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Abstract

Large sets of radiocarbon dates are increasingly used as proxies for inferring past popula-

tion dynamics and the last few years, in particular, saw an increase in the development of

new statistical techniques to overcome some of the key challenges imposed by this kind of

data. These include: 1) null hypothesis significance testing approaches based on Monte-

Carlo simulations or mark permutations; 2) non-parametric Bayesian modelling approaches,

and 3) the use of more traditional techniques such as correlation, regression, and AIC-

based model comparison directly on the summed probability distribution of radiocarbon

dates (SPD). While the range of opportunities offered by these solutions is unquestionably

appealing, they often do not consider the uncertainty and the biases arising from calibration

effects or sampling error. Here we introduce a novel Bayesian approach and nimbleCarbon,

an R package that offers model fitting and comparison for population growth models based

on the temporal frequency data of radiocarbon dates. We evaluate the robustness of the

proposed approach on a range of simulated scenarios and illustrate its application on a case

study focused on the demographic impact of the introduction of wet-rice farming in prehis-

toric Japan during the 1st millennium BCE.

1. Introduction

Radiocarbon dates have been used as a proxy for investigating past human population dynam-

ics for over three decades, but the last few years saw an exceptional increase in the number of

studies thanks to the broader availability and accessibility of large collection of 14C dates (e.g.

[1–6]) as well as dedicated software packages enabling the use of an array of new statistical

approaches [7–12]. The opportunities offered by this growth are unquestionable [13]; we are

no longer constrained by the arbitrary limits of regional relative chronologies, we can test the

supposed role of climate change on demographic processes [14–21], and pursue comparative

studies at continental [22–26] or even global scales [27].
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However, this endeavour comes with its own set of inferential challenges that have raised a

substantial amount of criticisms over the past few years [28–33]. On the one hand, the issue

concerns whether fluctuations in the density of radiocarbon dates truly reflect corresponding

changes in human populations [34]. The problem arises because the so-called ‘dates as data’

approach [35] is pragmatically vague on the definition of what the events associated with each
14C sample constitutes (cf. [30] for an early criticism on this issue). This assumption inevitably

leads to the question of what exactly is being counted, with both interpretative and methodo-

logical consequences (see for example the implications of ‘binning’ samples recovered from

the same context to control for inter-site variation in sampling intensity [8]). On the other

hand, the analyses of radiocarbon dates have also specific statistical challenges. Some, such as

the impact of sampling error, are not unique to this kind of data and although occasionally

ignored, can be tackled straightforwardly. Others, such as the systematic and idiosyncratic

errors introduced by the calibration process, are more complex and require the development

of bespoke solutions.

The most commonly adopted approach for examining the time-frequency of radiocarbon

dates consists of aggregating the calibrated probability distribution of all samples and generat-

ing what is commonly referred to as summed probability distribution of radiocarbon dates
(hereafter SPD). While this and similar approaches such as composite kernel density estimates

[36] do provide a quick way to visually assess the observed changes in the frequency of radio-

carbon dates, they ignore the issue of sampling error and calibration effects. As a result, visual

inspections of SPDs can be misleading and should never be used as the sole mode of assess-

ment of the available evidence. Some attempts have also been made to address the problem of

sampling error (e.g. via bootstrapping, [9, 21, 35]) or calibration effect (e.g. via moving win-

dow, [14, 22]), but none can satisfactorily solve all the problems simultaneously.

More formal statistical treatment of radiocarbon dates are clearly necessary for proper

inference, and while there have been a fairly large number of solutions, time-frequency of

radiocarbon dates have been generally analysed in three ways: 1) using Monte-Carlo simula-

tion or random permutation techniques to carry out null hypothesis significance testing

(NHST) [22, 37, 38]; 2) fitting Bayesian non-parametric models to reconstruct the underlying

‘shape’ of the probability distribution of the 14C dates [7, 11]; and 3) employing conventional

statistical methods (e.g. correlation and regression analyses, information-criterion based

model comparison, etc.) directly on SPDs (for example [14, 15, 19, 22, 39–43]). The first two

approaches can be somewhat limited in their scope but were designed to specifically address

issues pertaining to sampling error and calibration effects directly. The third group of applica-

tions offer a substantially wider range of applications and, in many cases, address more impor-

tant sets of research questions as they often embrace a model-based inference that could

potentially draw and expand from the rich literature of theoretical population models devel-

oped in ecology (see for example [15]). However, from a statistical viewpoint, these approaches

commonly hinge on the assumption that the vector of summed probability values per calendar

year can be directly and reliably used for statistical inference. As others have already recently

noted [10, 31] this is unwarranted, as it simultaneously ignores sampling error and calibration

effects.

This paper presents a new approach that addresses these concerns by considering the prob-

lem to be similar to the objectives and principles of Bayesian phase modelling [44–46]. More

specifically, we introduce a flexible family of bounded growth models with discrete time units

that can be fitted via Markov Chain Monte-Carlo (MCMC) and compared using the Widely

Applicable Information Criterion (WAIC, [47]). To determine the robustness and the poten-

tial of the proposed approach, we tested our new method on a series of simulated datasets and

a case study. The former was designed to determine whether our Bayesian inferential
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framework can reliably recover parameters of interest under controlled realistic scenarios. In

the latter, we employ our new method to explore the demographic consequences of the intro-

duction of irrigated rice farming in the island of Kyushu (south-west Japan) during the 1st mil-

lennium BCE, aiming to determine whether and when we can observe a shift in population

growth rate, and to measure the magnitude of the population boom promoted by the new sub-

sistence strategy.

1.1 Fitting and comparing demographic growth models using radiocarbon

dates

The core statistical challenge of SPD analyses is that the combination of sampling error and

the systematic measurement error introduced in the calibration process hinders our ability to

visually discern genuine fluctuation in the density of radiocarbon dates from those associated

with these and other factors [31, 48, 49]. The problem is further exacerbated by the fact that, in

contrast to typical distributions of archaeological samples, the true shape of the underlying

population distribution is unknown and reliable expectations cannot be presumed on the basis

of general principles such as the central limit theorem. As such, we have no intuition to aid

our visual assessments ― any peak or trough in the observed SPD can be plausibly interpreted

as evidence of a fluctuation in the frequency of radiocarbon dates and naively support the

claim for the existence of a population rise or fall. The problem has been widely discussed in

the literature [48–50], and has shown that in extreme cases, one can have synchronic peaks in

SPDs generated from samples from different continents purely as the consequence of the cali-

bration process (see Fig 2 in [8]).

