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Distribution patterns and variation 
analysis of simple sequence repeats 
in different genomic regions of 
bovid genomes
Wen-Hua Qi1, Xue-Mei Jiang2, Chao-Chao Yan3, Wan-Qing Zhang4, Guo-Sheng Xiao1,  
Bi-Song Yue3 & Cai-Quan Zhou5

As the first examination of distribution, guanine-cytosine (GC) pattern, and variation analysis of 
microsatellites (SSRs) in different genomic regions of six bovid species, SSRs displayed nonrandomly 
distribution in different regions. SSR abundances are much higher in the introns, transposable 
elements (TEs), and intergenic regions compared to the 3′-untranslated regions (3′UTRs), 
5′UTRs and coding regions. Trinucleotide perfect SSRs (P-SSRs) were the most frequent in the 
coding regions, whereas, mononucleotide P-SSRs were the most in the introns, 3′UTRs, TEs, and 
intergenic regions. Trifold P-SSRs had more GC-contents in the 5′UTRs and coding regions than 
that in the introns, 3′UTRs, TEs, and intergenic regions, whereas mononucleotide P-SSRs had the 
least GC-contents in all genomic regions. The repeat copy numbers (RCN) of the same mono- to 
hexanucleotide P-SSRs showed significantly different distributions in different regions (P < 0.01). 
Except for the coding regions, mononucleotide P-SSRs had the most RCNs, followed by the pattern: 
di- > tri- > tetra- > penta- > hexanucleotide P-SSRs in the same regions. The analysis of coefficient 
of variability (CV) of SSRs showed that the CV variations of RCN of the same mono- to hexanucleotide 
SSRs were relative higher in the intronic and intergenic regions, followed by the CV variation of RCN 
in the TEs, and the relative lower was in the 5′UTRs, 3′UTRs, and coding regions. Wide SSR analysis of 
different genomic regions has helped to reveal biological significances of their distributions.

Microsatellites (or Simple sequence repeats, SSRs) are composed of tandem repeats of 1–6 oligonucleotides. It 
has been reported that SSRs play an important role in chromatin fractions, gene expression and regulation, as 
well as transcription and protein function1,2. They are hypermutable loci due to strand slippage and unequal 
recombination lead to indels of repeat units3, which affect local structure of the DNA or protein sequences2. 
Variation of intronic SSRs can affect gene transcription and mRNA splicing4; Trinucleotide SSRs located in 
the UTRs (untranslated regions) or introns can also induce gene silencing4. Distribution of SSRs in the coding 
regions, 5′UTRs, introns, and 3′UTRs of genes are widely belived to affect transcription and translation as well 
as gene function4. The increase and decrease of SSR motifs in the 5′UTRs are known to regulate multiple char-
acteristics5–7. Tri- and hexanucleotide SSRs in genes encode into amino acid, which may play particular roles in 
protein structure8,9. SSRs in both coding and regulatory regions can alter the structure of proteins or DNA when 
they expand beyond a certain length10.

In silico mining and analysis of SSRs could help to disclose different aspects of the distribution and dynam-
ics of SSRs in eukaryotic genomes11. There are two SSR search methods: using a suitable search tool (MISA12, 
SciRoKo13, msatcommander14, GMATA15, Krait16) and accessing a relevant SSR database (MMDBJ, SSRD, 
TRBase, InSatdb, and TRDB)11. The mining and analysis of SSRs not only helps in addressing biological questions, 
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but also facilitates better utilizing of SSRs for multiple utilizations. The genome sequence data from six bovid spe-
cies: Bos taurus, Bos mutus, Bubalus bubalis, Ovis aries, Capra hircus, and Pantholops hodgsonii, were used in this 
study. We detected and characterized SSRs and their motifs, and surveyed their distributions and variations in 
intragenic (i.e., 5′UTRs, coding regions, introns, and 3′UTRs) and intergenic regions. Furthermore, we addressed 
the questions of whether the abundance of different SSR types and motifs are similar or not in different genomic 
regions and how GC-content of SSR differ in 5′UTRs, coding regions, introns, 3′UTRs, transposable elements 
(TEs, or transposon), and intergenic regions. This research may facilitate our insight into SSR distribution of dif-
ferent genomic regions in the whole genome and GC-content difference of mono- to hexanucleotide SSRs. Repeat 
copy number (RCN) can provide some markers for studying processes of mutation and selection. Intragenic- and 
intergenic-wide analysis of SSR sequences of different bovid species has also improved our understanding of 
biological significances of SSR distributions.

