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Abstract: Alzheimer’s disease (AD) is a common, progressive, and devastating neurodegenerative
disorder that mainly affects the elderly. Microglial dysregulation, amyloid-beta (Aβ) plaques, and
intracellular neurofibrillary tangles play crucial roles in the pathogenesis of AD. In the brain, mi-
croglia play roles as immune cells to provide protection against virus injuries and diseases. They
have significant contributions in the development of the brain, cognition, homeostasis of the brain,
and plasticity. Multiple studies have confirmed that uncontrolled microglial function can result in
impaired microglial mitophagy, induced Aβ accumulation and tau pathology, and a chronic neuroin-
flammatory environment. In the brain, most of the genes that are associated with AD risk are highly
expressed by microglia. Although it was initially regarded that microglia reaction is incidental and
induced by dystrophic neurites and Aβ plaques. Nonetheless, it has been reported by genome-wide
association studies that most of the risk loci for AD are located in genes that are occasionally uniquely
and highly expressed in microglia. This finding further suggests that microglia play significant roles
in early AD stages and they be targeted for the development of novel therapeutics. In this review, we
have summarized the molecular pathogenesis of AD, microglial activities in the adult brain, the role
of microglia in the aging brain, and the role of microglia in AD. We have also particularly focused on
the significance of targeting microglia for the treatment of AD.
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1. Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative disease (ND) and the char-
acteristics of AD include cognitive deficit and memory loss that can eventually disrupt the
motor system, visuospatial orientation, speech, and behavior [1,2]. Several neuropathologi-
cal hallmarks of AD including inflammation, intracellular neurofibrillary tangles (NFTs),
and extracellular Aβ deposits have already been well identified [3–5]. Tau proteins and
deposits of Aβ peptides are detected in different brain areas, which can further lead to
microglial activation, mitochondrial dysfunction, synaptic dysfunction, and even neuronal
cell death [6,7]. Characteristics of AD-related inflammation include reactive microglia
around Aβ plaques, which preserve an inflammatory state via releasing various proinflam-
matory mediators, which can ultimately lead to neuronal loss. In the case of AD, reactive
gliosis histology indicates the aberrant morphology and proliferation of microglia and as-
trocytes. It has been reported that astrogliosis and microgliosis are common characteristics
of numerous NDs with different causes [8–10], however it was not certain whether these
histopathological alterations reflect an inconsequential, harmful, or beneficial function of
glial cells in the neurodegenerative process. Unfortunately, currently available drugs can
only provide symptomatic treatment of AD (Table 1), instead of curing or preventing this
devastating disease.

Microglia play role as the resident immune cells of the central nervous system
(CNS) [11,12]. Self-renewal and homeostasis of microglia is maintained via various
factors, such as macrophage-colony stimulating factor and transforming growth factor
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signaling [13–15]. Microglia play crucial roles in CNS tissue maintenance, pathogen defense,
and injury response [16,17]. In addition, they play roles in the developmental sculpting
of neural circuits via engulfing and removing unwanted synapses and neurons [18,19].
Microglia have multifaceted roles in the course of AD because of their various phenotypes
and a range of activation pathways. After pathological stimulation, extremely branched
microglia have the capacity to alter to an amoeboid form [20,21]. In aging brains, microglia
have reduced level of branching that decreases their capacity of surveillance, which can
further lead to impaired homeostatic functions [22–24]. In diseased brains, morphology
of microglia differs owing to the spatial location and AD stage. Amyloid plaque-linked
microglia also go through dramatic and morphological alterations, while plaque-distant
microglia exhibit minor alterations over time [25]. As compared to the brains at earlier
AD stages, microglia in Braak stage V–VI brains possess more intense morphological alter-
ations [26]. The progressive variety in microglial structure may take place because of the
duration and intensity of the pathological environment [27], however this may also take
place because of the differences in responses of microglia to different stimuli including tau
or Aβ aggregation [28]. It has been reported that dystrophic microglia emergence precedes
tau pathology development [29,30].

Soluble form of hyperphosphorylated tau may trigger the phenotypic alteration in
microglia, which can further cause loss of immunosurveillance activity and mediate AD
progression via the formation of NFTs [26]. Collectively, these findings suggest that pheno-
typic alterations in microglia including behavior, proteomic signatures, and morphology
are linked with AD progression [31,32]. It has been revealed that M1 microglia secrete
various inflammatory chemokines and cytokines, which can result in neuronal death and
inflammation (Figure 1) [33], whereas tissue repair and maintenance are linked with alterna-
tive M2 microglial activation [34]. In addition, M2 microglia mediate neuroprotection and
anti-inflammatory effects, whereas M1 microglia mediate neurotoxicity and inflammation.
Indeed, both of these phenotypes play roles in the NDs, thus microglia have the capacity to
play role as a double-edged sword in NDs [35]. Therefore, precise regulation of microglia
activation is important for the normal activity of microglia to prevent NDs and maintain
brain homoeostasis [36].