A simple, visual assessment of SPD is thus unwarranted, and so is the direct use of SPD for

correlation and regression analyses. Tests on simulated datasets [31] have shown, in fact, that

simple regression analyses of time against corresponding summed probability values fail to

recover true slope values. Furthermore, because such an approach effectively implies as many

observation points as the number of years in the window of analyses, the actual number of

radiocarbon samples is not formally taken into consideration. The ultimate consequence is

that statistical measures such as standard errors of fitted parameters, P-values, and likelihood

estimates (and derived statistics such as AIC) are all biased [10].

A number of approaches have been introduced in the last few years to effectively tackle

these problems. One of the most commonly adopted solutions involves the use of Monte-

Carlo simulations for null hypothesis significance testing (NHST), whereby an ensemble of

SPDs generated from a particular growth model is compared against the observed data [22,

37]. The approach consists of sampling n calendar dates from the hypothesised growth model,

back-calibrate each sample in 14C age, calibrate back in calendar time, and aggregate to gener-

ate a putative SPD under the null hypothesis. The process is repeated multiple times, so that an

envelope of SPDs can be generated and compared to the observed data. The approach has

been subsequently extended to include post-hoc tests [51], mark-permutation tests for com-

paring different sample sets [38] including spatial locations [24], as well as different algorithms

for generating samples from the null model [8, 20]. The shared principle of all these

approaches is to treat SPDs as a form of test statistic rather than a direct proxy of demographic

fluctuations.

While the one-sample, MC simulation-based NHST is a convenient way to quickly assess

the presence of significant episodes of anomalies against a putative growth process, it is limited

by three issues. Firstly, the definition of the null model is central, and as such, detections and

interpretations of episodes of population ‘boom’ or ‘busts’ can be severely conditioned by its

choice. Secondly, the null hypothesis is typically based on a particular growth model (e.g.
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exponential, logistic, etc.), which parameter values are often derived by fitting the observed

SPD via regression analysis. Aside from issues of circularity, such a procedure implies that the

test is carried out on one particular case (i.e. a specific parameter combination) of a given

growth model and as such, its rejection (or ‘acceptance’) does not necessarily extend to other

parameter combinations of the same type of growth model. Furthermore, the potential biases

in regression-based fitting of SPDs [31] imply that there is no guarantee that the test is carried

out against the best parameter combination for a particular model (it is worth noting, however,

that the approach does not necessarily have to be based on parameter combinations derived by

regression-based fitting, and can easily be based on theoretical expectations or independent

proxies, see for example [52]). Thirdly, as with any other NHST approaches, there is a limited

inferential gain by simply rejecting (or failing to reject) particular null hypotheses. Clearly, no

time-frequencies of radiocarbon dates follow exactly the expected pattern from a given growth

model, and as such, when sufficiently large sample sizes are available, obtaining significant P-

values becomes trivial. This problem also applies to mark-permutation tests and their spatial

variants [24, 38], although these are not affected by how the null hypothesis is being defined.

A second group of approaches involves the direct reconstruction of the shape of the under-

lying time-frequency distribution through non-parametric Bayesian models. Examples of this

category include Bayesian KDE [7] and Gaussian mixture approaches [11] (see also Bchron-
Density function in the Bchron R package [53]). While these examples differ in key details, they

fundamentally share the same objective of inferring the shape of the underlying population

distribution whilst acknowledging the uncertainty associated with sampling and calibration.

The main advantage of these solutions is that they do not require the formulation of explicit

hypotheses and models, and as such, their outputs can replace the visual assessment of SPDs.

While some parameters, such as growth rates for user-defined intervals, can be extracted from

these models [11], these techniques are limited if one wishes to examine the impact of covari-

ates [15] or compare alternative growth models derived from explicit theoretical principles

[40, 43].

Two works have recently tackled these problems by offering a novel perspective that sub-

stantially differs from the NHST and the non-parametric approaches discussed above. The

first [12] treats the time-frequency of radiocarbon dates as a special case of a one-dimensional

temporal point process. The core concept of this method consists of a two-stage analyses

where calendar dates from observed calibrated radiocarbon dates are first sampled to generate

an ensemble of discrete count time-series that are then iteratively fitted using an inhomoge-

neous Poisson model. The solution offers the flexibility of generalised linear models whilst

accounting for the uncertainty associated with radiocarbon dates. As a result, one can virtually

fit any growth model, including those with external covariates. However, because at its core

this approach is estimating counts per time-unit, it does not discern evidence of absence from

absence of evidence (i.e. the sample size, in this case, is the number of time-units rather than

the number of radiocarbon dates) and further studies are required to establish its robustness

under small sample regimes.

Timpson and colleagues [10] have instead tackled the problem by using a maximum likeli-

hood approach. Their key insight was to solve the mathematically intractable problem of calcu-

lating the likelihood function of growth models by treating time as discrete rather than

continuous. By modelling the distribution of observed dates as a probability mass rather than a

probability density, they managed to compute likelihoods from the probability distribution of

calibrated dates. This enabled them to carry out model comparison via BIC and obtain esti-

mates of the uncertainty of the fitted parameters via MCMC. There are further advantages in

using a likelihood-based approach under this framework. One example explored by the

authors is the possibility to employ solutions such as continuous piecewise linear (CPL)
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models, which marry the flexibility of non-parametric approaches whilst returning interpret-

able and comparable parameters. Here we introduce a novel approach that combines this key

insight of using discrete probability distributions with the long-established Bayesian frame-

work for modelling archaeological phases [44, 46].