Results
Distribution of SSRs in different genomic regions of bovid genomes.  In the 5′UTRs, coding 
regions, introns, 3′UTRs, TEs, and intergenic regions of these bovids, P-SSRs was the most frequent type, and 
the least was in the complex SSRs (CX-SSRs, Fig. S1); the intronic and intergenic regions had the most abundant 
P-SSRs, followed by the pattern: 3′UTRs > 5′UTRs > TEs > coding regions (Fig. S1). The relative abundance of 
the same SSR types showed greatly similar in the same regions of bovid species.

In the 5′UTRs, tri- and mononucleotide P-SSRs were the most frequent type, followed by the pattern: 
di- > tetra- > penta- > hexanucleotide P-SSRs in the six bovid species (Fig. 1A and Table S1). In the coding regions, 
trinucleotide P-SSRs was the most frequent type, followed by the pattern: mono- > hexa- > di- > tetra- > pent-
anucleotide P-SSRs in these bovid species (Fig. 1B and Table S2). Pentanucleotide P-SSRs were relatively less 
frequent in the coding regions of these bovid species. In the 3′UTRs, mononucleotide P-SSRs was the most fre-
quent type, followed by the pattern: di- > tri- > tetra- > penta- > hexanucleotide P-SSRs, the least was in the hex-
anucleotide P-SSRs in these species (Fig. 1D and Table S4). In the TEs, mononucleotide P-SSRs was the most 
frequent type, followed by the pattern: di- > tetra- > tri- > penta- > hexanucleotide P-SSRs in the bovid genomes 
(Fig. 1E and Table S5). In the TEs, mononucleotide P-SSRs was more than three times as frequent as di- and 
tetranucleotide P-SSRs, and interestingly, the latter are much more frequent than trinucleotide P-SSRs. In the 
intronic and intergenic regions, mononucleotide P-SSRs was the most frequent type, followed by the pattern: 
di- > tri- > penta- > tetra- > hexanucleotide P-SSRs, the least was in the hexanucleotide P-SSRs in these bovid 
species (Fig. 1C, F, and Tables S3, S6). In the introns, mononucleotide P-SSRs were more than twofold as frequent 
as dinucleotide P-SSRs. Interestingly, in the intronic and intergenic regions pentanucleotide P-SSRs are much 
more frequent than tetranucleotide P-SSRs, and hexanucleotide P-SSRs were relatively less abundant.

A comparison among these regions shows that relative abundance of the same mono- to hexanucleotide 
P-SSRs showed great similarity in the same genomic regions of these bovid species. Remarkably, the total SSR 
abundance among all regions for these species is the most for the intergenic regions (Fig. 2). There are more than 
five times the difference between the total SSR abundance of the coding regions and intergenic regions. SSR dis-
tribution seems to be the similarity between intronic and intergenic regions of these bovid genomes. These results 
here indicated that SSRs are more frequent in non-coding regions than coding regions in these bovid species.

