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Abstract

Memory impairment is the cardinal early feature of Alzheimer's disease (AD), a highly prevalent 

disorder whose causes remain only partially understood. To identify novel genetic predictors, we 

used an integrative genomics approach to perform the largest study to date of human memory 

(n=14,781). Using a genome-wide screen, we discovered a novel association of a polymorphism in 

the pro-apoptotic gene FASTKD2 (fas-activated serine/threonine kinase domains 2; rs7594645-G) 

with better memory performance and replicated this finding in independent samples. Consistent 

with a neuroprotective effect, rs7594645-G carriers exhibited increased hippocampal volume and 

gray matter density and decreased cerebrospinal fluid levels of apoptotic mediators. The MTOR 

(mechanistic target of rapamycin) gene and pathways related to endocytosis, cholinergic 

neurotransmission, EGFR signaling, and immune regulation, among others, also displayed 

association with memory. These findings nominate FASTKD2 as a target for modulating 

neurodegeneration and suggest potential mechanisms for therapies to combat memory loss in 

normal cognitive aging and dementia.

Keywords

genome-wide association study (GWAS); Alzheimer's disease (AD); dementia; cognitive aging; 
memory; magnetic resonance imaging (MRI); apoptosis; neurodegeneration

INTRODUCTION

Human memory is a complex, dynamic trait with significant roles in development, aging, 

and disease. Impairment in episodic memory – involving the encoding and conscious 

recollection of experiences – is an early hallmark of AD, the most common cause of 

dementia.1 Declines in episodic and other memory domains are also found in normal 

cognitive aging and many age-related disorders, including Parkinson's disease, diabetes, and 
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cancer.2 With the rising incidence and burdens of dementia, a better understanding of its 

causes is crucial for risk stratification and the development of memory-sparing lifestyle and 

drug therapies.3, 4

At present, the molecular mechanisms underlying memory performance are not fully 

understood. Epidemiological studies have linked many factors to memory, including the 

presence of vascular and metabolic disease, mental and physical activity, and educational 

and occupational attainment.5, 6 Episodic memory is estimated to have substantial 

heritability (30-60%) based on twin studies and is thought to be influenced by common and 

rare genetic variation in multiple pathways.6 Although genetic studies have implicated 

numerous single nucleotide polymorphisms (SNPs) in episodic memory performance,7 

significant heritability remains unexplained.

Recently, there has been great interest in harnessing the power of genome-wide association 

studies (GWAS) to gain additional mechanistic insight into complex neurological traits and 

diseases.8 Extant approaches for maximizing the translational impact of GWAS findings 

include using large samples with adequate statistical power for discovery,6 performing 

complementary analyses to detect broader trends of association within genes and pathways,9 

and assessing for convergence of genetic associations across phenotypic modalities to 

understand their biological context.10, 11 Here, we integrated GWAS with molecular and 

neuroimaging data to identify and characterize novel predictors of episodic memory function 

in older adults.

MATERIALS AND METHODS

Study participants

Launched in 1992, the Health and Retirement Study (HRS) is a nationally representative 

longitudinal study of more than 26,000 Americans over 50 years old.12 Biennial interviews 

were used to collect detailed information on the health, social, and economic status of 

participants.

The AddNeuroMed Consortium,13 Alzheimer's Disease Neuroimaging Initiative (ADNI),14 

Indiana Memory and Aging Study (IMAS),15 Rush Memory and Aging Project (MAP),16 

and Religious Orders Study (ROS)17 include older adults representing clinical stages along 

the continuum from normal aging to AD who received longitudinal clinical evaluations.

All participants provided written informed consent and study protocols were approved by 

each site's institutional review board.

Clinical and cognitive assessment data

We obtained the RAND Corporation's public release HRS data files (version L) which 

integrated information across study waves.18 For discovery, we analyzed HRS wave 3 since 

it contained the largest cross-sectional sample with complete data for cognitive functioning 

variables. To maximize statistical power for discovery, we analyzed the full available 

sample including multiple ethnicities and included principal component eigenvectors to 

control for population stratification.19 Episodic memory performance was assessed through 
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immediate free recall of a 10-word list.20 Age, gender, and years of education were used as 

covariates for GWAS.

