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Abstract
The intestinal epithelium represents one of our most important interfaces with the external environment.
It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune
homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease
(IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth
cells and has recently come to light as being an essential modulator of immunity as opposed to a
simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving
innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise
just 1 % of this epithelium, but collectively form the bodies’ largest endocrine system. The mechanisms
of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well
studied; but their potential interactions with the enriched numbers of surrounding immune cells remain
largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion
during inflammation and disease, highlighting the few in depth studies which have attempted to dissect
the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of
enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly
orchestrate immune cell function will be proposed. In summary, the data generated from these studies
have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting
the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and
inflammatory disorders of the intestine.

Introduction
Dispersed throughout the intestinal epithelium are the
enteroendocrine cells which, despite only comprising 1 %
of the epithelium, collectively form the largest endocrine
system in humans. Enteroendocrine cells respond to luminal
nutrients by secreting >20 peptide hormones, including
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cholecystokinin (CCK), glucagon-like peptide 1 and 2 (GLP-
1, GLP-2), glucose-dependent insulinotropic peptide (GIP),
peptide YY (PYY), somatostatin and ghrelin; as well as
bioactive amines such as serotonin (5-HT). The historical
dogma of differentiated enteroendocrine cellular sub-types
secreting distinct hormone peptides has been superseded via
the use of transgenic reporter mice, to the recognition that
enteroendocrine cells can secrete a comprehensive array of
peptide hormones altering based on their location within
the gut [1]. These secreted peptide hormones act on distant
organs such as pancreatic islets or locally on neighbouring
cells such as enterocytes and vagal nerve endings. En-
teroendocrine cells have classically been studied for their
roles in enabling efficient postprandial assimilation of
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Figure 1 Enteroendocrine cells: key orchestrators of intestinal immunity

Enteroendocrine cells make up 1 % of the intestinal epithelium and, beyond their classical role of detecting luminal nutrients,

they also detect and respond to (1) pathogens via the expression of TLRs and (2) the intestinal microbiome via the

expression of specific receptors for the metabolites commensal bacteria produce. (3) In response to pathogens and microbial

metabolites, enteroendocrine cells secrete peptide hormones and classical cytokines to the surrounding immune cell rich

milieu. In addition to classical cytokine receptors, immune cells express a vast array of receptors for peptide hormones

which have direct immunomodulatory effects. (4) Enteroendocrine-secreted hormone peptides also signal to vagal afferents

triggering an anti-inflammatory vagal reflex. The resulting acetylcholine released from vagal efferents inhibits inflammatory

responses from the surrounding immune cells. (5) Vagal afferent signalling also modulates classical feeding pathways

resulting in altered fat deposits. This, in turn, modifies the levels of fat secreted adipokines, such as leptin, influencing

immune cell function. (6) CD4 + T-cells directly influence the function of peptide hormones via increased secretion and

hyperplasia of enteroendocrine cells via direct enteroendocrine and indirect stem cell signalling.

nutrients via endocrine and paracrine induced alterations in
gastrointestinal secretion, motility, pancreatic insulin release
and satiety [2].

The key feature of enteroendocrine cells is to sense
luminal nutrients and bring about the ideal absorption
conditions for the particular nutrients detected. Classical
examples of this fine tuning in nutrient detection are the
enteroendocrine I-cells of the duodenum. In response to
sensing long-chain fatty acids via activation of G protein-
coupled receptors (GPRs), I-cells undergo Ca2 + flux and
membrane depolarization, culminating in secretion of the
hormone CCK. CCK acts through the CCK receptor
to cause gall bladder contraction and pancreatic enzyme
secretion allowing efficient assimilation of the long-chain
fatty acids detected [3]. Further to mediating digestion and
metabolism, secreted hormones can also terminate meal size
by vagally triggering satiation in feeding centres of the brain
[2]. Therefore, clinical trials are focusing on the use of

enteroendocrine peptide receptor agonists for the therapeutic
treatment of obesity and metabolic diseases [2]. Of particular
note is the use of GLP-1 receptor agonists for the treatment
of diabetes, following the key observation that the incretin
GLP-1 is anti-apoptotic for pancreatic β-cells [4].