Diversity of P-SSRs motifs in different genomic regions of bovid genomes.  The abundance of 
different repeat motifs varied obviously with genomic regions in the six bovid species. In the 5′UTRs, the (A)n 
was the most frequent motif, followed by the motif (CCG)n, thirdly the (AGG)n, (AC)n, and (AG)n, fourthly the 
(AGC)n and (ACG)n (Fig. 2A). In the coding regions, the (AGG)n was the most frequent unit, followed by the 
motif (ACG)n, (AGC)n, and (CCG)n, thirdly the (ACC)n, (AAG)n, (A)n, and (ACT)n (Fig. 2B). In the introns, the 
(A)n was the most frequent unit, followed by the motif (AC)n, thirdly the (ACG)n, (AGC)n, and (AT)n, fourthly the 
(AG)n, (C)n, (AAC)n, (AAAT)n, and (AAAC)n, the (CG)n and (CCG)n were relatively infrequent in the intronic 
regions (Fig. 2C). In the 3′UTRs, the (A)n was the most frequent motif, followed by the motif (AC)n, thirdly 
the (AT)n, fourthly the (AG)n and (C)n (Fig. 2D). In the TEs, the (A)n was the most frequent motif, followed by 
the motif (AC)n and (AT)n, thirdly the (AG)n and (AAAT)n, fourthly the (C)n, (AAT)n, (AAC)n, (AGC)n, and 
(AAAC)n (Fig. 2E). In the intergenic regions, the (A)n was the most frequent motif, followed by the motif (AC)n, 
thirdly the (AT)n, (AGC)n, and (ACG)n, fourthly the (AG)n, (C)n, (AAAT)n, (AAC)n, and (AAAC)n (Fig. 2F). 
Therefore, the motifs of SSRs are not randomly distributed in the 5′UTRs, coding regions, introns, 3′UTRs, TEs, 
and intergenic regions. There is a noticeable excess of (CCG)n repeat units in the 5′UTRs and coding regions 
compared to the introns, 3′UTRs, TEs, and intergenic regions. The (AGG)n repeat unit is obvious relatively abun-
dant in the 5′UTRs and coding regions compared to other four regions. The (ACG)n and (AGC)n repeat units are 
relatively less abundant in the TEs compared to other five regions. The (A)n motif was significantly more frequent 
than the (C)n unit in the 5′UTRs, introns, 3′UTRs, TEs, and intergenic regions. The (AAT)n and (AAC)n units are 
relatively frequent in the TEs, where their abundance exceeds that of other trinucleotide motifs, and the (CG)n 
and (CCG)n motifs are relatively infrequent in the introns, TEs, 3′UTRs, and intergenic regions.

The GC-content of P-SSRs in different genomic regions of bovid genomes.  The GC-content var-
ied greatly among different genomic regions, but, in the same regions, the distribution of the GC-content is greatly 
similar. From the results (Fig. 3), we can know that 5′UTRs had the most GC-content (ranging 53.75–61.31%), 
followed by the coding regions (51.09–53.60%), next the 3′UTRs (42.61–45.18%) and TEs (42.53–42.83%), 
the least was the intronic (40.87–42.91%) and intergenic regions (41.39–41.84%). The distribution patterns of 
AT-contents (adenine-thymine content) showed greatly similar in the same genomic regions of these bovids 
(Table S7). From this we can know, high GC-content was distributed in exon-rich regions more frequently than 
other regions.
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The AT- and GC-content of P-SSRs were calculated in the 5′UTRs, coding regions, introns, 3′UTRs, TEs, 
and intergenic regions of six bovid species, which the results were shown in Fig. 4 and Tables S8–13. In the six 
genomic regions, mononucleotide P-SSRs had the least GC-contents and were significantly less than their total 
GC-contents in these bovid genomes. In the 5′UTRs, except for the mononucleotide P-SSRs, the GC-content of 
the remaining nucleotide motifs are more than their AT-content (Fig. 4A and Table S8). Trinucleotide P-SSRs 
had the most GC-content (79.49–86.15%), followed by the pattern: hexa- > penta- (and tetra-) > di- > mononu-
cleotide P-SSRs in the 5′UTRs of these bovid species (Fig. 4A). In contrast, the GC-content in the tri-, tetra- and 
hexanucleotide P-SSRs were more than their total GC-content in the 5′UTRs of these bovids (Fig. 4A). In the 
coding regions, the most GC-contents were in penta- and hexanucleotide P-SSRs, ranging from 68.00% (P. hodg-
sonii) to 92.80% (B. taurus), which were more than their AT-contents, and the GC-contents of mono-, di-, and 
tetranucleotide repeat types were significantly lower than their total GC-contents (61.67–70.58%) in these bovids, 
especially in mononucleotide P-SSRs (Fig. 4B and Table S9). In the 3′UTRs, except for the hexanucleotide P-SSRs, 
the GC-contents of the remaining nucleotide repeat units were less than their AT-contents, and mononucleo-
tide P-SSRs had the least GC-contents (Fig. 4D and Table S11). In the intronic and intergenic regions, the most 
GC-contents were all in trinucleotide P-SSRs, followed by the pattern: penta- (and hexa-) > di- > tetra- > mono-
nucleotide P-SSRs, and di-, penta-, and hexanucleotide P-SSRs are of similar GC-contents in the bovids (Fig. 4C, F 
and Tables S10, S13). In the TEs, we can know that the GC-contents of mono- to hexanucleotide P-SSRs are 