Figure 1. Schematic description of M1 and M2 polarization of microglia and their immunoregulatory
functions.

In AD mice, parabiosis studies showed that microglia are responsible for the elevated
level of myeloid cells found in brains containing plaque pathology, along with the negligible
impact of infiltrating macrophages [37]. In this review, we have highlighted the molecular
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pathogenesis of AD, microglial functions in the adult brain, the effect of microglia in
the aging brain, and the effect of microglia in AD. Furthermore, we have focused on
the importance of targeting microglia for AD treatment. Information for the review was
gathered from a variety of sources and databases, including Science Direct, Google Scholar,
PubMed, and Scopus. Several keywords were utilized in this study, including Microglia,
Alzheimer’s disease, amyloid-beta, brain, Aβ plaques, tau protein, neuroinflammation,
therapeutics, CSF1R, immunoreceptors, etc. The data were gathered from manuscripts,
theses, books, book chapters, conference proceedings, and other publications published
till 2022.

Table 1. Currently available therapies for Alzheimer’s disease treatment.

Drug Approved
Indication Mode of Action Dose Titration Scheme References

Memantine
Moderate-to-severe
Alzheimer’s disease

(AD)

Non-competitively
antagonize

N-methyl-D-aspartic
acid receptor

5–20 mg/day

Initially 5 mg/day,
subsequently increase

5 mg at weekly intervals
to a maximum dose of

20 mg/day

[2,38–43]

Galantamine Mild-to-moderate
AD

Selectively, reversibly,
and competitively

suppress AChE
16–24 mg/day

Initially 8 mg once per
day for four weeks,

subsequently increase to
16 mg once per day for
minimum four weeks;

maintenance therapy is
16–24 mg once per day

[38,39,42–44]

Rivastigmine Mild-to-moderate
AD

Pseudo-selectively
and irreversibly

suppress butyryl-
cholinesterase

and AChE

1.5–6 mg/day

Initially 1.5 mg two times
per day and the dose can
be increased up to 1.5 mg

two times per day at
intervals of minimum
two weeks as per the

tolerance; the maximum
dose is 6 mg two times

per day

[38,39,42,43,45]

Donepezil All stages of AD

Selectively,
non-competitively,

and reversibly
suppress AChE

5–10 mg/day

Initially 5 mg/day; if
necessary, the dose can be

increased up to 10 mg
after 1 month

[38,39,42,43,46,47]

2. Molecular Pathogenesis of Alzheimer’s Disease

AD is widely known as a multifactorial and complex ND [48]. Several factors play
roles in AD pathogenesis including Aβ generation, hyperphosphorylated tau, neuroin-
flammation, endoplasmic reticulum stress, aberrant mitochondrial activity, and elevated
oxidative stress (OS) [49]. Elevated OS is regarded as one of the key role players in AD
pathogenesis [50]. OS can take place owing to the excessive generation of reactive oxygen
species (ROS). ROS can be generated in the case of various normal physiological settings
(for example- during cellular metabolism in the mitochondria), whereas the excessive level
of ROS can be generated during a diseased state [51]. It has been observed that mitochon-
drial dysfunction or decreased function of various endogenous antioxidants including
catalase, glutathione, and superoxide dismutase is responsible for ROS generation [51].

Excessive levels of ROS generation can lead to DNA damage, malonaldehyde (MDA)
generation, lipid oxidation, and modulation of the peroxy-nitrite (ONOO) generation via
controlling the inducible nitric oxide synthetase (iNOS) transcription. Therefore, elevated
levels of ONOO, iNOS, and ROS can result in the generation of reactive nitrogen species
(RNS), which can ultimately play roles in AD pathogenesis [50]. It has been observed that
elevated levels of RNS and ROS can cause activation of glial cells, NLR family pyrin domain
containing 3 (NLRP3) inflammasome modulation, initiation of various neuroinflammatory
signaling pathways (TLR-4/p38 MAPK/NF-kB), and induce the generation of NFT and
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Aβ via controlling the Nrf2/JNK/Wnt/GSK-3β pathways [52–54]. Interestingly, elevated
levels of nitrative stress and OS can react with amyloid precursor protein (APP) and various
enzymes that are linked with the Aβ generation and therefore can modulate the deposition
and generation of Aβ [55].