Intriguingly, both murine and human studies have
demonstrated alterations in enteroendocrine cell number and
secretion during inflammation [5,6] and the vast immune
system that serves the gut has been shown to express
an array of enteroendocrine cell peptide receptors [7].
Furthermore, in vitro/in vivo studies have demonstrated that
enteroendocrine cells possess functional toll-like receptors
(TLRs) [8] and can directly respond to metabolites produced
from commensal bacteria [9]. These observations indicate that
enteroendocrine cells may have direct and critical roles in
orchestrating intestinal immune responses to both pathogens
and commensal bacteria (Figure 1) and despite the ongoing
therapeutic trials and use of enteroendocrine cell peptide
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receptor agonists, few studies have examined the potential
importance of this immunoendocrine axis.

This review will focus on alterations in enteroendocrine
number and peptide secretion during inflammation and dis-
ease, highlighting in-depth mechanistic mouse model studies.
Furthermore, the emerging potential of enteroendocrine cells
acting as innate sensors of pathogens and perturbations in the
intestinal microbiome will be discussed, identifying enteroen-
docrine cells as key orchestrators of intestinal immunity.

Enteroendocrine cells and inflammatory
bowel disease
Given that reduced feeding, anorexia and altered intestinal
motility often accompany intestinal inflammation, it is
surprising that enteroendocrine cells, as key instigat-
ors of these changes during homoeostasis, have been
neglected as possible orchestrators of these pathologies
during disease. However, genome-wide association stud-
ies for Crohn’s disease (CD) have identified a single
nuclear polymorphism in the enteroendocrine associated
homeodomain transcription factor paired-like homeobox 2B
(Phox2B) [10]. This, coupled with the detection of auto-
antibodies for the ubiquitination factor E4A, specifically
in enteroendocrine cells during Crohn’s [11], has brought
some focus upon the possible role of enteroendocrine cells
in the pathogenesis of inflammatory bowel disease (IBD).
Indeed, alterations in enteroendocrine cell numbers and
secretion have been noted during IBD with increased PYY
and 5-HT cells in lymphatic colitis, reduced colonic
PYY cells in both CD and ulcerative colitis (UC), increases
in GLP-1 and PYY cell number in terminal ileal CD and
increases in GLP-2 in both CD and UC [5]. GLP-2 is a
well-known epithelial growth factor with additional anti-
inflammatory properties, including aiding secretion of anti-
bacterial peptides from Paneth cells [12] and is therefore
the most simplistic example of enteroendocrine function
influencing intestinal disease pathology. Indeed, GLP-2 has
been shown to be protective in animal models of IBD
[13] and long acting analogues of GLP-2 are currently on
trial for the treatment of CD [14]. Despite this beneficial
change in enteroendocrine function during IBD, the reduced
appetite, anorexia and nausea associated with IBD is also
likely to be driven by altered enteroendocrine function.
Although, increases in GLP-1 in UC are not thought to
be responsible for any changes in feeding patterns, due to
unaltered gastric emptying; small bowel Crohn’s-associated
feeding decreases and nausea do correlate with increased PYY
levels [5]. Furthermore, increased enteroendocrine numbers
in long-standing UC have been suggested to act as promoters
for the neoplasia associated with IBD [15], whereas recent
data has demonstrated enteroendocrine cells as being key
producers of the pro-inflammatory cytokine interleukin (IL)-
17C during CD and UC, possibly playing a key role in
disease progression [16]. Taken together, this suggests that
enteroendocrine cells play an essential and varied role in the

pathology of IBD and are strong candidates for therapeutic
intervention.