For replication, we used independent samples from HRS wave 7, AddNeuroMed, ADNI, 

IMAS, MAP, and ROS. With the exception of HRS, word list immediate recall tasks 

included multiple trials and therefore the sum of those trials at the baseline visit was used as 

the outcome. Immediate recall tasks used in these cohorts included the Rey Auditory Verbal 

Learning Test (RAVLT) in ADNI, the California Verbal Learning Test (CVLT) in IMAS, 

and the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) word list test 

in AddNeuroMed, MAP, and ROS. Age, gender, and education were included as covariates 

in all replication analyses. Diagnosis (as a categorical variable) was also included as a 

covariate for analyses in AddNeuroMed, ADNI, IMAS, MAP, and ROS to account for the 

clinical stages represented among participants.

Structural magnetic resonance imaging (MRI) data

Baseline visit T1-weighted cranial MRI scans were analyzed for 315 healthy control 

participants from ADNI who were not included in the memory analyses. Scan protocols, 

quality control, image processing, and extraction of volume and gray matter density for 

brain regions of interest were performed as described previously.21

Cerebrospinal fluid (CSF) proteomic data

Baseline visit CSF samples were analyzed for 82 healthy control participants from ADNI 

who were not included in the memory analyses. Sample acquisition and quality control 

procedures were performed as described previously.22 Levels for 159 proteins were 

measured by multiplex immunoassay on the Myriad Genetics (Austin, TX) Rules Based 

Medicine Human Discovery MAP panel. Stringent quality control for protein level 

measurements was performed as described previously.23 Additional technical details are 

available in the ADNI Biomarker Consortium CSF Proteomics Data Primer (http://

adni.loni.usc.edu/wp-content/uploads/2012/01/2011Dec28-Biomarkers-Consortium-Data-

Primer-FINAL1.pdf). Based on literature search, we performed a pathway-guided analysis 

of CSF levels of four proteins (adiponectin, fas ligand, TNFR2, and TRAIL-R3) involved in 

fas-mediated apoptosis. Protein levels were log10− transformed to ensure a normal 

distribution of each phenotype.

Genotyping and imputation

Genomic DNA for 12,507 participants was obtained during HRS waves 8-9 via buccal swab 

or saliva sample. Genotyping was performed at the Center for Inherited Disease Research 

(CIDR; Johns Hopkins University) using the Illumina (San Diego, CA) HumanOmni2.5-4v1 

array. Genotype data underwent stringent quality control including identity checks, sample 

exclusion for call rate<98%, and SNP exclusion for call rate<98%, Hardy-Weinberg p<10−4, 

minor allele frequency (MAF)<1%, or failure of other technical and quality filters.24 Identity 

by descent analysis in PLINK25 (http://pngu.mgh.harvard.edu/~purcell/plink/) revealed 80 

pairs and 4 trios with significant relatedness; therefore one participant from each unit was 

randomly selected for inclusion. SNPRelate26 was used to identify population group outliers 

and generate principal components to control for population substructure. As described 
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previously, on scree plot the fraction of variance explained was minimal and level after the 

first two principal components.24 The final dataset included 1,681,327 SNPs for 12,419 

participants.

We used Minimac27 and the 1000 Genomes Project to impute the SNPs characterizing the 

APOE ε4 allele (rs429358, rs7412) in HRS and the specific SNPs required for replication 

studies in AddNeuroMed, ADNI, IMAS, MAP, and ROS. Imputation and quality control 

were performed as described previously.28, 29 Due to the control for population substructure 

required for imputation quality, imputation was restricted to participants with non-Hispanic 

Caucasian ancestry as determined by multidimensional clustering in PLINK.28

Statistical analysis

Basic statistical analyses were performed using IBM SPSS Statistics for Windows, Version 

22.0 (Armonk, NY). Genetic associations were tested using linear regression under an 

additive genetic model in PLINK. In the discovery sample GWAS, the first three principal 

components were included as covariates consistent with prior studies of AD 

endophenotypes,30, 31 and a conservative significance threshold (p<5×10−8) was employed 

based on a Bonferroni correction of one million independent tests.32 For analysis of the HRS 

replication sample (wave 7), the first three principal components were included as covariates 

as in the discovery GWAS. For all other replication analyses, the potential effects of 

population stratification were minimized through restricting analyses to participants with 

non-Hispanic Caucasian ancestry as determined by multidimensional clustering in PLINK.28 