Figure 1.  Relative abundance of mono- to hexanucleotide P-SSRs in different intragenic and intergenic regions 
of six bovids. ABCDEF represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic regions, 
respectively.
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less than their AT-contents, and the most GC-contents were all in tri- and hexanucleotide P-SSRs, followed by 
the pattern: di- (and penta-) > tetra- > mononucleotide P-SSRs, di- and pentanucleotide P-SSRs are of similar 
GC-contents in these bovids (Fig. 4E and Table S12). In contrast, the GC-contents of di- to hexanucleotide P-SSRs 
were more than their total GC-contents in the 3′UTRs and TEs, and the GC-contents of di-, tri-, penta-, and 
hexanucleotide P-SSRs were also more than their total GC-contents in the intronic and intergenic regions. In the 
3′UTRs, introns, TEs, and intergenoic regions, their total AT-contents ranged from 71.20% to 89.29%, were obvi-
ously higher than their total GC-contents; whereas, in the coding regions, their total GC-contents ranged from 
61.67% to 70.58%, were obviously higher than their total AT-contents in the bovids. Therefore, the GC-content 
of P-SSRs is probably high in coding-rich regions, whereas, the AT-content of P-SSRs is probably quite high in 
non-coding regions of these bovids.

The analysis of coefficient of variability (CV) of SSRs.  The repeat copy numbers (RCN) of the same 
mono- to hexanucleotide SSRs had significantly different distributions in the different regions of these bovid 
genomes. The RCN of mono- and dinucleotide SSRs exhitbited great similar distributions and had the most 
counts of SSR loci in the intronic and intergenic regions, which were mainly distributed from 12 to 65 times and 
from 7 to 60 times, respectively (Fig. 5C, F and Fig. 6C, F). The RCN of mono- and dinucleotide SSRs were dis-
tributed from 10 to 60 times in the intronic and intergenic regions, which were clustered together and overlapped 
each other (Fig. 5C, F and Fig. 6C, F). The RCN of mono- and dinucleotide SSRs had the second most counts of 
SSR loci in the TEs, which were mainly distributed from 12 to 50 times and from 7 to 30 times, respectively. The 

Figure 2.  Distribution of different motfis of mono- to trinucleotide P-SSRs in different genomic regions of 
six bovid genomes. ABCDEF represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic regions, 
respectively.
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RCN of mononucleotide SSRs were distributed from 12 to 40 times in the TEs, which were clustered together 
and overlapped each other (Fig. 5C, F and Fig. 6C, F). In the 3′UTR regions, the RCN of mono- and dinucleotide 
SSRs displayed great similar among different bovid species, which were mainly distributed from 12 to 40 times 
and from 7 to 30 times, respectively (Fig. 5D and Fig. 6D). The RCN of mono- and dinucleotide SSRs had the 
fewest counts of SSR loci in the 5′UTRs and coding regions, which were mainly distributed from 12 to 30 times 
and from 7 to 20 times, respectively (Fig. 5A, B and Fig. 6A, B). The RCN of trinucleotide SSRs also showed great 
similar distributions and had the most counts of SSR loci in the intronic and intergenic regions, which were all 
mainly distributed from 5 to 40 times. The RCN of trinucleotide SSRs were distributed from 5 to 20 times in the 
intronic and intergenic regions, which were clustered together and overlapped each other (Fig. 7C, F). The RCN 
of trinucleotide SSRs had second most counts of SSR loci in the TEs, which were mainly distributed from 5 to 20 
times (Fig. 7E). The RCN of trinucleotide SSRs had the fewest counts of SSR loci in the 5′UTRs, coding regions, 
and 3′UTRs, which were mainly distributed from 5 to 12 times (Fig. 7A, B, D).