In a normal brain, Aβ plays several neurophysiological roles and its clearance from
the brain takes place via several processes. APP is regarded as the key role player in Aβ

generation and clearance. In addition to α, β, and γ secretases, APP is also linked with
Aβ homeostasis [56,57]. It is widely known that β and γ secretases are accountable for
the Aβ production. On the other hand, low-density lipoprotein receptor-related protein is
accountable for Aβ clearance from the brain and transferring it into the systemic circulation,
where it gets excreted through hepatic and renal metabolic pathways [58]. Nonetheless, an
elevated level of RNS and ROS causes Aβ generation by inducing the catalytic effects of β
and γ secretases, while this elevated level limits LPR-caused Aβ excretion and therefore
elevates the deposition and generation of Aβ [59].

3. Functions of Microglia in Healthy Adult Brain

In an adult brain, microglia exist in a sedentary or resting condition, however in this
condition, they keep monitoring the healthy brain for any unwanted situation. It has
been observed that during such inspections, microglial processes directly interact with
synapses [60]. Furthermore, in a healthy brain, the resting microglial cells reside in strategic
areas throughout the spinal cord and brain to identify and fight against infections [61].
In resting conditions, microglia secrete several neurotrophic growth factors to improve
neurogenesis and also to mediate the survival of neurons [62]. The resident microglia get
induced during brain insults and NDs and further get transformed into reactive or activated
microglia. Moreover, during these conditions, microglia secrete numerous reactive free
radicals, prostanoids, chemokines, matrix proteins, growth factors, and inflammatory
molecules, which further play roles in cell death and neuronal dysfunction or mediate the
healing process of injured tissues [63]. Interestingly, the (beneficial or harmful) activity of
microglia relies on the injury and extent of related microglial activation. Various studies
have reported the capacity of adult brain microglia in re-establishing their normal density
if reduced experimentally [15,64].

In addition, damaged and/or old microglia get replaced with new healthy microglia
during aging and disease conditions. In the adult brain, microglia help in tuning synapse
strength and regulating long-term potentiation (LTP), which is accountable for constant
long-term neural networks [65,66]. In mature CNS, microglia maintain the synaptic plastic-
ity via secreting several soluble molecules that are accountable for controlling memory and
learning and also for increasing LTP responses mediated by N-methyl-D-aspartate (NMDA).
Microglia also mediate the basal glutamatergic signaling and regulation of GABAergic
transmission via adenosine triphosphate (ATP) and brain derived neurotrophic factor
(BDNF) [67,68]. BDNF is important for the phosphorylation of tyrosine kinase B, which
is accountable for synaptic plasticity. Mouse models with microglia depletion exhibited
decreased capacity in several learning tasks and reduced levels of motor learning linked
with synaptic formation. Collectively, these findings suggest that microglia are crucial for
synaptic remodeling and learning [64]. Microglia also play roles in activity-dependent
structural remodeling driven via age-related factors and sensory input [60,69]. In Figure 2,
we have summarized the beneficial effects of microglia in healthy adult brains.
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Figure 2. The beneficial effects of microglia in healthy adult brains.

4. Effect of Microglia on Aging Brain

Aging impairs the functions of tissues and cells because of the decreased level of
cellular components and also due to the intracellular deposits of distorted organelles and
macromolecules. In an aged brain, the immune system works in an incongruous pattern,
which makes it more vulnerable to age-related dysfunctions and damages [70]. In the
brain, these aforesaid events can further lead to microglial dystrophy, which is a sign
of microglial senescence [71]. It has been reported that microglia become more reactive
during aging [72,73]. During aging, microglia show an amoeboid-like structure and express
elevated levels of cluster of differentiation 14 receptors, Toll-like receptors 4, and major
histocompatibility complex class II antigens on their surface. In the healthy senile brain of
aged mouse models, microglia were found to express increased levels of anti-(TGF-b, IL-10)
and pro- (TNF-a, IL-1b, IL-6) inflammatory cytokines [73,74].

Aging seems to play a role as a priming stimulus to microglia like NDs. Aged mi-
croglia induce the release of an increased level of proinflammatory cytokines owing to any
kind of infections, injury, and changes in the brain. Stimulation of microglia and weakened
microglial response take place because of the age-linked alterations in microglial regu-
lation [75]. Numerous studies have observed in aged individuals exposed to peripheral
stimulation that an increased level of induced microglia is accountable for the elevated
behavioral alterations including maladaptive sickness response [76]. In the aged brain,
elevated cytokine release in response to altered immune response is also accountable for
the cognitive deficit [77].