Manhattan and Q-Q plots were generated with Haploview33 and regional association and 

linkage disequilibrium (LD) plots were generated with LocusZoom34 and SNAP.35

Complementary approaches were used to validate and extend the GWAS findings. We used 

HYST36 to calculate a summary p-value for each gene accounting for its size, LD structure, 

and constituent GWAS SNP associations. We then utilized these summary p-values and 

GSA-SNP37 to identify pathways enriched with significant association to memory. Pathway 

definitions, consisting of canonical representations of biological processes compiled by 

expert reviewers, were downloaded from the Molecular Signatures Database (http://

www.broadinstitute.org/gsea/msigdb/index.jsp; canonical pathways set, version 4.0) and the 

false discovery rate (FDR) was used to correct for pathway-level multiple comparisons.

Genome-wide significant associations were further investigated in independent samples 

through inverse-variance weighted meta-analysis using METAL38 and through association 

testing with MRI and CSF biomarkers using multivariate analyses of covariance with Wilks’ 

lambda as the test statistic. For meta-analysis, effect sizes were denoted by standardized β 

coefficients from linear regression. Cohen's d statistics were also calculated to facilitate 

comparison of effect sizes across phenotypes.

RESULTS

Study participants

This study involved a total of 14,781 participants from six independent cohorts (Table 1). 

For discovery, we analyzed data for 6,705 participants from HRS wave 3. In the HRS, 
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immediate recall was approximately normally distributed (Supplementary Figure 1) and was 

highly-correlated with delayed recall (r=0.74). Using linear regression, younger age 

(p=3.73×10−56), female gender (p=2.70×10−41), and more years of education 

(p=4.74×10−170) were associated with better episodic memory performance and collectively 

explained 16.4% of the variance in immediate recall (omnibus F(3, 6701)=437.88, 

p=8.77×10−260).

GWAS of episodic memory

To identify novel genetic predictors of episodic memory functioning, we performed a 

GWAS (n=6,705) controlling for age, gender, education, and the first three principal 

components to address population substructure. The genomic inflation factor (λ) was 1.007, 

indicating no substantial inflation of association (Supplementary Figure 2).

A genome-wide significant association with immediate recall was identified on chromosome 

2 for rs7594645 (p=3.11×10−9; Figure 1). This SNP resides in an intron of FASTKD2 that is 

overlapped by MIR3130-1 and MIR3130-2 (Figure 2a). The rs7594645-G allele exhibited a 

modest additive effect associated with better episodic memory performance and explained 

an additional 0.5% of the phenotypic variance (Figure 2b).

Suggestive associations with immediate recall (p<5×10−6) were also identified (Figure 1; 

Supplementary Table 1). These included SNPs near FASTKD2 within DYTN (dystrotelin) as 

well as SNPs on additional chromosomes within LRRC38 (leucine rich repeat containing 

38), SRC (v-Src tyrosine kinase), and APOL2 (apolipoprotein L2). We also observed 

nominal associations with immediate recall (p<0.05) for 14 of 25 memory- and AD-related 

candidate genes identified through literature review (Supplementary Table 2). These genes 

included BCHE (butyrylcholinesterase), BDNF (brain-derived neurotrophic factor), CR1 

(complement receptor 1), and TREM2 (triggering receptor expressed on myeloid cells 2), 

among others. Significant association after Bonferroni correction for 25 genes (p<0.002) 

was observed for three of these genes, CAMTA1 (calmodulin binding transcription activator 

1), DISC1 (disrupted in schizophrenia 1), and WWC1 (WW and C2 domain containing 1; 

also known as KIBRA).

Due to its well-known association with AD,39 we further investigated the effect of the 

APOE (apolipoprotein E) ε4 allele in the GWAS sample. Since the SNPs characterizing 

APOE ε4 (rs429358, rs7412) failed initial genotyping quality control, to perform additional 

analyses we imputed these SNPs in non-Hispanic Caucasian participants (n=5,288). We did 

not observe an association of APOE ε4 with immediate (p=0.904) or delayed (p=0.466) 

recall in this sample. However, APOE ε4 was associated with increased odds of self-

reported diagnosis of AD by a doctor (p=5.96×10−13, OR 5.59, 95% CI 3.50-8.91) among 

participants re-evaluated 14 years later (n=4,491).