Enteroendocrine cells in mouse models of
IBD
Further mechanistic study of the pathways involved in
enteroendocrine cell pathology during IBD has been
made possible via the use of animal models of intestinal
inflammation. Colitis can be induced chemically via the
administration of dextran sulfate sodium (DSS) or 2,4,6-
trinitrobenzenesulfonic acid (TNBS) and both models are
well associated with reduced feeding and weight loss.
Interestingly, it has been reported that the feeding alterations
seen in TNBS-induced colitis are probably due to alterations
in enteroendocrine satiety as opposed to simple malaise, due
to changes in gastric emptying [17]. Guinea pigs with TNBS-
induced colitis have been shown to have hyperplasia of 5-
HT and GLP-2 enteroendocrine cells. Through the use of
Bromodeoxyuridine (BrdU) labelling of proliferative cells it
has been demonstrated that, although a small capacity of
5-HT producing enterochromaffin cells retain proliferative
capacity, the majority of hyperplasia is due to alterations in the
stem cell niche [18]. As all epithelial cells arise from the same
pluripotent stem cell [6], this is suggestive that alterations in
enteroendocrine number occur at the stem cell level and due
to the high turnover of intestinal epithelial cells can quickly
influence the inflammatory state. These chemical-induced
colitis models have been particularly useful in establishing
the role of enteroendocrine cells in the pathogenesis of mouse
models of disease. Further elucidations have been made
utilizing infection-based models of intestinal inflammation,
which have demonstrated a key role for enteroendocrine cells
during infection, as well as offering translational lessons for
IBD.

Enteroendocrine cells as mediators of
intestinal infection
There are numerous reports of alterations in enteroendocrine
cell number and secretion during a variety of infectious
agents in a diverse range of animals. For example decreased
somatostatin-positive cells are seen during schistomiasis in
mice [19], whereas increases in CCK-positive cells occur
in giardia-infected humans [6] and myxozoa-infected fish
[20]. Many studies within the livestock industry have
associated changes in enteroendocrine function with weight
loss during intestinal infection. Infection with the intestinal
parasites Ascaris suum in pigs and Trichostrongylus colubri-
formis in lambs results in hypophagia that is coupled with an
increase in CCK [6], whereas increased 5-HT and CCK enter-
oendocrine cells significantly correlate with the cachexia seen
in Enteromyxum scophthalmi infected Turbot [20]. Animal
models have been particularly useful for dissecting the mech-
anisms responsible for the hyperplasia of enteroendocrine
cells during inflammation with studies suggesting an immune-
driven alteration. There is a close physical association of
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immune cells with enteroendocrine cells [21] and the 5-HT
hyperplasia observed during Citrobacter rodentium infection
is absent from severe combined immunodeficiency (SCID)
mice [22] which lack adaptive immunity.

We have carried out in-depth studies with the helminth
Trichinella spiralis which causes a well-characterized transient
enteritis and weight loss in mice, with parasite expulsion
dependent on T-helper (Th) 2 cytokines and mastocytosis
[23]. Utilizing a variety of transgenic mice, we have dissected
the molecular mechanisms and actual function of the
hypophagia seen during this parasitic infection. Intriguingly
both CCK + cell hyperplasia [23] and CCK hypersecretion
[24] are observed during T. spiralis infection and this
correlates with the period of hypophagia seen during enteritis.
Furthermore, the absence of CD4 + T-cells or the CCK
signalling pathway results in a complete lack of hypophagia
during enteritis [23,24], whereas the adoptive transfer of
CD4 + T-cells to infected SCID mice restores the otherwise
absent hypophagia [23]. Collectively, this indicates that the
adaptive immune system hijacks classical feeding pathways
to reduce food intake during infection. We further pursued
the possible benefit of such a mechanism, beyond a simple
innate device to prevent continued feeding at an infected
site, by examining if reduced feeding was in any way
beneficial to the host in coping with the parasitic burden.
The period of immune-mediated CCK-induced hypophagia
during infection resulted in a significant reduction in weight
and visible reduction in visceral fat pads, a rich source
of immune manipulating adipokines, most notably leptin
[25]. We therefore postulated that the immune driven
reductions in leptin, a strong Th1-inducing adipokine [25],
could be beneficial in allowing the helminth expelling Th2
immune response to develop, allowing parasite expulsion.
To investigate such an effect, we restored basal leptin levels
throughout infection-induced hypophagia via the injection
of recombinant leptin and saw a significant reduction in
CD4 + T-cell Th2 cytokine production and mastocytosis,
culminating in a significant reduction in parasite expulsion.
Hence, we have identified immune-driven alterations in
enteroendocrine feeding pathways as a novel mechanism in
helminth expulsion [23].

