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����������
�������

Citation: Kruk, T.; Bzowska, M.;

Hinz, A.; Szuwarzyński, M.;
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Abstract: Control of nonspecific/specific protein adsorption is the main goal in the design of novel
biomaterials, implants, drug delivery systems, and sensors. The specific functionalization of biomate-
rials can be achieved by proper surface modification. One of the important strategies is covering the
materials with functional coatings. Therefore, our work aimed to functionalize multilayer coating
to control nonspecific/specific protein adsorption. The polyelectrolyte coating was formed using
a layer-by-layer technique (LbL) with biocompatible polyelectrolytes poly-L-lysine hydrobromide
(PLL) and poly-L-glutamic acid (PGA). Nonspecific protein adsorption was minimized/eliminated
by pegylation of multilayer films, which was achieved by adsorption of pegylated polycations
(PLL-g-PEG). The influence of poly (ethylene glycol) chain length on eliminating nonspecific protein
adsorption was confirmed. Moreover, to achieve specific protein adsorption, the multilayer film
was also functionalized by immobilization of antibodies via a streptavidin bridge. The functional
coatings were tested, and the adsorption of the following proteins confirmed the ability to control
nonspecific/specific adsorption: human serum albumin (HSA), fibrinogen (FIB), fetal bovine serum
(FBS), carcinoembryonic antigen human (CEA) monitored by quartz crystal microbalance with dissi-
pation (QCM-D). AFM imaging of unmodified and modified multilayer surfaces was also performed.
Functional multilayer films are believed to have the potential as a novel platform for biotechnological
applications, such as biosensors and nanocarriers for drug delivery systems.

Keywords: polyelectrolyte multilayers; poly (ethylene glycol); protein-resistant surfaces; protein
adsorption; specific adsorption

1. Introduction

Control of specific/nonspecific protein adsorption is one of the main challenges in
designing novel biomaterials, such as implants, sensors, or drug delivery systems. It is
expected that such biomaterials will likely be in direct contact with biofluids, such as blood
or serum [1]. The presence of the components such as blood cells, lipoproteins, plasma pro-
teins, peptides, and their nonspecific adsorption (called fouling or biofouling) is the most
critical problem for practical applications of biomaterials besides cost considerations [2].
The novel biomaterials are very promising when tested in a simple, well-controlled environ-
ment; however, their effectiveness is not yet satisfied when tested in real-life environments
with much more complex chemistries. In the case of, e.g., biosensors, the operation is based
on specific interactions (specific adsorption). The specific adsorption of proteins to bioma-
terials results mainly from noncovalent interactions between the system’s biomolecules
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and the biomaterial’s molecules. These bonds are favored by the appropriate steric ar-
rangement of proteins and biomaterial molecules, the so-called system complementarity.
Such bonds are most often formed in the systems: ligand–receptor, antibody–antigen,
enzyme–substrate, and are the basis for the functioning of most biosensors. However, these
interactions can be effectively disturbed by nonspecific adsorption of other proteins in the
system. The adsorbed surface layer of other proteins caused by excessive biofouling not
only blocks access to recognition ligands, e.g., antibodies, preventing quantification, or
even detection of analytes, but also overwhelms the transduction process in biosensors by
generating “false positive” signals [2]. Nonspecific adsorption, also based on noncovalent
interactions, is independent of the complementarity of the protein–biomaterial system. It
depends mainly on the physicochemical properties of the protein and biomaterial and the
environmental conditions (pH, ionic strength, temperature). Despite decades of research
on “protein resistant surfaces”, biofouling is still a main limiting factor in the reliable per-
formance of biomaterials. A commonly used method to reduce nonspecific adsorption is a
surface modification with inert, hydrophilic polymers. Such polymers contain hydrogen
bond acceptors and do not have hydrogen bond donors.