Gene- and pathway-based analyses of episodic memory

To extend the GWAS findings, we performed complementary analyses at the gene and 

pathway levels. Using HYST to calculate summary gene-based p-values, we identified 

additional genome-wide significant associations with episodic memory based on a 
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Bonferroni correction for 23,672 genes (p<2.11×10−6; Supplementary Table 3). Top 

genome-wide significant associations included the genes LARS2 (leucyltRNA synthetase 2, 

mitochondrial; p=5.56×10−11) and MTOR (p=2.50×10−9), which along with FASTKD240 

encode proteins with critical roles in mitochondrial function.41, 42

Numerous pathways exhibited enrichment of association (FDR-corrected p<0.05) with 

episodic memory performance (Table 2). These included multiple mechanisms related to 

immune regulation and cell adhesion as well as pathways related to cholinergic 

neurotransmission, endocytosis, and epidermal growth factor receptor (EGFR; ErbB1) 

signaling, among others.

Replication of FASTKD2 association with episodic memory

For replication of our major SNP-based genome-wide significant finding, we analyzed 

independent samples from the HRS, AddNeuroMed, ADNI, IMAS, MAP, and ROS cohorts. 

Due to heterogeneity of memory instruments and clinical populations, we initially analyzed 

within cohorts and then performed a replication meta-analysis involving 7,761 participants 

which validated the association of rs7594645-G with higher immediate recall (p=0.013; 

Supplementary Table 4 and Supplementary Figure 3). In all replication cohorts except ROS, 

rs7594645-G exhibited a positive direction of effect on episodic memory performance 

consistent with the discovery sample. The heterogeneity statistic (I2) p-value was 0.71, 

indicating no significant heterogeneity across the replication studies.43 Overall, a summary 

meta-analysis of rs7594645-G across the discovery and replication samples combined 

displayed genome-wide significant association (p=3.73×10−9, total n=14,466).

Association of rs7594645 with FASTKD2 mRNA expression

We assessed the functional impact of rs7594645 on FASTKD2 mRNA expression using two 

expression quantitative locus (eQTL) databases. Using Genevar,44 we analyzed published 

eQTL data for 856 healthy female twins from the MuTHER (Multiple Tissue Human 

Expression Resource) project.45 Although rs7594645 was not available in this dataset, we 

analyzed rs10490541 as a proxy SNP since its minor allele (T) is in complete LD (D’=1, 

r2=1) with rs7594645-G in the CEU reference population from the 1000 Genomes Project. 

We observed that rs10490541-T was associated with decreased FASTKD2 mRNA 

expression in skin cells (p=0.035), controlling for participant age, experimental batch, and 

sample processing.45 Using GeneNetwork,46 we next analyzed published brain eQTL data 

for 187 healthy older adults.47, 48 In this analysis, we identified a SNP (rs4578841) in strong 

LD with rs7594645 (D’=1, r2=0.13) that displayed significant association to neocortical 

FASTKD2 expression (p=9.16×10−4).

Association of rs7594645 with cerebrospinal fluid (CSF) levels of pro-apoptotic factors

FASTKD2 encodes a pro-apoptotic protein that is predominantly localized to 

mitochondria.40, 49 Given the association of rs7594645-G with higher memory performance 

and lower FASTKD2 mRNA expression, we hypothesized that rs7594645-G would also be 

associated with decreased activation of apoptosis in the central nervous system. To test this 

hypothesis, we analyzed CSF levels of four proteins involved in fas-mediated apoptosis in 

82 healthy control participants from ADNI (Supplementary Figure 4). Controlling for age 
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and gender, rs7594645-G carriers displayed decreased CSF levels of adiponectin 

(p=5.85×10−5) and fas ligand (p=0.012) and trended towards decreased levels of TNFR2 

(tumor necrosis factor receptor 2; p=0.057) and TRAIL-R3 (tumor necrosis factor-related 

apoptosis inducing ligand receptor 3; p=0.083), with a significant multivariate effect of 

genotype (p=1.07×10−4).