5. Role of Microglia in Alzheimer’s Disease

Microglia have a significant contribution in maintaining brain homeostasis, including
maintenance of CNS integrity, providing protection to the CNS from pathogenic attacks,
and surveying the whole brain parenchyma. Nonetheless, the homeostatic roles of microglia
are lost in AD. Numerous findings have suggested that weakened or diseased microglia
have significant contributions in AD pathogenesis. In Table 2, we have summarized both
the protective and pathological roles of microglia in AD pathogenesis.



Molecules 2022, 27, 4124 6 of 19

Table 2. The protective and pathological roles of microglia in AD pathogenesis [78].

Event Mediator Effect on Microglial Function References

Microglial mitophagy
High mobility group box 1/receptor
for advanced glycation endproducts

signaling mechanisms

Significant blockage of late-stage
mitophagy in microglia [79]

Role of microglia in amyloid
beta (Aβ)

Apolipoprotein E Gene Apolipoprotein E ε4 genotype is related
to diminished Aβ plaques [80]

Receptor for advanced glycation end
products Exerts dual effects in Aβ phagocytosis [81]

Scavenger receptor class A
Mediates microglial adhesion to Aβ
and elevates the level of Aβ uptake

by microglia
[82]

Class B scavenger receptor Exerts dual effects in Aβ phagocytosis [83]

Triggering receptor expressed on myeloid
cells 2 Gene Exerts dual effects in Aβ phagocytosis [84]

Complement C3b/C4b Receptor 1 Gene Mediates microglia-mediated
Aβ phagocytosis [85]

CD33 Gene Decreases microglia-mediated
Aβ phagocytosis [31]

ATP Binding Cassette Subfamily A
Member 7 Gene

Mediates microglia-mediated
Aβ phagocytosis [86]

Role of microglia in
neuroinflammation

C-X3-C Motif Chemokine Receptor 1
Deficiency of this inflammatory

adipose chemokine system
deteriorates tau phosphorylation

[87]

NOD-like receptor family pyrin
domain-containing 3

Exacerbates inflammatory response
mediated by microglia [88]

Suppressors of cytokine signaling
Shows protective properties by

balancing the level of
inflammatory response

[89]

Role of microglia in
tau pathology

Triggering receptor expressed on myeloid
cells 2 Gene

Mediates intraneuronal
tau aggregation [90]

Apolipoprotein E Gene
Apolipoprotein ε4 genotype

significantly worsens
neurodegeneration mediated by tau

[91]

Colony-stimulating factor 1 receptor

Suppression of colony-stimulating
factor 1 receptor results in the

reduction of tau-mediated
neurodegeneration

[92,93]

5.1. Microglial Mitophagy

It has been observed that induction of mitophagy may exert some beneficial effects in
microglia including an ameliorated microglial function to phagocytose and suppression of
neuroinflammation. In the brains of APP/PS1 mice, increased levels of mitophagy elevated
the expressions of Aβ within microglia [94], which further indicates that elevated level of
mitophagy can enhance or activate microglia-mediated phagocytosis and Aβ clearance in
case of AD. These findings suggest that suppression of AD-associated pro-inflammatory
responses, such as caspase-1 and NLRP3 can decrease the level of Aβ pathology [95]. Inter-
estingly, microglia from NRLP3 and caspase-1 knock-out mouse models exhibit elevated
phagocytotic function. Variations in mitophagy have been observed in the aging process
and age-associated diseases [96,97]. In premature aging models, mitophagy markedly
affected the survival and functions of neurons [98,99].

5.2. Role of Microglia in Amyloid Beta

Amyloid beta (Aβ) is derived from the amyloid precursor protein that plays a crucial
role in AD pathogenesis [100]. Aβ plaques are formed because of the aberrant aggregation
and accumulation of Aβ and these plaques are considered as one of the major pathological
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AD hallmarks [101]. Common Aβ subtypes including Aβ1–40 and Aβ1–42 also play
crucial roles in AD development. Aβ oligomers have a significant contribution in early AD
stages, whereas Aβ fibers have a significant contribution in prolonging the inflammatory
response. It has been reported that activated microglia can generate an increased level
of glutamic acid, which is induced via NMDA receptor through signaling mechanisms,
that eventually can result in toxicity [102]. Outside the synapse, Aβ could be induced to
elevate the deposition via the activated NMDA receptor [103]. Microglia possess various
receptors on their surfaces that interact with Aβ and play role in chemotaxis to microglia,
including receptor of advanced stage glycosylation end production and scavenger receptor
(SR) [104]. It has been observed that macrophage colony-stimulating factor also plays role
in chemotaxis, which is released via microglia and activated via Aβ. Various chemotactic
factors including monocyte chemoattractant protein-1 (MCP-1) induce microglia to gather
in Aβ deposition [105]. Activated microglia might involve themselves in Aβ phagocytosis
via SRs and cause Aβ hydrolysis via the secretion of insulin hydrolytic enzymes, alpha
secretases, and metalloproteinases [106].