The most popular compounds used for this purpose are polysaccharides, including
dextran, heparin, polyacrylates, and phosphorylcholine, and polyethylene glycol (PEG),
also referred to as polyethylene oxide (PEO) [2,3]. Fast and sensitive determination of
biologically active compounds is very important in biomedical diagnostics, the food and
beverage industry, and environmental analysis. Conducting polymers (CPs) and com-
posites with different nanomaterials have received attention. CPs can be applied in the
design of sensors and biosensors on account of numerous technological advantages, e.g.,
the immobilization of biological recognition elements (based on enzymes, ssDNA, anti-
bodies (Ab), receptors, and other biological proteins). The ability to design molecularly
imprinted polymers can form artificial structures, which might replace some natural bio-
logical structures, e.g., DNA aptamers or biological-recognition-exhibiting proteins. The
sensors based on CPs can give a high sensitivity, a short response time, and monitor at
room temperature. The conducting polymers might be applied in the design of molecularly
imprinted polymers, which are cheap and they might replace natural recognition elements.
One of the main goals in the improvement of CP-based biosensors is related to the stability
of the analytical signal. The biocompatibility aspects of conducting polymers encourage
one to apply these polymers in the design of implantable biofuel cells, which can serve as
power sources of some implantable biomedical devices [4–10].

PEG is one of the most promising materials due to its biocompatibility, low tox-
icity, and immunogenicity, and high efficiency in the process of reducing nonspecific
protein adsorption [11,12]. The ability of PEG-modified coatings to eliminate nonspecific
protein adsorption has been proved, presenting the meaning of chain length and brush
density [13–18]. The PEG chain length should be sufficient to screen protein–substrate
interactions, and the brush chain density should be enough to block diffusion through
this PEG layer. The PEG monodispersity also influences on antifouling propertiers [19]. A
useful method to immobilize PEG chains on the charged surface is to use pegylated poly-
electrolytes, such as poly (l-lysine) (PLL), poly (l-glutamic acid) (PGA), or poly (acrylic acid)
(PAA) [20–24]. Such polyelectrolytes with grafted PEG chains are deposited by electrostatic
interactions between the charged backbone and the oppositely charged surface [25]. The
layer-by-layer (LbL) technique of electrostatic self-assembly of charged nano-objects has
been proved to be a versatile technique of surface modification and preparation of tailored
functional coatings for a wide range of applications, including biomedicine [26–36]. The
method is based on the sequential adsorption of the oppositely charged species on charged
surfaces. Protein adsorption on various polyelectrolyte coatings formed through the layer-
by-layer technique showed that electrostatic interactions govern this process [37–40]. The
proteins strongly interact with the polyelectrolyte film, whatever the sign of the charges
of both the multilayer and the protein. It was shown that electrostatic forces dominated
the interaction between proteins and the multilayer film. In the case of the proteins and
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the outermost PE layer having equal charge, a dense monolayer of adsorbed proteins
is created. If the charges are opposite, then a thick protein layer is noticed [40]. Since
nonspecific protein adsorption is the most critical problem for practical applications of
multilayers as a coating of biosensors or micro- and nano-capsules, it should be minimized
or even eliminated to allow the proper operation of such biomaterials. Moreover, further
functionalization for specific recognition or specific interaction may allow better sensitivity
and activity of developed biomaterials.

PLL-g-PEG is a well-known pegylated polyaminoacid that is used to repeal proteins
when adsorbed on an oppositely charged surface. Heuberger et al. showed that mul-
tilayers formed with synthetic polyelectrolytes PAH and PSS deposited onto flat silica
or microcapsules and functionalized by the PLL-g-PEG effectively eliminate nonspecific
protein adsorption. Moreover, they showed that biotin-modified PLL-g-PEG can be used
as a model system to induce bispecific streptavidin bindings [41,42]. For the formation of
protein-resistant polyelectrolyte coatings, pegylated copolymers, such as PGA-g-PEG, were
deposited on the polyelectrolyte multilayers as the external layer. That pegylated poly-
electrolyte coating efficiently repels proteins [21,37,43,44]. Since, in our previous work, we
were focused on the detailed investigation of multilayered polyaminoacids films modified
with PGA-g-PEG, here, we focused on the fundamental study concerning the influence of
PEG chain length of commercially available PLL-g-PEG on antiadhesive properties of such
pegylated polyaminoacids multilayer coatings. Moreover, such pegylated with PLL-g-PEG
coatings were additionally functionalized by immobilization of biotinylated antibodies as a
receptor for specific protein adsorption. QCM-D, as well as AFM techniques, were applied
to control polyaminoacids multilayer film formation, its pegylation, and functionalization,
as well as further protein adsorption. The human serum albumin (HSA), fibrinogen (FIB),
and full blood serum (FBS) were chosen because of their fundamental meanings (HSA and
FIB are the main proteins in human blood plasma with high adsorption properties).

