/6p3a-6xr9
https://www.cdc.gov/flu/fluvaxview/coverage-2021estimates.htm
https://www.cdc.gov/flu/fluvaxview/coverage-2021estimates.htm
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total
https://covid.cdc.gov/covid-data-tracker/#vaccinations_vacc-total-admin-rate-total
cdc.gov/flu/vaccines-work/past-seasons-estimates.html