Parallel studies have demonstrated CD4 + T-cell control
of 5-HT producing enterochromaffin cells during a large
intestinal helminth infection, which is thought to be driven
at the enterochromaffin cell level via the expression of IL-
13Rα1 expression [26]. Indeed, CD4 + Th2 cytokines are
essential for these alterations, as a chronic dose of the same
helminth, resulting in a Th1 immune response does not
drive the enterochromaffin hyperplasia [27]. Although, the
precise function of these changes has not been defined, 5-
HT has many possible immune-modulating abilities [28] and
could therefore again be an adaptively driven mechanism of
parasite expulsion. The possibility IL-13 is responsible for
the alterations in CCK seen during T. spiralis infection is
less likely, given the ample natural killer (NK) cell-derived,
IL-13-induced goblet cell hyperplasia observed in infected
SCID mice, but lack of accompanying I-cell hyperplasia

[23]. This uncoupling of enteroendocrine differentiation
during inflammation holds promising therapeutic potential,
given the diverse potential functional roles of individual
enteroendocrine peptide hormones.

Direct immunomodulatory roles of
enteroendocrine cells
Intriguingly, immune cells express a vast array of receptors for
enteroendocrine secreted hormone peptides [7], suggesting
an exciting potential of bi-directional signalling in the
immunoendocrine axis. The production of the amine 5-HT
from enterochromaffin endocrine cells is well established as
a direct immunomodulatory factor, with the seven receptor
isoforms expressed on mast cells, monocytes, dendritic cells
(DCs), eosinophils, T- and B-cells and neutrophils [28].
Immune cells can also produce 5-HT independently of
endocrine cells and the effect on immune cells is varied
from cellular recruitment, activation, phagocytosis, antigen
presentation and cytokine secretion [28]. Recent and ongoing
studies are dissecting the potential for peptide hormones to
influence immunity in a similar manner to the well-studied
actions of 5-HT. Indeed, carboxypeptidase E-null mice,
an enteroendocrine-associated exopeptidase essential for
processing and packaging endocrine peptides, demonstrate
increased IL-6 and chemokine (C-X-C motif) ligand (CXCL)
1 and exacerbated DSS-induced colitis [29].

CCK octapeptide has been shown to inhibit TLR9
stimulation of plasmacytoid DCs via tumour necrosis factor
receptor-associated factor 6 signalling [30], whereas it can
promote IL-12 production from DCs and reduce IL-6
and IL-23 production offering protection during collagen-
induced arthritis [31]. CCK octapeptide can also directly
affect T- and B-cells and has been shown to promote a
Th2 and regulatory T-cell phenotype in vitro [32], promote
IL-2 production in the Jurkat T-cell line [33], stimulate
B-cells to produce acetylcholine [34] and reduce B-cell
lipopolysaccharide (LPS)-induced activation [35]. Strikingly,
the huge atrophy in lymphoid tissue, including Peyer’s
patches, IgA production and total cellularity, seen during
parenteral feeding can be rescued via the infusion of
CCK alone [7], functionally rescuing immune responses to
infectious bacteria [36].

Other promising immunomodulatory enteroendocrine
hormone peptides include the orexigenic peptide ghrelin.
Ghrelin increases T-cell proliferation via phosphoinositide
3-kinase, extracellular-signal-regulated kinases and protein
kinase C [37] and has been shown to have an anti-
inflammatory effect in DSS-induced colitis [38]. Interestingly
ghrelin actually has direct anti-parasitic [39] and anti-bacterial
effects [40]. Similarly to 5-HT, T-cells themselves can produce
ghrelin that is involved in anti-inflammatory responses in
terms of reducing Th1 and Th17 responses [41]. Moreover,
somatostatin is inhibitory to T-cell proliferation [42], GLP-
1 also has anti-inflammatory effects on T-cells via decreased
mitogen-activated protein kinase (MAPK) activation [43] and
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may modulate regulatory T-cells [44]. Indeed, intraepithelial
lymphocytes respond to GLP-1 to influence the response to
DSS-induced colitis [45].