2. Materials and Methods
2.1. Chemicals

Proteins: human serum albumin (HSA), fibrinogen (FIB), carcinoembryonic antigen
human (CEA), and streptavidin (STREPT) from Streptomyces avidinii were purchased from
Sigma-Aldrich, Poznan, Poland, while fetal bovine serum (FBS) and Dulbecco’s modified
Eagle medium (DMEM) were from Gibco (Thermo Fischer Scientific, Waltham, MA, USA).
Polyelectrolytes: poly-L-lysine hydrobromide (PLL, MW ~15,000 to 30,000) and poly-L-
glutamic acid sodium salt (PGA, MW ~15,000 to 50,000) were purchased from Sigma-
Aldrich, Poznan, Poland, while pegylated polyelectrolytes PLL-g-PEG2k PLL(MW 20 kDa)-
g(3.5)-PEG(MW 2 kDa), PLL-g-PEG5k PLL(MW 20 kDa)-g(3,5)-PEG(MW 5 kDa), and
PLL-g-PEG-BIO PLL(MW 20 KDa)-g (3.5)-PEG(MW 2 KDa)/PEGbio(MW 3.4 KDa 50%)
were obtained from SuSoS AG, Dübendorf, Switzerland. Sodium chloride (NaCl) was pur-
chased from Sigma-Aldrich, Poznan, Poland, while sulphuric acid 96% (H2SO4) analytical
grade and hydrogen peroxide (30%) were purchased from Avantor Performance Materials,
Gliwice, Poland. All the materials were used as received without further purification. Dis-
tilled water used in all experiments was obtained with the three-stage Millipore Direct-Q
5UV purification system.

2.2. Production and Biochemical Modification of Anti-CEA Antibody. Animals and Cells Used
in Studies

A six-week-old BALB/c female mouse was provided by the Charles River Labora-
tories (supplier in Poland—AnimaLAB, Poznań, Poland). The mouse was housed under
controlled conditions and provided with food and water ad libitum. According to Polish
law, all animal procedures were performed specifically to the Act on the Protection of
Animals used for Scientific or Educational Purposes (D20150266L), which implements the
European Parliament’s Directive and the Council (2010/63/EU). All procedures agreed
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with the Institutional Animal Care and Use Committee (IACUC) guidelines and were
approved by the 2nd Local IACUC in Kraków.

Mouse myeloma cell line SP2/0-Ag14 (ATCC CRL-1581) was purchased in Amer-
ican Type Culture Collections (Manassas, VA, USA). Mouse hybridoma cell line B2G8
producing monoclonal antibody specific to CEA was obtained in the Department of Cell
Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian Univer-
sity (Krakow, Poland).

2.3. Reagents Used for Antibody Production

Materials used for cell culture (DMEM, fetal bovine serum) were purchased in LONZA
(Basel, Switzerland). Hipoxanthine–aminopterin–thymidine (HAT) and hipoxanthine–
thymidine (HT) media supplements, HybriMAX PEG were from Sigma Aldrich.