The RCN of tetra- and pentanucleotide SSRs had most counts of SSR loci in the intronic and intergenic 
regions, which were mainly distributed from 4 to 30 times (Fig. S2C, F and Fig. S3C, F). The RCN of tetra- and 
pentanucleotide SSRs also showed great similar distributions and had second most counts of SSR loci in the TEs, 
which were mainly distributed from 4 to 12 times (Fig. S2E and Fig. S3E). The RCN of tetra- and pentanucleotide 
SSRs had fewer counts of SSR loci in the 5′UTR and 3′UTR regions, which were all mainly distributed from 4 to 6 
times (Fig. S2A, D and Fig. S3A, D). The RCN of tetra- and pentanucleotide SSRs had fewest counts of SSR loci in 
the coding regions, which were mainly distributed from 4 to 5 times (Fig. S2B and Fig. S3B). The RCN of hexanu-
cleotide SSRs had most counts of SSR loci in the intronic and intergenic regions, which were mainly distributed 
from 4 to 15 times (Fig. S4C, F). The RCN of hexanucleotide SSRs had second most counts of SSR loci in the TEs, 
which were mainly distributed from 4 to 9 times (Fig. S4E). The RCN of hexanucleotide SSRs were usually less 
and had fewer counts of SSR loci in the 5′UTRs, 3′UTRs, and coding regions, which were mainly distributed from 
4 to 6 times (Fig. S4B).

The analysis of coefficient of variability (CV) of SSRs showed that the RCN of mono- and dinucleotide SSRs 
had relative higher variation in the 5′UTRs, 3′UTRs, TEs, introns, and intergenic regions of the same bovid 
species, followed by the CV pattern of RCN: trinucleotide SSRs > tetranucleotide SSRs > pentanucleotide 
SSRs > hexanucleotide SSRs (Fig. 8). In the coding regions, the RCN of mono- to trinucleotide SSRs had relative 
higher variation, followed by the CV pattern of RCN: hexanucleotide SSRs > tetranucleotide SSRs > pentanucle-
otide SSRs (Fig. 8). The CV variations of the same mono- to hexanucleotide SSRs showed a great deal of similarity 
in the 5′UTRs, 3′UTRs, and coding regions of these bovid genomes, which also showed similar in the intronic 
and intergenic regions, whereas they are slightly different from the CV variations of the same SSRs in the TEs 
(Fig. 8). The CV variations of RCN of the same mono- to hexanucleotide SSRs were relative higher in the intronic 
and intergenic regions, followed by the CV variation of RCN in the TEs, and the relative lower was in the 5′UTRs, 
3′UTRs, and coding regions (Fig. 8). It has been inferred that SSR mutational rates within genes are inconsistent 
with those for SSRs located in other genomic regions.

Discussion
Similarity and diversity of P-SSR motifs in different genomic regions.  It was presumed that SSR 
motifs were not distributed randomly in the different genomic regions and motif types may play important roles 
in gene expression and regulation17–20. The presence of SSRs in different genomic regions shows bias to some 
specific nucleotide motifs. The motifs of mono- to hexanucleotide P-SSR types showed distinct distributional 
patterns in the intragenic and intergenic regions of bovid species. In drosophila, coding regions exhibit a very high 
bias to (AGC)n, and very rare for (TGC)n

21. In the study, there is also a noticeable excess of (AGG)n repeat units, 
and the second most frequent units are constituted by the (ACG)n, (AGC)n, and (CCG)n in the coding regions 