1.2 Bayesian analysis of bounded growth models

Bayesian analyses of archaeological phases treat observed radiocarbon dates as random and

independent samples from a probability distribution, most commonly a uniform probability

distribution with a start date a and an end date b. Thus, typically, the objective is to infer the

values of a and b given the observed data, constraints, and priors [44]. The approach can be

extended to a variety of probability distributions, and dedicated software packages such as

OxCal [54] can now offer a wide range of options, including exotic distributions such as the

trapezoid [55].

The core aims of these Bayesian analyses are not that different from the objectives shared

by those attempting to infer prehistoric population change from 14C samples. Dates are still

generally treated as random and independent samples from a population that is changing its

size over time and can be conceptualised as a probability distribution. The key assumption is

that the probability that a radiocarbon sample is coming from time t is proportional to the rela-

tive size of the human population at t. In contrast to phase models, where the primary goal is

typically to estimate the boundaries of a distribution, here, we focus on estimating its shape.

However, the range of possible shapes offered by probability distributions where the likelihood

can be mathematically computed is limited, and as such, there is little applicability offered by

currently available software packages.

The problem can be solved by treating time as discrete [10] and employing probability

mass functions instead of probability density functions. Such a solution effectively provides a

framework for fitting any theoretical growth model as long as its associated parameters can

generate a vector of probability values for each calendar year t. More formally, we can define a

bounded growth model as a generalised Bernoulli distribution where the probability of sam-

pling a calendar date t is given by the associated probability pt, which is part of a vector of

probabilities pt = a−0, pt = a−1, pt = a−2,. . .,pt = a−T, where a and b are the start date in BP, T is

equal to a−b, and pt>a = pt<b = 0. The specific probabilities assigned to each calendar year

between a and b are determined by the parameters of each specific growth model. In practice,

any numerical model of population growth that is able to generate a vector of population sizes

Nt for each time t, can be translated into such bounded growth model. For example, a bounded

exponential growth model can be formally defined as follows:

pt¼a� i ¼
ð1þ rÞi

Pa� b
i¼0
ð1þ rÞi

ð1Þ

The numerator, in this case, is a simplified version of an exponential growth model N0(1

+r)i, where N0 = 1, and the denominator ensures that the total sum of the sequence pt = a−0, pt =

a−1, pt = a−2,. . .,pt = a−T is equal to 1. Because we are just interested in the relative shape of the

distribution, the constant N0 becomes obsolete, and effectively the entire model can be

described with just the three parameters a, b, and r. If we account for calibration and the

Gaussian measurement error associated with each observed 14C age, we can define our full
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hierarchical Bayesian model as follows:

yj � BoundedExponentialGrowthða; b; rÞ ð2Þ

Xj � NormalðmðyjÞ; sjÞ ð3Þ

where θj is the true calendar date of the sample j, μ(θj) is its corresponding 14C age, σj is the

root of the sum of the squares of the sample 14C age error and the corresponding error in the

calibration curve, and Xj is the observed 14C age of the sample. Eq (2) can be replaced by any

growth models satisfying the criteria described above, whilst Eq (3) effectively models the mea-

surement error associated with the 14C sample. Posterior samples of θj and the parameters

associated with the given growth model (in this case a, b, and r) can be obtained using Markov

Chain Monte Carlo (MCMC) methods.

In addition to the use of discrete rather than continuous time, in most practical applications

we would need to consider another key difference between phase and growth models. Typi-

cally, when modelling an archaeological phase, the selection of samples is defined by explicit

constraints such as their location (e.g. a specific stratigraphic unit) or some other shared char-

acteristics (e.g. association to a particular material culture type). In the case of growth models,

such definitions are not necessarily always clear. For example, one might be interested in

modelling a population trajectory only within a specific time interval. In these circumstances,

the parameters a and b can be treated as user-defined constants as long as the sample selection

conforms with those boundary conditions (i.e. they have a true calendar date between a and

b). In practice, however, this process is not straightforward as measurement errors and the

information loss after calibration do not allow a clear assignment of all dates within and with-

out the temporal window defined by a and b. A simple solution, in this case, consist of com-

puting the cumulative probability of each calibrated date within the window of analysis and

consider only samples above some threshold probability value (see also [10]).

1.3 Case study: The Jomon-Yayoi transition in Kyushu, Japan

The 1st millennium BCE is a defining period within the Japanese islands triggered by a major

demic and cultural diffusion event that led to profound and long-lasting social, economic, cul-

tural, and biological changes [56–58]. Archaeologically this moment is marked by the transi-

tion from the so-called Jomon period (ca 14,000 –early 1st millennium BCE), characterised

predominantly (but not exclusively) by a hunting and gathering economy, to the Yayoi period

(early 1st millennium BCE–ca 250 CE), typically associated with the introduction of wet-rice

farming brought in by migrant communities from the Korean peninsula in northern Kyushu

during the first few centuries of the 1st millennium BCE. From a genetic standpoint, the subse-

quent admixture between the migrant and the incumbent groups is recognised as the origin of

the modern Japanese population [59, 60].

The chronological demarcation between the Jomon and Yayoi periods is, however, not triv-

ial. Firstly, the diffusion across Japan of key traits such as rice cultivation occurred over several

centuries. Furthermore, in some regions, archaeological evidence suggests only a temporary

adoption (followed by a reversion to the previous subsistence economy) or significant delays

until historical periods [61]. Thus, a ‘start date’ of the Yayoi period would vary geographically,

with a general gradient moving from west to east following the dispersal of the Yayoi package

[57]. A second issue spawns from the complexity of how the available radiocarbon evidence

should be interpreted in relation to the archaeological record, particularly in the northern part

of the island of Kyushu, which is regarded as the entry point of the migrant population and the

first area where the Jomon-Yayoi transition took place. While traditionally the start of the
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Yayoi period was dated to 300 BCE (or 500 BCE; see [62, 63] for a review), in 2003, a team of

the National Museum of Japanese History carried out a large-scale AMS dating project that led

to a controversial shift in chronology that pushed back the start of the Yayoi period from ca.

500 BCE to the start of the millennium [64]. This has led to a major debate within the archaeo-

logical community, and while there is now a substantial agreement for an earlier start date

compared to the traditional chronology, scholars have taken different viewpoints and the

beginning of the Yayoi period is currently anywhere between 1,000 BCE to 600 BCE.