Association of FASTKD2 with hippocampal structure

Given the association of rs7594645-G with higher memory performance and the evidence of 

a functional molecular effect of this SNP, we hypothesized that FASTKD2 would also be 

associated with structural changes in episodic memory-related brain regions. To test this 

hypothesis, we assessed hippocampal volume and gray matter density in 315 healthy control 

participants from ADNI who were genotyped and received high resolution T1-weighted 

structural MRI (Figure 3). Controlling for age, gender, education, and intracranial volume, 

rs7594645-G was associated with hippocampal structure (multivariate p=0.036), including 

higher volume (p=0.034) and gray matter density (p=0.019).

DISCUSSION

Using GWAS in a large, population-based sample of older adults, this study discovered a 

genome-wide significant association of FASTKD2 rs7594645-G with better episodic 

memory performance. This novel association was replicated in independent samples and 

was further validated by converging evidence from structural MRI and gene and protein 

expression studies consistent with a neuroprotective effect in the brain.

FASTKD2 encodes a pro-apoptotic protein40, 49 and has not been previously associated with 

cognition. Signaling through its upstream activator and death receptor fas/CD95 is known to 

mediate neuronal responses to traumatic brain injury50 and may have roles in 

neurodegeneration related to amyloid-β,51 methamphetamines,52 and frontotemporal lobar 

degeneration.53 Rare FASTKD2 mutations have also been linked to infantile encephalopathy 

associated with electron transport chain complex IV deficiency, suggesting a possible 

secondary role in cellular energetics.40

rs7594645 is an intronic variant in FASTKD2 that exhibited an effect size comparable to 

most SNP associations for complex behavioral traits.54 There is substantial precedent for 

non-coding intronic or intergenic variants to exert functional effects through regulation of 

chromatin structure, transcription factor binding, and splicing component recognition, 

among other mechanisms.55-57 In addition, GWAS-implicated SNPs with modest effect 

sizes have highlighted druggable targets for type 2 diabetes, cancer, and other diseases, 

demonstrating the potential biological importance of replicable and convergent 

associations.57, 58

rs7594645 is located in a gene-dense region with extensive LD structure (Supplementary 

Figure 5). In particular, rs7594645 is overlapped by two genes encoding microRNA 

molecules. MicroRNAs are small, non-coding RNAs that base pair with complementary 

sequences in protein-coding mRNAs to direct their degradation or translational repression.59 

The location of rs7594645 suggests that allelic variation in this region may regulate 
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FASTKD2 expression through altering mRNA-microRNA interactions. Based on the UCSC 

Genome Browser, rs7594645 is also 3 base pairs downstream from a binding sequence for 

CTCF (CCCTC-binding factor), a highly conserved transcription factor required for 

neuronal development and synapse formation.60 Genetic variation at rs7594645 or a nearby 

tagging SNP may alter CTCF-mediated transcriptional regulation of FASTKD2 to impact 

neuronal viability. Molecular characterization in brain tissue, cell cultures, and animal 

models will be important to assess and clarify these hypothesized mechanisms and the 

broader functional architecture around FASTKD2 and its neighboring genes DYTN, MDH1B, 

and MIR3130-1 and -2.

Based on the Human Brain Transcriptome, a database of genome-wide transcriptome data 

from postmortem human brains, FASTKD2 is highly-expressed in the hippocampus 

throughout adulthood.61 Behavioral, imaging, and pathological studies have revealed the 

hippocampus to be crucial for episodic memory storage and retrieval.62 We identified a 

protective effect of rs7594645-G on hippocampal volume and gray matter density in older 

adults. Consistent with an anti-apoptotic, neuroprotective effect, we also identified an 

association of rs7594645-G with decreased FASTKD2 mRNA expression and decreased 

CSF levels of proteins involved in apoptosis. These convergent findings at the molecular 

and neural systems levels further support the observed effect of rs7594645-G on memory 

function and suggest that modulation of FASTKD2 and its functional pathways may be 

candidates for nootropic and/or neuroprotective drug development.