Enteroendocrine cells are also direct sources of cytokines,
being key producers of the pro-inflammatory cytokine IL-
17C during CD and UC [16]. Enteroendocrine cells have been
shown to express functional TLRs, in vitro and in vivo studies
have shown that CCK-secreting cells express TLR 1, 2 and 4,
with stimulation resulting in increased nuclear factor kappa
light chain enhancer of activated B cells (NFκβ), MAPK
signalling, as well as Ca flux culminating in tumour necrosis
factor-α, transforming growth factor-β and macrophage
inhibitory protein 2, as well as CCK release [8]. Indeed,
enteroendocrine cells appear to be able to modulate their
response between pathogenic and nutrient sensing, secreting
CXCL1/3 and IL-32 in response to flagellin and LPS, but not
to fatty acids in vitro [46]. Taken together, this indicates that
enteroendocrine cells can act as front-line pathogen detectors
releasing either classical cytokines or peptide hormones that
can directly orchestrate adaptive and innate immunity.

Vagally-mediated immunomodulatory
roles of enteroendocrine released peptide
hormones
As well as being able to directly influence immune cells,
enteroendocrine-secreted products can indirectly influence
immune responses via the triggering of vagal afferents. This
anti-inflammatory pathway was first examined during haem-
orrhagic shock. Nutritional stimulation of CCK via a high-
fat diet protected via a vagal reflex releasing acetylcholine
which inhibited pro-inflammatory cytokine secretion from
macrophages [47]. Others have demonstrated similar vagal-
macrophage regulation in a variety of inflammatory settings
[48], with the pathway also regulating other innate immune
cells [48]. However, these results should be considered
in parallel with other data demonstrating direct effects of
CCK on macrophages, CCK inhibits inducible nitric oxide
synthase (iNOS) production by macrophages [49], as well
as studies demonstrating direct alteration of acetylcholine
production by B-cells in response to CCK [34]. This
anti-inflammatory role of the vagus nerve and, therefore,
enteroendocrine peptide hormone stimulation is an exciting
and growing area of research.

Enteroendocrine cells as sensors of the
intestinal microbiome
Finally, the current explosion in studies into the intestinal
microbiome has not failed in linking both enteroendocrine
cells and vagal signalling to the billions of bacteria which
inhabit our intestines. Historic studies have demonstrated
germ-free mice have drastically altered enteroendocrine cell
numbers [50]; whereas, recently it has been shown that enter-
oendocrine cells have specific receptors which can respond to
bacterial products. In particular GLP-1-secreting cells have

receptors for many microbiome metabolites such as GPR41
and 43 for short-chain fatty acids, read GPR 131 for bile acids
and GPR119 for N-oleoylethanolamide and 2-oleoylglycerol
and can secrete GLP-1, GLP-2 and PYY in response to
stimulation [9]. It is therefore highly likely that our intestinal
microbiome is able to influence not only obesity, but also
our entire immune system via regulating the production of
immunomodulatory enteroendocrine hormone peptides.

Summary
In summary, emerging data have begun to demonstrate a huge
interaction between enteroendocrine cells and the immune
system. Enteroendocrine cells can secrete classical cytokines
as well as hormonal peptides that have the ability to directly
and indirectly influence the entire breadth of our intestinal
immune system. Due to the scarcity of these cells and lack of
specific markers for purification, this immunoendocrine axis
has until recently remained neglected. The transgenic reporter
models now available have led to a huge potential to fully in-
vestigate this exciting cross-talk between our intestinal endo-
crine and immune systems, opening up new therapeutic tar-
gets and the possibility to utilize current drugs used for meta-
bolic syndromes in wider immune inflammatory settings.
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