The difference in these chronologies can have profound interpretative implications, partic-

ularly when examining the relative contribution of demic versus cultural diffusion processes

on the spread of continental traits or evaluating the demographic impact of irrigated rice farm-

ing. While the presence of a population ‘boom’ following the introduction of wet-rice farming

is evident from both archaeological and genetic lines of evidence [65, 66], there is substantial

uncertainty regarding its magnitude and timing. These factors, however, play a central role

when attempting to estimate the actual size of the initial migrant population or the frequencies

of migratory events. In particular, several demographic simulation models have been devel-

oped to explore putative demic and cultural dynamics in relation to specific assumptions and

variables drawn from the available evidence [67–71]. These are typically based on estimates of

population growth rates and the time span of the admixture between incumbent and migrant

populations. It is thus not a surprise that chronological revisions of the Yayoi start date led to

different estimates of these variables, and in some cases, prompted a re-evaluation of previous

works on Yayoi demography [70, 72].

Population growth estimates of the Yayoi period for the island of Kyushu (S1 Fig) are lim-

ited to a few number of studies based on common archaeological proxies such as count fre-

quencies of sites, residential units, and burials. Shuzo Koyama’s widely cited study [65] utilised

the number of archaeological sites across the Jomon and Yayoi periods in conjunction with

historical census data to estimate absolute population sizes across different regions in Japan

while taking into account issues such as sampling fraction and settlement size variation. His

estimated annual growth rate between the Final Jomon period and the Yayoi period in Kyushu

is 0.26% [73]. Other studies have focused exclusively on relative population sizes and examined

the temporal frequencies of archaeological features per ceramic phase. Nakahashi [74] use the

frequencies of jar-burials and obtained an estimate larger than >1% for the Middle Yayoi

period. More recently, Kataoka and Iizuka [75] fitted exponential and logistic growth models

to the time-frequency of residential features, obtaining various estimates as a function of dif-

ferent assumptions on the duration of ceramic phases. A follow-up study by Fujio [72] on the

same dataset yielded an estimate of 0.8% with an exponential fit over an interval of 400 years.

Growth rate estimates derived from the time-frequency of radiocarbon dates are currently

not available for the Jomon-Yayoi transition, despite their use in other parts of the world that

have already prompted cross-cultural discussions on the demographic impact of early farming

[25, 76]. While some have highlighted potential issues in interpreting growth estimates derived

from the time-frequency of radiocarbon dates (particularly when compared to the shorter

time-scale of ethnographic studies [77]), the substantial discrepancies on the current range of

estimates derived from other proxies in the island of Kyushu is problematic. The issue is fur-

ther exacerbated by the fact that most count data are not associated with absolute dates, and as

such time-frequencies are strongly dependent on assumptions of contemporaneity, absolute

estimates of relative chronological sequences, and the treatment of different forms of uncer-

tainties [52] as well as intrinsic biases derived by how the time is subdivided into archaeolog-

ical periods [78].

Here we used the Bayesian approach described in section 1.2 to offer an alternative means

for estimating the magnitude of the Yayoi population boom that is independent of
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archaeological discussions and updates of Yayoi chronology. More specifically, we focus on

the changing frequency of radiocarbon dates over the temporal window between 3400 and

1850 cal BP (1451 BCE to 100 CE), corresponding approximately to the time interval between

the Final Jomon and the Middle Yayoi periods. We expect that during this interval, there was a

significant shift in the population growth rate following the introduction of wet-rice farming,

and hence fit two different types of growth models (see section 3) that account for such a

change. Thus, our objective is to determine whether there is evidence in support of a change in

the growth rate during the examined time interval and, if so, to estimate when this change

occurred and what was the population growth rate before and after this point in time.

2. Materials and methods

2.1 Simulation data

A total of four sets of experiments (see Table 1) were performed in order to determine the

robustness of the proposed method under different scenarios. In all cases, a sample of calendar

dates was generated from a particular bounded growth model and converted into 14C age with

a fixed 14C error of 20 years.

Experiment 1 was designed to determine whether the method was capable of correctly

inferring the growth rate r, using a sample of 500 dates from three different bounded exponen-

tial growth models with a = 6,000 cal BP, b = 4,000 cal BP and r set to 0.001, 0.003, and 0.005.

Twenty replicates were generated for each of the three settings of r. The objective of experi-

ment 2 was to determine the impact of the calibration effect in the inferential process. A total

of 2 x 20 sets were examined, each consisting of a sample of 300 dates drawn from an exponen-

tial model with r = 0.003, and with two different boundary parameters reflecting time intervals

where the calibration curve was characterised by a steep slope (a = 7,000 cal BP; b = 6,400 cal

BP; 20 replicates) or a plateau (a = 2,800 cal BP; b = 2,200 cal BP; 20 replicates).

Table 1. Parameter settings and priors for experiments 1–4.

No. Growth Model Parameters Parameter Values Priors Sample Size

1 Exponential r 0.001, 0.003, 0.005 Exponential; λ = 500 500

a 6000 -

b 4000 -

2 Exponential r 0.003 Exponential; λ = 500 300

a 7000, 2800 -

b 6400, 2200 -

3a Exponential r 0.005 Exponential; λ = 500 250, 100, 50

a 6000 -

b 4000 -

3b Double-Exponential r1 0.002 Normal; μ = 0, σ = 0.1 500, 250, 100, 50

r2 -0.001 Normal; μ = 0, σ = 0.1

c 4500 Uniform; a = 5999, b = 4001

a 6000 -

b 4000 -

4 Double-Exponential r1 -0.001, -0.002, -0.003 Normal; μ = 0, σ = 0.1 288

r2 0.001, 0.002, 0.003 Normal; μ = 0, σ = 0.1

c 2800 Uniform; a = 5999, b = 4001

a 3400 -

b 1850 -

https://doi.org/10.1371/journal.pone.0251695.t001
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Experiment 3 examined the impact of sample size in the inferential process. In 3a we exam-

ined an exponential growth model with parameters a = 6,000 cal BP, b = 4,000 cal BP, and

r = 0.005 using sample sizes of 250, 100, and 50 dates, and 20 replicates for each setting. In

order to explore the impact of smaller sample sizes on more complex models, an additional

experiment (3b) was carried out using a double exponential growth model (see section 3 for

definition) with parameters a = 6,000 cal BP, b = 4,000 cal BP, r1 = 0.002, r2 = −0.001, and

c = 4,500 cal BP, and sample sizes 500, 250, 100, and 50 with 20 replicates for each setting.