5.3. Effects of Microglia in Tau Protein

NFTs are regarded as a major feature of AD pathogenesis. In normal conditions, tau
interacts with tubulin and mediates microtubule stability and polymerization. Tau is a
phosphorylated protein. When tau gets dissociated from microtubules in AD patients, it
may become converted from the soluble form to the insoluble form, which can further
lead to the formation of NFTs [107]. In nerve cells, an increased level of reactive microglia
around tau has been reported in various animal models including P301Stau transgenic
mouse models [108]. Furthermore, it has been revealed that the inflammation factor
has the capacity to alter the function of related kinases, which can further result in tau
phosphorylation [109]. In a study, Sy et al. [110] reported that the alteration of tau from a
soluble form to an insoluble form in AD transgenic mice was linked with the inflammatory
response and over-activity of glycogen synthase kinase-3 (GSK-3).

5.4. Effect of Microglia in Neuroinflammation

It is now well known that neuroinflammation has significant role in AD [111,112].
Furthermore, microglial activation precedes tau and Aβ pathologies within the brain
of animal models and AD patients [113,114]. In AD brains, elevated concentrations of
various inflammatory mediators including IL-1β have been repeatedly observed [115].
Inflammasomes are multi-protein complexes that have contributions in inflammation
pathways in the cells. Following exposure of cells to danger-associated and pathogen-
associated molecular patterns, microglia get activated and mediate Caspase-1 cleavage
and secrete various inflammatory cytokines including IL-18 and IL-1β [116]. It has been
observed that NLR Family Pyrin Domain Containing 1 (NLRP1) and NLRP3 are expressed
in microglia and neurons in the brain [117]. Both NLRP1 and NLRP3 were found to be
over-activated in the case of AD [118,119]. In microglia, Aβ can act as a strong activator
of inflammasomes [119]. After microglia-mediated phagocytosis, Aβ triggers lysosomal
injury and Cathepsin B leakage into the cytosol, which further results in activation of
inflammasomes [119].

One of the major roles of microglia is responding against physical and immune-
mediated injuries in the brain. In addition, microglia regulate the stress response against
multiple pathological triggers in case of CNS disorders [120,121]. Without a cellular messen-
ger, physiological responses towards infections in the periphery are mediated by microglia
directly in the CNS [122], a response which markedly decreased after depletion of mi-
croglia [123]. It has been reported that the tendency of the brain to spread an inflammatory
response is markedly elevated naturally with the aging process [124]. These triggers include
ischemia or trauma-linked physical injury, cellular debris derived from neurodegeneration,
protein aggregation (for instance amyloid plaques), CNS infections, and multiple sclero-
sis [125–128]. Furthermore, microglia possess various purinergic receptors that react to
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extracellular ADP and ATP, which are signs of potential cellular damage and necrosis [129].
After activation, physiological functions of microglia are changed, characterized via al-
terations in structure, along with elevated levels of cell surface receptors and increased
expressions of cytokines and chemokines, all are reliant on the inducing events [130]. It
has been confirmed by various studies that activation of microglia results in neurotoxic
effects and disrupted synaptic activity, which can eventually result in cognitive deficits
and neurodegeneration [131–135]. Nonetheless, in case of neuroinflammatory conditions,
transient activation of microglia can be beneficial, since this activation can mediate the re-
pairing and survival of neurons after brain damage via various anti-inflammatory signaling
pathways [136,137].

5.5. Detrimental Activities of Microglia in AD

Even though various studies have revealed that appropriate microglial activity can
provide protection against AD, however numerous studies have demonstrated that uncon-
trolled microglial function can be detrimental to neurons in the case of NDs. It has been
reported that Aβ plaques appear a long time before clinical AD symptoms, however loss
of synapses and tau pathology play roles in cognitive deficit during the progression of
AD [138]. Microglia also release several toxic factors that can indirectly or directly damage
neurons [17,139]. In Figure 3, we have summarized the detrimental roles of microglia
in AD.

Figure 3. The detrimental roles of microglia in Alzheimer’s disease.