Figure 3.  GC-contents of different intragenic and intergenic regions in six bovid species.
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compared to other genomic regions in the bovid species. The (CG)n are relatively frequent in the 5′UTRs, whereas 
their abundance are very little in the coding regions, introns, 3′UTRs, TEs, and intergenic regions of the bovid 
species, this is consistent with the intragenic and intergenic regions of primates22. The (A)n repeat units are the 
most abundant motifs in the 5′UTRs, introns, 3′UTRs, TEs, and intergenic regons of these bovid species, this is 
consistent with bovid geomes23. The second most frequent motifs are dinucleotide (AC)n repeats in the introns, 
3′UTRs, and intergenic regions of these bovid species, this is consistent with previous reports22,23. (ACG)n and 
(AGC)n motifs are comparatively frequent in intronic and intergenic regions of these bovid species, where their 
occurrence exceeds that of other trinucleotide repeat units. The (CCG)n motifs are the most abundant repeat units 
in 5′UTRs, the second in the coding regions; whereas the (CCG)n motifs are relatively infrequent in the introns, 
TEs, and intergenic regions, and also their abundance were less than that of other trinucleotide motifs in the 
bovid species. This is consistent with the different genomic regions of primates22. It has been demonstrated that 
the (CCG)n motif was significantly presented in the upstream regions of the genes24. The distributional pattern 
of SSR motifs in different genomic regions may be correlated with the present frequency of certain amino acids.

The variation of SSR abundance in different intragenic and intergenic regions.  It has recently 
been reported that the distribution of SSRs is nonrandom in the genome, and their abundances vary widely in 

Figure 4.  GC-contents of mono- to hexanucleotide P-SSRs in different intragenic and intergenic regions of 
six bovid species. ABCDEF represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic regions, 
respectively.
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different genomic regions22. Recent evidences have demonstrated that SSRs in different genomic regions play 
different functional roles. Many SSRs exist in ORFs of higher eukaryotes21,25–27. Consistent with previous stud-
ies in primates and plants22,27, SSR abundance differs in 5′UTR and 3′ UTR regions of these bovid genomes. In 
the primates, trinucleotide SSRs show around double greater frequency in the 5′UTRs than that in the coding 
regions, whereas the latter had much more frequent trinucleotide P-SSRs than that in the intron, 3′UTRs, TEs22. 
Dominance of trinucleotide SSRs over other nucleotide units in coding regions may be caused by frameshift muta-
tions to suppress non-trimeric SSRs in coding regions28. In Arabidopsis thaliana, low SSR abundances occurred in 
the centromeric region29. In Drosophila melanogaster, SSR distribution differs between X-chromosomes and auto-
somes30. Inconsistent with previous report25,27, the distributions of SSRs showed great similarity in the intronic 
and intergenic sequences of these bovid genomes. These reports suggest a significant heterogeneity of SSR distri-
bution in different genomic regions of organism genomes.

It has been reported that changes of SSRs are involved in several human diseases31–33. Our results showed 
that the abundance of different SSR motifs varies with the genomic regions. SSRs have been shown to be more 
abundant in non-coding regions than that in coding regions21,25,27,34. In the different genomic regions of the same 
bovid species, the introns, 3′UTRs, and intergenic regions had the most abundant P-SSRs, followed by the pattern: 

Figure 5.  Comparative analysis of repeat copy number (RCN) of mononucleotide P-SSRs in different genomic 
regions of six bovid genomes. ABCDEF represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic 
regions, respectively.
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5′UTRs > TEs > coding regions. There seem to be no distinct differences in P-SSR abundance between intronic 
and intergenic regions, which is consistent with previous report25. P-SSR abundance is the least in the coding 
regions, suggesting that low SSR abundance may decrease the evolvability of proteins. This may be related to the 
fact that SSR births/deaths were strongly selected against in coding regions35.