2.4. Production, Purification, and Biotinylation of a Murine Monoclonal Antibody Specific to CEA

Mouse monoclonal antibodies specific to CEA protein were obtained using hybridoma
technology, according to the standard procedure. Briefly, a six-week-old Balb/C mouse was
injected intraperitoneally with 100 µg of antigen (CEA, Sigma Aldrich, St. Louis, MO, USA)
diluted in PBS and mixed 1:1 with complete Freund’s adjuvant (Sigma Aldrich,
St. Louis, MO, USA). Subsequent immunizations were performed with 50µg of antigen
mixed with incomplete Freund’s adjuvant (Sigma Aldrich, St. Louis, MO, USA). After ad-
ministering appropriate anesthetic (ketamine and xylazine), the animal was euthanized, the
spleen was isolated, and splenocytes were immortalized by fusion with mouse myeloma
SP2/0-Ag14 cells (ATCC CRL-1581). After fusion, hybridoma cells were cultured in a
selection medium (DMEM, 10% FBS, HAT) and tested using enzyme-linked immunosor-
bent assay (ELISA) to identify clones that produce antibodies specific to CEA. Hybridoma
cells clone B2G8 producing monoclonal antibodies specific to CEA were grown according
to the manufacturer’s instruction in CELLine bioreactors (INTEGRA Bioscences AG) to
produce large amounts of monoclonal antibodies. Monoclonal antibodies B2G8 were then
purified from the culture medium by affinity chromatography on protein L according to
the protocol provided by the manufacturer (Thermo Fisher Scientific, Waltham, MA, USA),
and then immediately dialyzed into sterile PBS. The concentration of purified antibodies
was measured using the bicinchoninic acid method (Sigma Aldrich, St. Louis, MO, USA).
Prior biotinylation antibodies were dialyzed to sterile carbonate buffer (0.1 M, pH = 9)
and conjugated with EZ-Link NHS-LC-Biotin (Thermo Scientific, Waltham, MA, USA)
according to the standard protocol. Efficient biotinylation of antibodies was confirmed
in an ELISA test using plates coated with CEA. Streptavidin conjugated to horseradish
peroxidase (Sigma Aldrich, St. Louis, MO, USA) was used to detect B2G8 to CEA antigen
immobilized on the ELISA plate.

2.5. Formation of Functional Polyelectrolyte Films

The polyelectrolyte multilayer films were created via the layer-by-layer (LbL) tech-
nique. The sequential depositions were conducted on QCM-D sensors; the processes went
on until dissipation and frequency signals reached constant values and were followed by
rinsing by the buffer. The process of multilayer preparation was started with polycation—
PLL (0.1 g/L in 0.015 M NaCl, rinsing 0.015 M NaCl). Secondly, a method was conducted
for the negatively charged polyelectrolyte—PGA (0.1 g/L in 0.015 M NaCl, rinsing 0.015 M
NaCl). The procedure was repeated until the four layers were formed. Such (PLL/PGA)2
negatively charged polyelectrolyte multilayers (PGA-ended) were pegylated by the adsorp-
tion of the pegylated polycations PLL-g-PEG and PLL-g-PEG-BIO, respectively (0.1 g/L in
0.015 M NaCl, rinsing 0.015 M NaCl). The pegylated multilayers with biotin groups were
further functionalized by the attachment of streptavidin (0.01 g/L in 0.015 M NaCl, rinsing
0.015 M NaCl) and biotinylated antibody, i.e., biotinylated anti-CEA (0.01 g/L in 0.015 M
NaCl, rinsing 0.015 M NaCl). Schematic representation of multilayer functional films is
presented in Figure 1.
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2.6. Specific/Nonspecific Protein Adsorption Tests

Specific/nonspecific protein adsorption tests were performed on QCM-D sensors
previously functionalized with proper multilayer film. For nonspecific adsorption, the
attachment of human serum albumin (HSA), fibrinogen (FIB) (in 0.015 M NaCl), as well as
full fetal bovine serum (FBS, in DMEM) was subsequently measured by QCM-D, while
specific adsorption was tested by attachment of carcinoembryonic antigen human to anti-
CEA functionalized surface.

2.7. QCM-D Studies

The preparation of PEMs with pegylated copolymers using the LbL method, as
well as protein attachments, was studied by the QCM-D QSense E4 system (Biolin Sci-
entific, Gothenburg, Sweden) according to the protocol described previously [43]. The
adsorption process was performed in the flow cell on quartz sensors (14 mm diameter
Q-Sensor QSX 301 Gold, Q-Sense) covered with gold electrodes (resonance frequency of
4.95 MHz ± 50 kHz). The temperature during adsorption was set up at 22 ◦C; flow velocity
was 0.3 mL/min. The adsorbed layers were rigid (dissipation was less than 1 × 10− 6 per
10 Hz of the frequency shift), the mass of deposited film was received with the Sauerbrey
equation [45]. The calculations were performed with Qtools 3 software (QSense, Biolin
Scientific, Gothenburg, Sweden). The adsorbed mass was the average of the results from
four QCM-D cells. The experimental error was less than 10% of the measured mass.