6. Targeting Microglia for the Treatment of Alzheimer’s Disease

Numerous studies are ongoing to reverse or stop AD pathogenesis, however only a
few concrete findings have resulted in the clinical treatment. Microglia play significant roles
in health and diseases. On the other hand, dysfunctional microglia lose their phagocytic
ability and consequently induce inflammatory pathways that worsen AD pathogenesis.
Therefore, the development of therapies by targeting microglia might be a novel approach
in AD treatment.

6.1. Therapeutics to Modify Microglia

Microglia play dual roles in the progression of AD. It has been observed that early
activations of microglia exert endogenous anti-inflammatory effects and neuroprotective
activities via mediating Aβ clearance. Nonetheless, the load of Aβ increases with the
advancement of AD. Furthermore, over-activated microglia obtain a pro-inflammatory
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phenotype, which further mediates the accumulation of Aβ and hastens AD pathogenesis.
Thus, replenishing healthy microglia or removing dysfunctional microglia might have the
potential to be used as novel AD therapies (Table 3). Various studies have confirmed that
depleting microglia have significant effects in AD transgenic mice [140–143].

Table 3. Microglial drug targets in Alzheimer’s disease treatment [78].

Therapeutic Approaches Therapeutics Mechanisms References

Therapies targeting inflammatory
response in microglia

Nimodipine, edaravone,
minocycline, JC-124, MCC950,

pioglitazone, ibuprofen

Amelioration of over-activated
microglia and suppression of

microglia-linked
inflammatory responses

[104,144–155]

Therapies targeting microglial
immunoreceptors

AL002c, AL002a, AL002,
monoclonal antibody 4D9

Improvement of TREM2 function
to elevate microglial reactions

towards Aβ
[156–159]

Lintuzumab, P22
Suppression of CD33 function to

elevate the level of Aβ
phagocytosis

[160,161]

Microglia modifying therapies

Inhibitors of colony-stimulating
factor 1 receptor:

PLX5622, PLX3397
Reducing dysfunctional microglia [141,142]

Stem cell therapy Resupplying healthy microglia [92,162–168]

6.1.1. CSF1R Inhibitors

The receptor of the colony-stimulating factor-1 (CSF1R) plays a crucial role in the
development and survival of microglia, therefore chronic continuous administration of
CSF1R inhibitors might be an effective and non-invasive method to selectively remove
dysfunctional microglia. In mouse models, the number of microglial cells was decreased
by around 70–80% after 3 months of administration of the selective CSF1R inhibitors
including 5XFAD and PLX3397 [141]. Prolonged administration of PLX3397 in 5XFAD
transgenic mouse models ameliorated cognitive deficit and amyloid pathology in the
brain areas affected by AD [141]. It has been reported by an in vivo study that PLX3397
inhibited propagation of tau and triggered microglial depletion, which further resulted in
neuroprotection [140]. PLX5622 (another CSF1R inhibitor) showed good brain-penetration
activities and oral bioavailability. Moreover, chronic PLX5622 administration (until 4 or
7 months of age since 1.5 months of age) in 5XFAD mouse models resulted in the formation
of Aβ plaques [142]. A reduced level of overall plaque load was also observed after blocking
the CSF1R [143]. In 5XFAD transgenic mouse models (4 months old), ablation of microglia
in Aβ plaque deposits during the progression of AD pathogenesis resulted in alteration of
plaque structure from compact to diffuse. Interestingly, even during the peak period of Aβ

plaque formation, microglia have a significant contribution in limiting the expansion of
Aβ plaques.

Deletion of an enhancer of CSF1R, Fms intronic regulatory element, resulted in
microglia-deficient animal models [169]. Under the control of the CX3CR1 (C-X3-C Motif
Chemokine Receptor 1) promoter, Cre-induced recombination resulted in the selective ex-
pression of the diphtheria toxin receptor via microglia. Microglia were selectively removed
by around 80% after the treatment with diphtheria toxin [170]. In AD, genetic interferences
might provide a more instinctive method to explore immunological and physiological
microglial functions. Even though ablation of microglia might be a novel option in AD
treatment, various factors are needed to be evaluated and discussed, for instance accu-
rate timing of microglial depletion and functional status of the microglia at certain AD
stages. Therefore, key challenges must need to be dealt prior to the clinical availability of
these therapies.
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6.1.2. Stem Cell Therapy

Replenishing healthy microglia might be beneficial in improving AD pathogenesis.
Furthermore, stem cell transplantation has the therapeutic potential to repair the dysfunc-
tional microglia in case of AD. Several microglia-like cells have already been derived from
human stem cells, such as embryonic stem cells and induced pluripotent stem cells [162,163].
It has been observed that expression signatures of stem cell-derived microglial cells are sim-
ilar to purified human fetal microglia and these stem cell-derived microglial cells respond
rapidly to harmful stimuli and show effective phagocytosis [162–164]. After transplantation,
stem cell-derived microglia have the capacity to survive and integrate into the brains of
mouse models [92]. Multiple in vivo studies have confirmed the neuroprotective properties
of transplanted stem cells. In transgenic mouse models of AD, stem cell therapies improved
memory impairments and associated neuropathology [165,167,168].