The overall allelic frequency of rs7594645-G in the discovery sample was 0.072. Among 

non-Hispanic Caucasian participants, which comprised 79% of this sample, the frequency of 

rs7594645-G was 0.064. Although rs7594645-G was relatively more common in African-

American participants (MAF=0.139), this difference did not appear to exhibit a confounding 

effect on the association of rs7594645 with episodic memory performance (Supplementary 

Table 5). In the replication samples, rs7594645-G exhibited an overall frequency of 0.068 

and displayed a positive effect on episodic memory performance in all cohorts except ROS. 

Greater levels of education, among other potential differences, may have modified the effect 

of rs7594645-G on episodic memory performance in the ROS sample.

Nominal associations for several memory- and AD-related candidate genes were observed in 

the discovery sample, including WWC163, DISC1,64 and the neurotransmission- or 

neurotrophic-related genes BCHE,28 BDNF,65 and CAMTA1.66 Although in the discovery 

sample the APOE ε4 allele was associated with increased odds of self-reported diagnosis of 

AD by a doctor, no SNPs in APOE were associated with immediate recall. The APOE ε4 

allele is the strongest known genetic risk factor for sporadic AD,39 but its relationship to 

non-pathological cognitive aging is less clear.67, 68 Alternative study designs might have 

detected effects of APOE on cognition, including cross-sectional analyses of older samples 

or other cognitive domains as well as longitudinal analyses to identify relative declines 

within individuals over time.67, 69

Gene- and pathway-based analyses provide additional vehicles for characterizing complex 

genetic architectures, since variants of modest individual effect can collectively influence 

susceptibility through action within shared mechanisms.9, 70, 71 Through a gene-based 
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approach accounting for effects of multiple SNPs, we identified genome-wide significant 

associations of LARS2 and MTOR with episodic memory that were otherwise concealed 

through standard SNP-based analysis. Mutations in LARS2 have been implicated in Perrault 

Syndrome, a rare disease characterized by hearing loss and premature ovarian failure and 

proposed to be mediated by mitochondrial and apoptotic dysfunction.42 The MTOR gene 

represents a major drug target for AD and other neurodegenerative disorders due to well-

studied roles in amyloid and tau pathology.72, 73 We also observed enrichment of association 

with episodic memory within the EGFR pathway, which has been proposed as a target for 

treating amyloid-induced memory loss,74 as well as other mechanisms related to cholinergic 

neurotransmission, endocytosis, and the immune response.75, 76

Although this represents the largest known GWAS of memory performance in older adults, 

with a bigger sample the suggestive loci we highlighted might have reached genome-wide 

significance. These included DYTN which encodes a member of a protein family associated 

with schizophrenia and cognitive aging7 and APOL2 which functions with APOE in lipid 

pathways.77 In addition, although the confirmatory and novel findings from this study 

validate its analytical design, alternative assessments of memory performance and clinical 

status might have yielded more sensitive phenotypic measures for GWAS.

Future extensions of this work using next-generation sequencing and related methods may 

reveal other associations with episodic memory, as novel SNPs, rare, structural, and 

epigenetic variants, and dynamic molecular changes in the transcriptome may all play a role 

in memory.78 Studies of longitudinal change in episodic memory functioning may also 

elucidate additional mechanistic influences. Further, although it was beyond the scope of 

this study, characterizing gene-environment interactions will likely guide the optimized 

application of drug and lifestyle modifiers to preserve or enhance episodic memory.

In conclusion, this study discovered and validated a novel association of FASTKD2 with 

episodic memory function and hippocampal structure. Overall, these new findings identify 

potential targets to help improve risk stratification and therapeutic development in normal 

cognitive aging and dementia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot for the HRS discovery GWAS of immediate recall
Observed -log10 p-values (y-axis) are displayed for all tested SNPs on each chromosome (x-

axis). A genome-wide significant association (p<5×10−8) to immediate recall was identified 

on chromosome 2 within FASTKD2. Suggestive associations (p<5×10−6) were identified on 

additional chromosomes. Selected top associations are labeled on the plot.
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Figure 2. Association and effect of rs7594645-G (FASTKD2) on immediate recall in the HRS 
discovery GWAS
a) All SNPs within 500 kb of FASTKD2 are plotted based on their GWAS -log10 p-values, 

NCBI build 37 genomic position, and recombination rates calculated from the 1000 

Genomes Project reference data. The color scale of r2 values is used to label SNPs based on 

their degree of LD with rs7594645. Genes in the region are labeled with arrows denoting 5’-

to-3’ orientation. b) Mean immediate recall scores (adjusted for clinical covariates and 

population structure) +/- standard errors are displayed based on rs7594645 genotype. 