2.8. Atomic Force Microscopy Studies

Atomic force microscope (AFM) images were obtained with Dimension Icon XR atomic
force microscope (Bruker, Santa Barbara, CA, USA) working in the water in the PeakForce
Tapping (PFT) mode using standard silicon cantilevers of nominal spring constant of
0.7 N/m and triangular geometry tip with a nominal tip radius of 2 nm.

3. Results

In our previous work [43], we tested PGA-g-PEG (pegylated polyanion) surface-
treatment technology as an antiadhesive coating. The adsorption of proteins (HSA, FIB,
and FBS) onto pegylated polyaminoacid multilayers were decreased in relation to the
multilayered film without a pegylated external layer. The amount of adsorbed proteins
decreased with the increasing molecular weight and surface density of PEG chains. For
PGA-g-PEG g > 30% and PEG 5000, very low levels of protein deposition were obtained.
Here, we focused on analog approaches with pegylated polycation PLL-g-PEG, commer-
cially available poly-L-lysine with grafted PEG chains. Obtained results were compared
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with our previous results for pegylated polyanion; moreover, here, we functionalized such
a system for specific protein adsorption based on antibody–antigen interaction.

3.1. Elimination of Nonspecific Protein Adsorption

The preparation of protein-resistant layers is the main challenge in the formation of
new nanomaterials. Such nonspecific protein adsorption can disturb the application of
biomaterials. The protein-resistant coating was formed by the layer-by-layer technique
using biocompatible polyelectrolytes PLL, PGA, and pegylated-PLL. The formation of
multilayer film was investigated in situ by the QCM-D. The gold surface (sensor) in
the experimental conditions (pH ≈ 6–8) is negatively charged [46]; therefore, the first
polyelectrolyte, which was introduced into the QCM cell, was polycation (PLL). In the
next step, the rinsing solution (0.015 M NaCl) was brought into the cell. When the signal
of QCM-D was stable, the PGA solution was brought into the cell, and the polyanion
deposition step was conducted. This process was repeated until four polyelectrolyte layers
were formed. The growth of the film mass for the PLL/PGA multilayer formation on the
QCM-D sensor is shown in Figure 2.
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Figure 2. QCM controlling of the creation of (PLL/PGA)2 films. The mass (ng/cm2) of deposited
layers was calculated with the Sauerbrey equation [36].

It can be noticed that the increase in the polyelectrolyte film mass is exponential for
(PLL/PGA)2 adsorption, which is in agreement with the previous work for this kind of
PEM [39,47]. The negatively charged films (PLL/PGA)2 were pegylated by the adsorption
of the positively charged copolymers PLL-g-PEG2k and PLL-g-PEG5k. The decrease in the
frequency of crystal resonance confirmed the spontaneous deposition of pegylated-PLL on
top of the negatively charged polyelectrolyte multilayer structures. The typical QCM-D
frequency signal changes upon the pegylated copolymer deposition process are shown in
Figure 3.
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Figure 3. The example of the QCM-D frequency signal changes upon adsorption and rinsing solution (0.015 M NaCl) of
(A)—PLL-g-PEG(2000 Da) and (B)—PLL-g-PEG(5000 Da) on (PLL/PGA)2 layer.

The adsorption kinetics for both pegylated polyelectrolytes were similar and agreed
with the kinetics of adsorption at other surfaces, e.g., various oxides [43]. The adsorption
process resulted in the pegylated layer formation with an areal density of approximately
540–700 ng/cm2 (cf. Table 1). The obtained mass of deposited copolymers was different
and had a connection with the MW of PEG chains. It is worth noticing that the mass of
deposited copolymer decreases with the length of PEG chain, and it may be a result of
the steric repulsion of longer PEG chains of the cationic copolymer, which shields the
electrostatic attraction of the negative external layer of the coating; similar behavior was
also observed for PGA-g-PEGs [43].

Table 1. The areal density of two different adsorbed pegylated copolymers.