This evidence has been proved that the mutations of coding regions could cause protein functional changes, 
loss of function, and protein truncation4. In different repeat type of these bovid species, trinucleotide P-SSRs 
were the most abundant type in the coding regions, whereas mononucleotide P-SSRs were the most frequent type 
in the 5′UTRs, introns, 3′UTRs, TEs, and intergenic regions; pentanucleotide P-SSRs were the least in the cod-
ing regions, whereas hexanucleotide P-SSRs were the least in the 5′UTRs, introns, 3′UTRs, TEs, and intergenic 
regions. In Brassica rapa, Trinucleotide SSRs were also the most frequent type in the coding regions36. In the exon 
regions, mononucleotide P-SSRs were the most abundant, followed by the pattern: tri- di- > tetra- > penta- > hex-
anucleotide SSRs in these bovid species. The abundances of hexanucleotide P-SSRs were less in the introns than 
that in the exons in these bovid species, which was inconsistent with previous reports25. It has been reported that 
coding regions are preferentially selected with trifold nucleotide SSR motifs7,37–40 and suppressed non-trimeric 

Figure 6.  Comparative analysis of RCN of dinucleotide P-SSRs in different genomic regions of six bovid 
genomes. ABCDEF represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic regions, 
respectively.
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SSR repeat units, which can reduce potential translational frameshift mutations28. This evidence can contribute to 
explain why trifold nucleotide SSR repeat units are more frequent in coding regions than that in other genomic 
regions.

The distributional pattern of GC-content in different genomic regions.  Nucleotide composition 
influences SSR abundance, thus, the GC-content was examined in different genomic regions of six bovid spe-
cies. The GC-contents of six bovid genomes showed to be remarkably consistent, but GC-contents varied greatly 
among different genomic regions. In this study, 5′UTRs had the most GC-content, followed by the coding regions 
(51.09–53.60%), thirdly the 3′UTRs and TEs, the least was the intronic and intergenic regions. Thus we can know 
that high GC-content was frequently distributed in exon-rich regions, and the distribution of GC-content was 
uneven in the bovid genomes. This evidence was consistent with the GC-content distributional pattern of differ-
ent genomic regions in the primates22. Different classes of TEs tend to have bias for either GC-rich or GC-poor 
regions41. Ancestral Alu sequences have a high GC-content42,43. In the study, the repeat units of GC-richness 
were present in the 5′UTRs and coding regions, in which the GC-content were much higher than that in the 
remaining genomic regions (Fig. 4); whereas the motifs of AT-richness were present in the introns, 3′UTRs, TEs, 

Figure 7.  Comparative analysis of RCN of trinucleotide P-SSRs in different genomic regions of six bovid 
genomes. ABCDEF represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic regions, 
respectively.
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and intergenic regions, in which the AT-content were much higher than that in the 5′UTRs and coding regions 
(Tables S8–13). It has recently been reported that top SSR motifs have a direct positive relationship with the GC- 
or AT-content in different genomic regions44. In contrast, the gradient of average GC-content decreases from the 
5′UTRs to intronic regions by several percent to around 14.88% in these different genomic regions of the bovids. 
It has been reported that there is a gradient in the GC-content of Gramineae genes45. It has also been reported 
that SSR polymorphism was negatively correlated with the GC-content of the flanking regions of SSR locus46. 
Furthermore, the GC-content of different genomic regions in the genome could be used as a relative measure of 
mutation rate.

Association of SSRs with other sequence elements and their mutability.  SSRs associate charac-
teristically with different intragenic and intergenic regions in the genome. SSR abundance is considerably high in 
5′UTRs of plant genes47,48 and are relatively low in exonic sequences47. SSRs are richly distributed in the 5′UTRs, 
introns, 3′UTRs, and intergenic regions of primates, and are relatively few in the coding regions22. SSR distribu-
tion in introns is similar to that of the whole genome22,47. Genomic regions of SSR collection have been recognized 
in Arabidopsis thaliana49, Drosophila melanogaster50, and primates22. In 42 prokaryotic genomes, SSR distribu-
tions in coding regions were biased toward coding termini51. SSRs are also frequently found in the proximity 
of TEs52–54. It has been confirmed that SSRs are often associated with retrotransposons55, Alu elements, SINEs 
(short interspersed elements)56, MITES (miniature inverted transposable elements)47,55. (GAA)n were associated 
with Alu repeats56. Abundant trinucleotide SSRs are distributed near genes48,57, and tri- and hexanucleotide SSRs 

Figure 8.  The CV analysis of RCN of SSRs in different genomic regions of six bovid genomes. ABCDEF 
represent 5′UTRs, coding regions, introns, 3′UTRs, TEs, and intergenic regions, respectively.
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predominated in the coding regions of these bovids. In the study, we have demonstrated that SSRs are obvious 
correlated with TEs (Fig. 1E and 2E).