6.2. Targeting Microglial Immunoreceptors
6.2.1. Targeting TREM2 Gene

TREM2 and CD33 have been widely studied owing to their roles as crucial AD risk
genes. It has been demonstrated that TREM2 is essential for the response of microglia to
Aβ [89,171]. Various agonistic antibodies of TREM2, such as AL002a [157], AL002c [158],
antibody 2 [156], and antibody 1 [156] exerted neuroprotective properties by elevating
microglial responses to Aβ and via improving Aβ pathology. In a phase 1 clinical trial,
clinical variants of AL002 and AL002c were found to be better tolerated [158]. It has
been reported that reduction of proteolytic shedding can improve TREM2 function [159].
Interestingly, 4D9 (a monoclonal antibody) stabilized expressions of TREM2 on the cell
surface via bivalent binding and decreased TREM2 shedding. Moreover, 4D9 increased
in vitro and in vivo Aβ phagocytosis and ameliorated the microglial response to Aβ [159].

6.2.2. Targeting CD33 Gene

CD33 gene polymorphisms are associated with AD pathogenesis and the domain for
sialic acid-binding might be a potential target for CD33-mediated inhibition of Aβ phago-
cytosis [172]. Therefore, targeting the domain for sialic acid binding might be an auspicious
strategy of AD treatment. P22 is a novel subtype-selective sialic acid mimetic [161]. In a
CD33-dependent manner, P22 conjugated microparticles increased Aβ phagocytosis. In
addition, CD33 inhibitory antibodies might also provide resistance to the neurotoxic prop-
erties of CD33. CD33 has also been identified as one of the potential targets for potential
AD treatment [160]. On the other hand, multiple existing CD33 inhibitory antibodies might
also be repurposed as therapies to treat AD. More studies are required to validate and
evaluate the probability of utilizing antibodies for AD treatment.

6.3. Targeting Inflammatory Response Mediated by Microglia
6.3.1. Non-Steroidal Anti-Inflammatory Drugs

Already a large number of studies have explored the use of non-steroidal anti-inflam-
matory drugs (NSAIDs) in AD treatment. Chronic administration of NSAIDs can improve
AD pathogenesis. Ibuprofen (one of the most commonly used NSAIDs) has the ability to
decrease the levels of proinflammatory cytokines, microglial activation, and Aβ plaque load
in vivo and in vitro [151,173–175]. It has been observed that NSAIDs-mediated neuropro-
tective properties seem to be linked with peroxisome proliferator-activated receptor-gamma
(PPARγ). After activation by NSAIDs, PPARγ can exert transcriptional regulation via sup-
pressing the expressions of pro-inflammatory genes [174]. Therefore, pioglitazone (an
agonist of PPARγ) was investigated in clinical AD research [150,152], but the related phase
III trials were terminated because of its efficacy [176,177].

6.3.2. NLRP3 Inflammasome Inhibitors

Activation of the microglial inflammasome (particularly NLRP3 (NOD-, LRR- and
pyrin domain-containing protein 3) inflammasome) has the ability to induce AD pathogen-
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esis. The NLRP3 inflammasome is a multiprotein complex that possesses the procaspase-1,
adapter protein ASC, and NLRP3 protein. In AD, indirect or direct suppression of the
NLRP3 inflammasome decreases the microglial inflammatory responses [178]. Various
preclinical studies have also demonstrated the effectiveness of various inhibitors of NLRP3
inflammasome-targeting molecules [145,155,179]. Furthermore, the use of drugs targeting
the NLRP3 inflammasome has also gained attention. Minocycline (an anti-inflammatory
tetracycline) has the ability to cross the blood-brain barrier (BBB). Minocycline can decrease
the levels of microglial activation and Aβ accumulation, probably via suppressing the
NLRP3 inflammasome [146]. Various clinical studies have assessed the neuroprotective
properties of minocycline in AD treatment. Unfortunately, targeting the inflammatory
response via minocycline could not delay the advancement of cognitive deficits in AD
patients [180]. Edaravone is commonly utilized to treat cerebral infarction and it also
plays a role as a scavenger of free radicals. Growing evidence has demonstrated the
importance of the anti-inflammatory effects of edaravone on Aβ-induced microglial acti-
vation via suppression of NLRP3 inflammasome activation [181]. Moreover, numerous
in vitro and in vivo studies have demonstrated the neuroprotective properties of edar-
avone [147,153,154,181]. Since edaravone can effectively penetrate BBB, therefore it has the
potential to be an effective therapeutic agent for the treatment of AD.