Multilayer Structure Pegylated Polyelectrolyte Areal Density

(PLL/PGA)2PLL-gPEG2k PLL(20 kDa)-g(3.5)-PEG(2 kDa) 700 ng/cm2

(PLL/PGA)2PLL-gPEG5k PLL(20 kDa)-g(3.5)-PEG(5 kDa) 542 ng/cm2

Nonspecific protein adsorption tests were performed by QCM-D on the sensors
previously functionalized with proper multilayer film. The films finished by positively
charged PLL, negatively charged PGA, and two varied pegylated-PLL were studied. For
nonspecific adsorption, the attachment of human serum albumin (HSA), fibrinogen (FIB)
(both in 0.015 M NaCl), and full fetal bovine serum (FBS, in DMEM) were studied. In
advance, deposited FBS (dissolved in DMEM) films were conditioned in DMEM buffer.
Figure 4 shows the mass of proteins (HSA, fibrinogen, and FBS) on the top of tested films.
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surfaces ended in PLL, PGA, and different PLL-g-PEG.

It seems that deposition of proteins is the highest on the top of the PLL-ended, pos-
itively charged polyelectrolyte film, while the adsorption on PGA-finished, negatively
charged film led to a lower mass in comparison to the one at the positively charged film.
The results show that the adsorption process of proteins is driven by electrostatic forces.
The comparable results of protein adsorption on polyelectrolyte multilayers were achieved
previously [22,39,43,47].

In comparison with nonpegylated films, pegylated ones significantly reduce non-
specific protein adsorption. The results showed the role of the thickness of PEG layer
in shielding the surface charge. The amounts of deposited proteins decreased with the
increasing molecular weight of PEG chains. It can be stated that, for a higher molecular
weight of PEG chains (5000 Da), the most effective process of reducing the adsorption of
the analyzed proteins was observed. The results are comparable for an analogous approach
using pegylated polyelectrolytes: polycations PLL-g-PEG [21,37,44] on TiO2, Nb2O5, or
Si0.4Ti0.6O2 surfaces. When we compare our previous results for PGA-g-PEG with those
presented here for PLL-g-PEG, a significant impact of the type of polyelectrolyte backbone
in pegylated copolymers can be observed. For anionic PGA-g-PEG, more effective elimina-
tion of nonspecific adsorption is observed compared to cationic PLL-g-PEG. It can be the
effect of various conformations of macromolecules after adsorption at surfaces when not
only trails, but also loops and tails are available. Such structures formed with a positively
charged backbone of PLL-g-PEG copolymers may result in higher adsorption of negatively
charged, spacious compared with negatively charged, backbone PGA-g-PEG [43].

3.2. Specific Protein Interaction

The nonspecific protein adsorption of other proteins in the system may disturb spe-
cific protein adsorption based on antibody–antigen interaction. Therefore, the first step
of the functionalization is forming multilayer protein-resistant coatings, as presented in
the previous paragraph. Here, such a coating formed by the layer-by-layer technique
using biocompatible polyelectrolytes PLL, PGA, and pegylated-PLL was additionally func-
tionalized by immobilization of the selected antibody, providing the ability of specific
protein adsorption/interaction. For so-called “bioconjugation”, a simple approach with
a streptavidin bridge was selected [48]. Such an approach allows proper immobilization
of biotinylated antibodies to the biotinylated surface [48]; it is one of the available, well-
accepted methods of immobilization of antibodies that do not affect their activity and
should ensure the appropriate spatial orientation of the ligand. For that reason, commer-
cially available pegylated-PLL with additional biotin groups at the end of PEG chains
was used. Results presented in the previous paragraph indicate that the higher molecular
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weight of PEG chains provides the most effective reduction in nonspecific protein adsorp-
tion; however, in terms of weight of PEG chains, there was only one commercially available
option (PLL(20)-g(3.5)-PEG(2)/PEG(3.4)-biotin(50%)). Despite that not being optimal (the
available molecular weight of PEG was 2/3.4 kDa), the additional synergistic effect from
immobilized antibodies may be achieved. To the functional biotin groups located at the end
of PEG chains, streptavidin was attached, followed by biotinylated antibody anti-CEA. The
process was monitored by QCM-D, and the frequency signal changes and mass changes
upon the deposition process are shown in Figure 5.
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Figure 5. The mass per unit area of adsorbed PLL-g-PEG/PEGbio and proteins on top of tested
surfaces ended in (PLL/PGA)2.