Finally, to establish whether the sample size used in the case study (see below) was sufficient

for correctly detecting the timing and the magnitude of a putative population boom in Kyushu,

we carried out an experiment (experiment 4) with a double exponential growth model using

the following parameters: a = 3,400 cal BP; b = 1,850 cal BP; c = 2,800 cal BP, r1 = {−0.001, −-

0.002, −0.003} and r2 = {0.001, 0.002, 0.003}. These settings cover the same chronological win-

dow of our case study with an annual percentage growth rate comparable to those observed in

previous work (i.e. 0.1 ~ 0.3%). We sampled 288 dates (the same number of dates in the case

study, see section 2.2) for each of the nine parameter combinations of the growth rates r1 and

r2 (see S2 Fig).

2.2 Empirical data

Radiocarbon dates for the case study have been collated from the National Museum of Japa-

nese History’s radiocarbon database [79], using as a search criterion terrestrial samples from

Fukuoka, Kagoshima, Miyazaki, Nagasaki, Oita, and Saga prefectures in the island of Kyushu

(S1 Fig). No permits were required to access and use the materials which complied with all rel-

evant regulations. The initial downloaded dataset has been pre-processed by excluding samples

with 1) no dates; 2) no lab codes; 3) 14C error above 100 years (to minimise the impact of mea-

surement error); 4) originating from contexts that are not clearly anthropogenic; and 4) with a

calibrated cumulative probability between 3400 and 1850 cal BP below 0.5. Marine samples

and terrestrial samples from bones were excluded from the analysis due to the lack of reliable

reservoir correction measures for the region. The resulting final sample size consisted of 288

radiocarbon dates from 131 unique site locations covering a chronological span corresponding

approximately to the interval between the Final Jomon and the Middle Yayoi periods, with the

SPD showing an increase in the density of dates during the latter half of the window of analyses

(Fig 1).

3. Methods

Posterior samples for all experiments and the case study were obtained using a Metropolis-

Hastings adaptive random-walk sampler with a univariate normal proposal distribution using

the nimble R package version 0.10.1 [80, 81]. The simulated data have been analysed by com-

paring the ‘true’ parameter values of each setting against the 90% higher posterior density

interval (HPD) estimated from the posterior samples, obtained using a single chain with

10,000 iterations and 3,000 burn-in steps and prior distributions as reported in Table 1.

The empirical data set has been analysed using three growth models (Fig 2). First, we exam-

ined a simple exponential growth model (model m1) as described in section 1.2 (Eq 1; Fig 2,

left). The model would be consistent with a scenario where there is no noticeable change in the

growth rate over the window of analyses. We then considered a double exponential growth

model (model m2; Fig 2, centre) where the exponential growth rate r was set to r1 for t>c and

equal to r2 for t�c. In other words, the model assumes two exponential growth rates, with the

parameter c defining the change point (in cal BP) when the growth rate shifts from r1 to r2. In

this particular context, a support for this model with r2>r1 would be consistent with a scenario
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where the adoption of irrigated rice farming led to an increase in growth rate, with c providing

an estimate of when such demographic shift took place in relation to the introduction of the

new subsistence technology.

Finally, we examined an exponential-logistic growth model (model m3; Fig 2 right) defined

as follows:

pt¼a� i ¼

h1kð1þ r1Þ
i
þ h2

1

1þ
1� kð1þr1Þ

a� c

kð1þr1Þ
a� c e� r2 i

 !

Pa� b
i¼0
h1kð1þ r1Þ

i
þ h2

1

1þ
1� kð1þr1Þ

a� c

kð1þr1Þ
a� c e� r2 i

 ! ð4Þ

Where r1 is the growth rate in the exponential part (when a�t>c), r2 is the intrinsic growth

rate of the logistic growth part (when t�c), k is the proportion of the population relative to the

carrying capacity at the time t = a, c is the changepoint in calendar BP between the exponential

and the logistic growth part, and h1 and h2 are indicator variables, with h1 = 1 and h2 = 0 when

t>c and h1 = 0 and h2 = 1 when t�c. Model m3 can effectively be considered a particular vari-

ant of the two-stage demographic process captured in model m2. The key difference, in this

case, is that the net growth rate after the change point c can potentially decline as the popula-

tion approaches carrying capacity.

In all three models, the probability of each i-th timestep (corresponding to the calendar

year t in BP, i.e. a−i) were calculated using nimbleCarbon v0.1.0 [82], a dedicated R package

developed for this purpose which includes several bounded growth models as well as utility

functions for fitting and comparing growth models.

We used weakly informative priors for all three models, which allows the ‘data to speak’

whilst simultaneously providing some degree of regularisation. Prior predictive checks (S3

Fig) were explored to evaluate the impact of the priors for each model. Results show a wide

Fig 1. Observed Summed Probability Distribution (SPD) of radiocarbon dates for the island of Kyushu.

https://doi.org/10.1371/journal.pone.0251695.g001
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range of patterns that are however consistent within a plausible range for human population

dynamics. For model m1, we estimated the parameter r using as prior an exponential distribu-

tion with λ = 1/0.0004, with the denominator based on the average growth rate observed across

multiple prehistoric populations [76] (see S3 Fig, left, for prior predictive checks). For model

m2 we used the following priors:

r1 � Normalðm ¼ 0;s ¼ 0:0004Þ ð5Þ

r2 � Exponential l ¼
1

0:0004

� �

ð6Þ

c � TruncatedNormalðm ¼ 2625;s ¼ 200; a ¼ 1850; b ¼ 3400Þ ð7Þ

This ensured that the first exponential phase can capture the possibility of a population

decline (as well as increase) and that the change point is less likely to occur at the edge of the

time range of analyses (see S3 Fig, centre, for prior predictive checks). The priors for the

parameters r1, r2 and c for model m3 were the same as m2, whilst the prior for the initial popu-

lation size (proportion of carrying capacity) k was set as a truncated normal distribution with a

mean of 0.1, and standard deviation of 0.1, bounded between 0.0001 and 0.5 (see S3 Fig, right,

for prior predictive checks). These settings were loosely based on estimates of the ratio of

Jomon and Yayoi population sizes used in other works (for example [69]).