6.3.3. P2X7R Inhibitors

Purinergic P2X receptor 7 (P2X7R) is a member of the purinergic receptor. P2X7R acts
as a strong NLRP3 inflammasome activator and plays role in facilitating the secretion of
pro-inflammatory mediators. Thus, antagonizing P2X7R might alleviate the AD-related
microglial inflammatory responses [144,178]. The expression of P2X7R was found to be
colocalized with Aβ plaque-linked microglia. In addition, an increased level of microglial
P2X7R expression was detected in the brains of AD patients as compared to controls [148].
These results also have been demonstrated in AD transgenic mouse models [182] and
in in vitro microglia cultures [148]. Oxidized ATP is a selective P2X7R inhibitor that can
counter microglial responses triggered via co-stimulation with selective agonists of P2X7R
and Aβ1–42 [148]. Brilliant blue G (another inhibitor of P2X7R) reduced microgliosis and
antagonized the inflammatory responses exerted by a P2X7R agonist in an AD rodent
model [149]. Nimodipine (a calcium channel blocker) showed neuroprotective properties
by suppressing the secretion of mature IL-1β in Aβ-induced microglia and decreasing the
levels of activated Nuclear factor-kappa B [144]. Even though antagonists of P2X7R have
exhibited promising effects in animal and cellular research, however such antagonists have
not been incorporated into clinical studies.

7. Future Directions

Microglia have long been assumed to have contributed in AD owing to their capacity to
respond to neuronal dysfunctions including tau and Aβ aggregates [183]. Since microglia
have capacities to react and sense their environment, therefore reactive microglia may
have a significant contribution at the early stages of AD progression and might result in
the detection of early AD biomarkers. Since microglia can crosstalk with non-neuronal
immune cells and cause functional alterations in astrocytes [184], therefore microglia can
be a potential drug target to limit or stop the progression of AD. Still, the precise roles of
various subtypes of reactive microglia in the case of AD are not clear and require more
studies. Multiple technological breakthroughs are now allowing researchers to explore the
roles of microglia in AD. Better knowledge regarding the roles of microglia in AD initiation
and advancement is estimated to renovate the interest of big pharmaceutical companies to
re-invest in this research field and development of novel anti-AD drug discoveries.

Multiple factors including communication with the periphery, health status, molecular
diversity, species, age, and sex need to be taken into consideration while evaluating the
role of microglial cells in AD. Indeed, advances in the areas of nanotechnology have em-
powered the development of nanotherapeutic platforms that may overcome the challenges
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of targeted drug delivery to the CNS. Without compromising stability, certain active thera-
peutic agents for regulation microglial activation pathways and for precise suppression
of toxic protein aggregations can also be combined in the nanoparticle structure. There-
fore, microglia-targeted nanotherapeutic particles and nanodrugs might be able to tackle
several pathological AD determinants and to mediate the shift of microglial phenotype
spectrum towards a more neuroprotective condition [185]. Considering all these factors can
be challenging, however this approach may lead to the development of novel therapeutic
approaches and decrease the AD-linked socio-economic burden [186].

8. Conclusions

Currently available therapies for AD provide symptomatic treatment only, instead of
targeting the underlying mechanisms associated with AD. Therefore, there is a strong need
for treatment options that can interact with the mechanisms of AD pathogenesis and slow
down its advancement. Neuroinflammation is one such downstream target, which is a
cause instead of a consequence of neurodegeneration. Mechanisms that are linked with AD
pathogenesis are highly complex and microglia are the key neuroinflammation modulators.
In addition, microglia have a significant contribution in triggering synaptic dysfunction and
loss; however, the precise and exact mechanisms are yet to be fully revealed. Thus, better
knowledge regarding the molecular and cellular mechanisms of the microglia–synapse
interaction is required on an urgent basis for the development of novel anti-AD therapies.
Moreover, more studies are required regarding whether or not the prevention of microglia-
mediated removal of synapses decreases cognitive deficits and averts neurodegeneration.
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