Based on the presented results, it can be stated that streptavidin binds to PLL-g-PEG-
BIO (604 ng/cm2) and the biotinylated antibody binds to the streptavidin (464 ng/cm2).

The obtained results were also confirmed by imaging the surfaces of polyelectrolyte
multilayers using AFM. Figure 6A,B shows the surfaces of films for (PLL/PGA)2 and
(PLL/PGA)2 with an external PLL-g-PEG-BIO layer, respectively. In both cases, it can be
seen that the films obtained are flat, with little roughness (RMS), Figure 6A: 0.268 ± 0.004 nm
and Figure 6B: 0.287 ± 0.011 nm, a typical tendency for polyelectrolyte multilayers. On the
other hand, in the case of films with attached streptavidin to the copolymer with PEG-bio
and the antibody to streptavidin, clearly adsorbed proteins can be observed (Figure 6C,D).
A significant surface change can also be seen with an increase in the roughness of multi-
layers film as a result of protein adsorption, Figure 6C: 1.194 ± 0.021 nm and Figure 6D:
1.727 ± 0.036 nm, respectively. The results suggest that the streptavidin binds to PLL-g-
PEG-BIO and the biotinylated antibody binds to the streptavidin, which is compatible with
the results from QCM-D measurements.
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Figure 6. AFM images with corresponding cross-sections of (A) (PLL/PGA)2 multilayer film,
(B) PLL-g-PEG-BIO on (PLL/PGA)2 layers, (C) streptavidin on polyelectrolyte film (PLL/PGA)2

with PLL-g-PEG-BIO, and (D) (PLL/PGA)2/PLL-g-PEG-BIO/and the biotinylated antibody binds to
the streptavidin.

Specific protein adsorption/interaction tests were performed by QCM-D on the gold
sensors previously functionalized with proper multilayer film with immobilized anti-CEA
antibody by the adsorption of two model proteins: human CEA antigen (specific to anti-
CEA antibody) and HSA. Results of such experiments are presented in Table 2. Specific
adsorption/interaction can be clearly seen, since the average adsorbed mass of human CEA
antigen on antibody-functionalized surface was 60 ng/cm2, while HSA does not adsorb at
the tested surface. It is worth noticing that nonspecific adsorption of HSA was reduced
almost to zero, and a synergistic effect from pegylation and antibody immobilization was
achieved. The proposed method of functionalization, however simple, may be a candidate
for future applications in both the biomaterial/implant, biosensor areas, and targeted drug
delivery systems.
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Table 2. Adsorbed mass of proteins at functionalized surfaces.

Surface Mass of Proteins (ng/cm2) Mass of Proteins (ng/cm2)

HSA CEA

(PLL/PGA)2PLL-g-PEGBIO 70 180
(PLL/PGA)2PLL-g-PEGBIO/

STREPT/BIO-Anti-CEA ~0 60

4. Conclusions

We tested polyelectrolyte multilayer coating formed with biocompatible polyelec-
trolytes as functional coatings for controlling specific/nonspecific protein adsorption. The
coating was formed by a simple approach, i.e., layer-by-layer technique. Polyelectrolyte
multilayer coating was functionalized by pegylation with PLL-g-PEG to eliminate non-
specific protein adsorption and by antibody immobilization to achieve specific protein
adsorption/interaction. The adsorption of proteins onto pegylated polyelectrolyte multi-
layers was decreased in relation to the films without PEG layer, and the amount of proteins
depended on the molecular weight of PEG chains; moreover, such a system was addi-
tionally functionalized to control protein adsorption/interaction. Biotinylated antibody
was attached via a streptavidin bridge. QCM-D measurements confirmed specific adsorp-
tion/interaction. The proposed and tested approach with PLL-g-PEG surface-treatment
technology may be a candidate for future applications in the biomaterial and biosensor ar-
eas to effectively detect specific protein interactions; however, further investigation related
to the final application is necessary.
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