The birth or death of SSRs is seemingly regulated by polymerase slippage, point mutations, and other activities 
involving chromatin reorganization58,59. SSR loci have a high mutation rate (10−6 to 10−2/generation) which is due 
to strand slippage and unequal recombination leads to indels of repeat units3. The mutation rates associated with 
SSR loci are influenced by motif length, repeat number, and repeat type60–63. Mutation rates increase or decrease 
SSR repeat number, which are both frequent and reversible. Long SSR alleles have a downward mutation rates, 
which could result in a size constraint of SSRs64–68. Mutation rates also vary for different SSR loci within the same 
species69. There have been reported that a differential mutability rates for different SSRs occur in the genomes 
of two subspecies of rice47. Evolutionary dynamics of SSRs was regulated by their neighboring sequences63. SSR 
mutation rates vary obviously across the genomes. The abundance of tri- and hexanucleotide in coding regions 
also supported that specific selection against frameshift mutations in coding regions4,22,28. Trifold SSRs had not 
generated frameshifts through expansion of triplet SSRs, so that which would refrain from selective pressures in 
coding regions. However, non-trifold SSRs had to be subject to greater selection with the frameshift mutations28. 
RCN mutations of non-trifold SSRs in coding cause frameshifts, which can effectively inactivate gene expression 
or code for different or shorter protein sequences1. Therefore, mutation pressure contributed to the abundance 
of trifold SSRs in coding regions. SSR mutability per motif is relative higher at longer allele lengths70. Greater 
mutability per RCN was demonstrated in orthologous allele lengths between species70. These evidences have been 
demonstrated that SSR mutation process is great heterogeneous70, showing differences in mutability between 
different allele lengths and motif sizes and between species.

Material and Methods
The sequences of intragenic and intergenic regions.  We selected whole genome sequences of six 
bovids as subjects to analyze the SSR distribution of different genomic regions. The bovid genome sequences 
were downloaded in FASTA format from the Ensembl (http://asia.ensembl.org/index.html) and NCBI (https://
www.ncbi.nlm.nih.gov/). The sequences of the gene models, 5′UTRs, coding regions, introns, 3′UTRs, TEs, 
and intergenic regions were generated according to the positions in the genome annotations. The intergenic 
regions referred to the interval sequences between gene and gene that were not comprised of the introns, coding 
regions, UTRs, and other related sequences. SSRs can be grouped into six categories23,61,71, which were identified 
and scanned for SSRs of 1–6 bp using the software MSDB (Microsatellite Search and Building Database)72 and 
Krait16. To compare our results, the same tool and search parameters were used in the data analysis of these bovid 
genomes.

SSRs identification and investigation.  Since bovid species are large genomes, relatively systemic search 
criteria72 were adopted in the study. In this study, repeat units with being circular permutations and/or reverse 
complements of each other were grouped together as one repeat unit for statistical analysis73,74. For tetra- and hex-
anucleotide repeat units, relatively systemic combination criteria were applied23 in the process of filtration. For the 
sake of comparative analysis among different repeat types or motifs, relative abundance was determined, which 
means the number of SSRs per Mb of the sequence analyzed72,75. These total numbers have been normalized as 
relative abundance to allow comparison in the different genomic regions. In the four DNA bases, percentage of 
guanine (G) plus cytosine (C) was called GC-content in the analyzed sequence.

Variation analysis of SSRs.  In order to analyze the variation of RCN of different repeat SSR types in the 
different genomic regions, we introduce the CV, which the calculation formula is as follow:

xCV S/ 100%= × .

where S is the standard deviation of the RCN of one SSR, x  is the average of the RCN. The variation of RCN of two 
or more SSRs were comparative analyzed by the CV, which can eliminate the effect of different unit and mean, and 
is able to really reflect variation level of RCN of different SSRs.
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