For each model, we ran three chains with 100,000 iterations and 10,000 burn-in steps and

thinned the output to obtain a total of 15,000 posterior samples. We examined the convergence

and mixing by visually assessing the trace plots and by calculating the effective sample size and

the Gelman-Rubin’s convergence diagnostic [83] as implemented in the coda package in R

[84]. The Gelman-Rubin’s diagnostic provides a heuristic measure for monitoring the conver-

gence of MCMC samples across different chains and provides the basis for determining

whether the number of iterations is sufficient for obtaining reliable posterior samples, with a

threshold typically set at R̂ � 1:001. (i.e. convergence is typically reached when the diagnostic

is smaller than 1.001).

Fig 2. Models m1, m2, and m3 with associated parameters.

https://doi.org/10.1371/journal.pone.0251695.g002
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We carried out posterior predictive checks by visually comparing the observed and an enve-

lope of simulated SPDs. The latter was based on 500 different curves, each obtained by 1) sam-

pling random calendar dates from fitted models based on posterior parameter combinations;

2) back-calibrating each date into 14C age; 3) randomly assigning 14C errors by resampling val-

ues from the observed data; 4) calibrating, and 5) aggregating to generate an SPD. The proce-

dure was carried out using a modified version of themodelTest routine used in rcarbon [8].

Finally, in order to compare the relative goodness-of-fit among the three growth models, we

used the Widely Applicable Information Criterion (WAIC) [47, 85]. The WAIC is a more

advanced and general information criterion to AIC as it does not require flat priors nor the

posterior to be multivariate Gaussian.

All analyses used the IntCal20 calibration curve [86]. In order to ensure full reproducibility

[87], source data, R scripts, and MCMC outputs are available on a GitHub repository (https://

github.com/ercrema/bayesian_spd) and on the following archive http://doi.org/10.5281/

zenodo.4738545).

4. Results

4.1 Simulation experiments

All experiments have shown that the proposed method can correctly infer true model parame-

ters without any discernible directional biases, with the number of cases where the true param-

eter value was outside the predicted interval consistent within the expectations of a 90% HPD.

Results of experiment 1 (Fig 3A) indicate that only six sets out of a total of 60 failed to include

the correct value of r in their 90% HPD interval. Although a thorough exploration of different

regions of the calibration curve was not viable, the results of experiment 2 (Fig 3B) do not sug-

gest any tangible impact caused by the presence of plateaus in the calibration curve, at least

when estimating a growth rate for a simple exponential model. Unsurprisingly, smaller sample

sizes (experiment 3a, Fig 4) do enlarge the HPD interval, but there is no evidence suggesting

an increase in inferential errors, with the true growth rate included in the 90% HPD interval in

18 out of the 20 cases even with a sample size as small as 50 radiocarbon dates. However,

results of experiment 3b (Fig 5) show that with more complex models such as a double expo-

nential growth, sample sizes of 50 or even 100 dates are not sufficient for achieving reliable

estimates, with large HPD intervals and a slightly higher number of cases with incorrect infer-

ence. Given the relatively smaller number of MCMC iterations in these experiment runs, there

is a possibility of some improvement in the posterior estimates, although we did not explore

this in detail due to the high computational cost. The results of experiment 3b strongly suggest

that, with all things being equal, the minimum number of radiocarbon dates required to reli-

ably estimate model parameters is higher for more complex models.

Experiment 4 was designed specifically to determine whether plausible dynamics of a dou-

ble exponential model can be inferred with the observed sample size and window of analysis.

Results (Fig 6) suggests that is the case with the proposed method capable of correctly recover-

ing the correct growth rates and change points for a range of different scenarios and in the

majority of the replicates.

4.2 Case study

Convergence diagnostics and trace plots (S4 to S6 Figs) indicate adequate mixing of the chains,

with R̂ � 1:001 and an effective sample size larger than 10,000 for all key parameters. Table 2

and Fig 7 provides the 90% HPD intervals and the marginal posterior distribution of the key

parameters of all models. The posterior distribution of the exponential model (m1) yielded a

PLOS ONE A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates

PLOS ONE | https://doi.org/10.1371/journal.pone.0251695 May 19, 2021 12 / 26

https://github.com/ercrema/bayesian_spd
https://github.com/ercrema/bayesian_spd
http://doi.org/10.5281/zenodo.4738545
http://doi.org/10.5281/zenodo.4738545
https://doi.org/10.1371/journal.pone.0251695


growth rate r with a median posterior of 0.0014, i.e. an annual growth rate of 0.14%. Growth

estimates of r2 in models m2 and m3, which most likely captures the growing population

trend during the Yayoi period, yielded slightly higher estimates approaching an annual growth

Fig 3. Results of experiments 1 & 2. Error bar represents the estimated 90% HPD interval for each run; cases where

the true parameters were not within the interval are displayed in orange.

https://doi.org/10.1371/journal.pone.0251695.g003

Fig 4. Results of experiment 3a. Error bar represents the estimated 90% HPD interval for each run; cases where the true

parameters were not within the interval are displayed in orange.

https://doi.org/10.1371/journal.pone.0251695.g004
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rate between 0.2 and 0.3%. The smaller sample sizes associated with the first growth phase

(parameter r1 in m2 and m3) has led to a wider 90% HPD including negative and positive

rates, although in both cases, the median growth rate was negative. Both m2 and m3 have

identified the change point c in the growth rate between the end of the 8th century and the

beginning of the 7th century BCE, with a similar 90% HPD interval between late 9th century

and early 6th century BCE. The fitted models (Fig 8) thus indicate a growing density of radio-

carbon dates over time, with both m2 and m3 suggesting a possible declining trend during the

Final Jomon period, followed by a steep growth starting around the Early Yayoi period.