Presence of the minor allele (G) of rs7594645 imparted a modest additive effect of 

improving memory performance and accounted for 0.5% of the phenotypic variance.

Ramanan et al. Page 17

Mol Psychiatry. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Effect of FASTKD2 rs7594645-G on hippocampal volume and gray matter density in 
315 older healthy control participants from the ADNI
Using high resolution T1-weighted structural MRI, mean volumes and gray matter densities 

in the hippocampus (adjusted for age, gender, education, and intracranial volume) ± standard 

errors are displayed based on rs7594645 genotype. Participants with the minor allele (G) of 

rs7594645 displayed increased hippocampal volume and gray matter density, with a 

significant multivariate effect of genotype on these MRI measures (p=0.036).
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Table 1

Selected characteristics (number or mean (standard deviation)) of participants in the discovery* and 

replication cohorts.

HRS* (wave 3) HRS (wave 7) Add-Neuro-Med ADNI IMAS MAP ROS

Participants 6,705 5,116 64 1,147 68 878 803

Gender

        Male 2,529 (38%) 2,177 (43%) 27 (42%) 669 (58%) 25 (37%) 244 (28%) 276 (34%)

        Female 4,176 (62%) 2,939 (57%) 37 (58%) 478 (42%) 43 (63%) 634 (72%) 527 (66%)

Age (y) 61.8 (8.2) 60.4 (10.5) 70.9 (6.8) 74.3 (7.1) 71.9 (8.1) 81.0 (6.6) 75.7 (7.3)

Education (y) 12.4 (3.1) 13.0 (3.1) 10.2 (5.0) 15.8 (2.9) 16.5 (2.5) 14.7 (2.9) 18.2 (3.4)

Ethnicity

        NHC 5,283 4,042 64 1,147 68 878 803

        AA 817 711 0 0 0 0 0

        Other 605 363 0 0 0 0 0

Abbreviations: NHC = non-Hispanic Caucasian; AA = African-American
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Table 2

Biological pathways associated with immediate recall in the HRS discovery GWAS (n=6,705).

Pathway Description (Source Database) Size
*

Uncorrected p
**

Valine, leucine, and isoleucine biosynthesis (KEGG) 11 3.78 × 10−9

IFNγ pathway (Protein Interaction Database) 40 1.21 × 10−6

GA12 pathway (Signal Transduction Knowledge Environment) 23 3.24 × 10−6

MTORC1-mediated signaling (Reactome) 11 3.28 × 10−6

CDC42 pathway (Protein Interaction Database) 70 5.48 × 10−6

Mitochondrial tRNA aminoacylation (Reactome) 21 1.45 × 10−5

B-cell survival pathway (Biocarta) 16 2.27 × 10−5

CD28 co-stimulation pathway (Reactome) 32 2.33 × 10−5

CTCF pathway (Biocarta) 23 4.12 × 10−5

ErbB2/ErbB3 pathway (Protein Interaction Database) 44 4.27 × 10−5

Highly calcium-permeable postsynaptic nicotinic acetylcholine receptors (Reactome) 13 6.05 × 10−5

ErbB1 downstream pathway (Protein Interaction Database) 105 8.48 × 10−5

Creation of C4 and C2 activators (Reactome) 10 1.16 × 10−4

G1 phase (Reactome) 38 1.48 × 10−4

L1CAM interactions (Reactome) 86 2.08 × 10−4

Glioma (KEGG) 65 2.48 × 10−4

Acetylcholine binding and downstream events (Reactome) 16 4.80 × 10−4

Protein kinase B mediated events (Reactome) 29 5.04 × 10−4

Endocytosis (KEGG) 183 5.85 × 10−4

LKB1 pathway (Protein Interaction Database) 47 6.27 × 10−4

Nectin pathway (Protein Interaction Database) 30 6.83 × 10−4

Prion diseases (KEGG) 35 6.83 × 10−4

*
Number of genes in the pathway

**
All pathways displayed are significant at FDR-corrected p<0.05
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