Fig 5. Results of experiment 3b. Error bar represents the estimated 90% HPD interval for each run; cases where the

true parameters were not within the interval are displayed in orange.

https://doi.org/10.1371/journal.pone.0251695.g005
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WAIC-based model comparison (Table 3) does not, however, suggest a single best growth

model. The lack of a clear decrease in the growth rate during the logistic phase has effectively

made m2 and m3 very similar (Fig 8), and this is reflected by similar WAIC values for the two

models. Because of the small sample size, m1 has some support (WAIC weight of 0.19), sug-

gesting that a simple exponential growth could also explain the observed pattern, although this

is less likely compared to the two growth rate alternatives portrayed by m2 and m3. Posterior

predictive checks of the three models (Fig 9) confirm these findings, with the observed SPD

showing positive and negative deviations from the simulation envelope generated from m1,

and a reasonably good fit for m2 and m3, albeit with higher-than-expected density of radiocar-

bon dates around the 2nd century BCE.

Fig 6. Results of experiment 4. Error bar represents the estimated 90% HPD interval for each run; cases where the true parameters

were not within the interval are displayed in orange.

https://doi.org/10.1371/journal.pone.0251695.g006

PLOS ONE A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates

PLOS ONE | https://doi.org/10.1371/journal.pone.0251695 May 19, 2021 15 / 26

https://doi.org/10.1371/journal.pone.0251695.g006
https://doi.org/10.1371/journal.pone.0251695


5. Discussion

Recent applications of the so-called ‘dates as data’ approach [35] suggest a clear interest in

moving beyond simple visual assessments of SPDs or basic NHST. Simple models, such as

exponential or logistic growth, can be expected only under scenarios where key demographic

processes and variables remain stationary over time, and an overwhelming number of studies

have unsurprisingly shown that such null models can be easily rejected. Even if we assume that

fluctuations in the frequency of radiocarbon dates are predominantly the result of changes in

human population size, the temporal scale of the archaeological record would unquestionably

cover a time window where social, economic, cultural, and environmental transformation

would lead to some changes in demographic processes. From a multi-millennial perspective,

Table 2. Fitted parameter summaries.

Model Parameters Rhat ESS Median HPD90lower HPD90upper

m1 r 1 38776.13 0.00137 0.00113 0.00161

m2 r1 1 25206.76 -0.00021 -0.00074 0.00028

r2 1 19585.14 0.00230 0.00184 0.00279

c 1 18148.11 715 837 596

m3 r1 1 26375.55 -0.00029 -0.00079 0.00022

r2 1 10178.13 0.00288 0.00196 0.00394

k 1 12127.94 0.07741 0.00012 0.15120

c 1.001 15459.57 696 812 582

The parameter c is expressed in BCE.

https://doi.org/10.1371/journal.pone.0251695.t002

Fig 7. Marginal posterior distributions of fitted growth parameters for models m1-m3.

https://doi.org/10.1371/journal.pone.0251695.g007
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these changes can often be seen as relatively minor deviations from broader exponential or

logistic trends. At smaller scales, however, these deviations become significant in revealing and

capturing key putative processes of interest, often highlighting the importance of more

nuanced statistical approaches designed to get reliable estimates of growth rates and associa-

tion to external variables, as well as to compare contrasting hypotheses formally. Thus, it is not

surprising to see how a number of recent studies have focused on interpreting more directly

the estimated parameters [25, 76, 88] or employing methods such as information criterion to

compare alternative models [10, 15, 19, 40–43]. This is undoubtedly an important step forward

and has already led some authors (e.g. [15]) to explore more sophisticated models grounded

on theoretical population ecology, and foreshadows an important opportunity for pursuing a

model-based prehistoric demography.

Many of these applications directly utilise SPDs as a dependent variable, and as such, esti-

mates do not account for sampling error or calibration effects, potentially leading to biased

inference, particularly when dealing with smaller sample sizes and shorter time intervals. As

for the Monte-Carlo NHST approaches, off-the-shelf solutions are hardly applicable in these

cases, and bespoke solutions are required [10, 11, 89].

This paper is a contribution to this research agenda. It proposes a solution that addresses

the issue of model fitting and model comparison within a Bayesian framework, and at the

same time, makes an explicit connection with the rich literature of Bayesian phase modelling.

Experimental analyses (Figs 2 to 5) have shown that our method is capable of recovering true

parameters from simulated data under a variety of conditions, even in the presence of small

Fig 8. Spaghetti plot with the 500 posterior samples of the fitted models.

https://doi.org/10.1371/journal.pone.0251695.g008

Table 3. Summary of WAIC based model comparison.

Model WAIC ΔWAIC Weights

m3 3036.756 0.000 0.42

m2 3036.933 0.177 0.39

m1 3038.307 1.551 0.19

https://doi.org/10.1371/journal.pone.0251695.t003
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sample sizes and different calibration effects. Our experiments have also shown how the

required sample size is a function of the nature and the complexity of the model, as well as the

true target value of the parameters. For example, detecting growth rates and change-points of a

double exponential model with a steep rise and fall will most likely require a smaller sample

size compared to the same model with a small change in positive growth rates that resembles a

standard exponential model. These findings strongly suggest that any empirical analyses

should be preceded by what-if simulations [90] similar to what we did in experiment 4. This

would allow determining the inferential power of the available sample (both in terms of size

and measurement error) in relation to the information loss dictated by the calibration curve

and the requirements of the proposed model.

Our method can be easily extended to other growth models drawn from the rich literature

of theoretical population ecology [91], consider multiple calibration curves, and include

Fig 9. Posterior predictive checks. The 95% simulation interval of each model were obtained from SPDs using 500

parameter combinations from the posterior samples. Samples were generated using the calsample algorithm in rcarbon
[8].

https://doi.org/10.1371/journal.pone.0251695.g009
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external covariates such as environmental data or even spatial effects. From a purely methodo-

logical point of view, there are some outstanding challenges pertaining edge effects and inter-

site variation in sampling intensity. The former can be addressed by selecting samples based

on their cumulative probability within the window of analyses and alternatively (or concur-

rently) by inferring the boundary parameters a and b via MCMC. The problem of inter-site

variation in sampling intensity is a more complex issue. Solutions based on the binning of

closely distanced radiocarbon dates [37] introduces a trade-off where one needs to sacrifice

any evidence of inter-site size variation [8]. Dates referring to the exact same event can poten-

tially be combined using the same approach as OxCal’s R_Combinemethod, or alternatively by

selecting one of the dates (see nimbleCarbon’s vignette [82] for an example). In theory, more

complex models that consider the non-independent nature of the samples could be developed

by using a hierarchical model where dates from the same sites are treated as a cluster.

Our case study has examined the timing and the magnitude of the population boom of the

Yayoi period in the island of Kyushu. As discussed in section 1.3, previous approaches based

on the temporal frequency of typologically dated settlement [65, 75] and burial [74] data, or

more complex models based on putative simulated demographic processes [68, 69] have

required revisions [70, 72] in response to the new estimates on Yayoi chronology, and as such,

are intrinsically dependent on an indirect inferential chain connecting radiocarbon dates to

the use of a particular pottery style, and recovered potsherds to specific events (e.g. the con-

struction of a house). In contrast, our study represents the first attempt in examining the earli-

est population dynamics of the Yayoi period using the ‘dates as data’ approach, focusing

specifically on the magnitude of the Yayoi population boom and the timing of its occurrence.

Our growth estimates between 0.18 and 0.39% (see Table 3) per year are closely in line with

the long-term estimates of 0.26% between Final Jomon and Yayoi periods estimated by

Koyama [65] and smaller but on the same order of magnitude of the 0.8% estimate provided

by Fujio’s re-analysis of the settlement data from Mikuni Hill in northern Kyushu [72]. While

discrepancies between growth rates computed from settlement data and radiocarbon dates can

occur (see for example [52]), it is very likely that these differences are at least in part the conse-

quences of spatial averaging [89], particularly given how the adoption of rice farming has

occurred later in the southern parts of the island [61].

Estimates of the growth rate during the Final Jomon and Initial Yayoi period have more

uncertainty, with the 90% HPD interval ranging from negative to positive values. Nonetheless,

the extremely small and possible negative growth trajectories in this stage, compared to the

higher rates observed in the latter half of the window of analysis, seem to support the possibil-

ity that even a small migrant population can still lead to the observed proportion of Jomon vs

Migrant-type Yayoi individual recorded in the Middle Yayoi period [70], although a more

detailed study on the extent of demic vs cultural diffusion and its impact of demographic pro-

cesses ought to be carried out. Such follow-up studies are particularly relevant given the scar-

city of human remains dated to the first half of the 1st millennium BCE, as well as their limited

context of recovery (i.e. jar burials) which severely hinders a more direct assessment of the size

and role played by the early migrant communities [92].

Our analyses provide some support for models suggesting the presence of a shift in growth

rate occurring between the end of the 8th century and the beginning of the 7th century BCE.

Comparisons between the estimated change points for models m2 and m3 and the earliest evi-

dence of rice in Kyushu [93] indicate that the former occurred most likely later, with the 90%

HPD of the difference between the posterior samples of the two events ranging between -15

and 241 years for model m2 and between 14 and 256 years for model m3 (see S7 Fig). This

confirms the interpretation that that demographic boom was promoted by the spread of irri-

gated rice farming in the region but also suggest that this impact was not necessarily
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immediate, with a possible time lag of one or two centuries. Possible reasons for this delay

remain speculative at this stage as a wide range of cultural and behavioural processes could

determine such temporal offset. However, it is worth noting that paleoenvironmental recon-

structions suggest a temperature minimum around the mid 8th century BCE [94], and the sub-

sequent warming might have supported a faster uptake of irrigated rice farming and an

increase in population growth rate. Another key element that needs to be accounted for is the

fact that archaeological evidence suggests multiple migratory events, the first one around 9th-

8th century BCE and a second wave during the 7th and 6th century BCE [95]. If we assume

these absolute chronologies to be correct, the growth rate subsequent to the change point

might have been at least in part determined by migration and not just by changes in reproduc-

tive and mortality rates. Furthermore, the transition from a sporadic presence of bronze and

Korean style pottery during the first few centuries of the millennium to more prominent roles

in the archaeological assemblages after the 5th century BCE [96, 97], indicates the possibility

of a further population influx behind the observed growth during the later stages of our win-

dow of analyses. More in general, the case study confirms the usefulness of detecting change

points in the density of radiocarbon dates (see also [10, 98]) rather than exclusively focusing

on growth rates, providing a framework for evaluating event-based hypotheses.

6. Conclusion

Statistical analyses of time frequencies of radiocarbon data have seen substantial development

over the last decade with a widening of objectives and scopes in the solutions offered. Here we

introduced and examined the robustness of a novel Bayesian approach that can infer parame-

ters of population growth models, quantify their uncertainty, and provide means for pursuing

formal model comparisons whilst taking into account sampling error and calibration effects.

Our approach, implemented in the R package nimbleCarbon [82], can potentially be extended

to growth models beyond those analysed in this paper and can help identify growth rates,

change points, or potentially even the impact of external covariates.

Our case study has showcased how the proposed method can provide key estimates even

when the number of available dates is comparatively small, allowing scholars to be stricter in

their data hygiene practices. The results we obtained are in line with the archaeobotanical evi-

dence, suggesting that there was a considerable shift in population growth rate ca 100 years

after the earliest evidence of rice-farming. Due to the short time window of analyses, our popu-

lation growth estimates are greater and not directly comparable to those observed for other

contexts of hunter-gatherer to farming transition [76], but still offers a solid foundation for

pursuing more nuanced analysis on the role of demic diffusion in the Jomon-Yayoi transition

as well as the demographic impact of farming.
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