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A B S T R A C T

Background: We investigate whether deep learning (DL) neural networks can reduce erroneous human
“judgment calls” on bedside echocardiograms and help distinguish Takotsubo syndrome (TTS) from anterior
wall ST segment elevation myocardial infarction (STEMI).
Methods: We developed a single-channel (DCNN[2D SCI]), a multi-channel (DCNN[2D MCI]), and a 3-dimen-
sional (DCNN[2D+t]) deep convolution neural network, and a recurrent neural network (RNN) based on
17,280 still-frame images and 540 videos from 2-dimensional echocardiograms in 10 years (1 January 2008
to 1 January 2018) retrospective cohort in University of Iowa (UI) and eight other medical centers. Echocar-
diograms from 450 UI patients were randomly divided into training and testing sets for internal training,
testing, and model construction. Echocardiograms of 90 patients from the other medical centers were used
for external validation to evaluate the model generalizability. A total of 49 board-certified human readers
performed human-side classification on the same echocardiography dataset to compare the diagnostic per-
formance and help data visualization.
Findings: The DCNN (2D SCI), DCNN (2D MCI), DCNN(2D+t), and RNN models established based on UI dataset
for TTS versus STEMI prediction showed mean diagnostic accuracy 73%, 75%, 80%, and 75% respectively, and
mean diagnostic accuracy of 74%, 74%, 77%, and 73%, respectively, on the external validation. DCNN(2D+t)
(area under the curve [AUC] 0¢787 vs. 0¢699, P = 0¢015) and RNN models (AUC 0¢774 vs. 0¢699, P = 0¢033) out-
performed human readers in differentiating TTS and STEMI by reducing human erroneous judgement calls
on TTS.
Interpretation: Spatio-temporal hybrid DL neural networks reduce erroneous human “judgement calls” in dis-
tinguishing TTS from anterior wall STEMI based on bedside echocardiographic videos.
Funding: University of Iowa Obermann Center for Advanced Studies Interdisciplinary Research Grant, and
Institute for Clinical and Translational Science Grant. National Institutes of Health Award
(1R01EB025018�01).
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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Research in context

Evidence before this study

Echocardiography plays a vital role in triage and management
of cardiovascular emergencies. A PubMed search for all types of
papers in all languages up to May 28, 2021 with search terms of
''echocardiography''(All Fields) AND ''diagnosis''(All Fields)
AND ''deep learning''(All Fields) yielded 37 results, which have
been focused on the investigation of cardiac pathology to help
differential diagnosis of chronic cardiovascular disorders. The
literature is lacking with regard to the studies that apply deep
learning (DL) to real-time imaging for diagnosis or triage of
acute cardiovascular disorders. Meanwhile, most of the
reported DL prediction models were developed based on still-
frame echocardiographic images with increased data yield and
improved classifications, but showed variable performance in
finding advanced diagnostic markers.

Added value of this study

We show that spatio-temporal hybrid DL neural networks
reduce erroneous human “judgement calls” in distinguishing
Takotsubo syndrome (TTS) from anterior wall ST segment ele-
vation myocardial infarction based on bedside echocardio-
grams. Effective spatio-temporal modeling in real-time
imaging can help triage cardiovascular emergencies and resolve
time-sensitive diagnostic dilemmas. Our study also demon-
strates the potential of DL neural networks to reduce reliance
on the individual physician's subjective diagnosis based on
images of rare cardiac diseases.

Implication of all the available evidence

Integrating effective spatio-temporal DL modeling in real-time
cardiovascular imaging studies will increase clinical relevance
of AI in assisting non-expert imaging readers for urgently
needed triage and management decisions in acute cardiovascu-
lar disorders.
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1. Introduction

Despite distinct pathogenesis, [1,2] Takotsubo syndrome (TTS) can
mimic clinical and electrocardiographic (ECG) features of acute myo-
cardial infarction (AMI), including anterior wall ST segment elevation
myocardial infarction (STEMI). Current guidelines advocate the use of
coronary angiography to direct differential diagnosis and treatment.
[3] Because a substantial portion of TTS cases are actually triggered
by bleeding disorders, particularly from the central nervous system,
frontline clinicians often face a dilemma when anticoagulation (for
cardiac catheterization) or thrombolysis can cause adverse, poten-
tially lethal consequences. Meanwhile, misdiagnosing TTS as STEMI
can lead to harmful pharmacological or device-based treatment and
worsen hemodynamic compromise. [4,5] During the COVID-19 pan-
demic, TTS was increasingly found in patients with ECG features of
STEMI. [6] For provider protection and capacity leverage, the updated
guideline requires point-of-care ultrasound (POCUS) or bedside echo-
cardiography to triage STEMI patients suspected for COVID infection
before cardiac catheterization. [7]

TTS-induced myocardial contractile dysfunction usually extends
beyond a single (culprit) coronary artery territory. Nonetheless, teth-
ering of nonischemic myocardium adjacent to ischemic or infarcted
myocardium often causes two-dimensional (2D) echocardiographic
analyses of regional myocardial contractile dysfunction overestimate
the actual ischemic region size. Coronary artery anatomic variations
also create factual difficulties to distinguish TTS from anterior wall
STEMI based on regional wall motion characteristics in bedside echo-
cardiograms.

In daily practice, if clinical characteristics, biomarkers, and ECGs
are inadequate for definitive diagnosis, we often have to rely on echo-
cardiography readers’ “judgment calls” to support urgent decision-
making. In the present study, we investigated whether deep learning
(DL) neural networks could reduce erroneous “judgement calls” in
the differential diagnosis of TTS and STEMI based on bedside echocar-
diographic images and videos, and the role of DL in supporting triage
and management of cardiovascular emergencies.
2. Methods

2.1. Overview

We trained three deep convolution neural networks (DCNN) and
one recurrent neural network (RNN) based on an echocardiographic
database from 540 patients in a 10-year retrospective cohort (1 Janu-
ary 2008 to 1 January 2018) at the University of Iowa (UI) and eight
other university-affiliated or regional medical centers (Washington
University in St Louis, University of North Carolina, State University
of New York, Weill Cornell Medical College, Kansas University, Lanke-
nau Medical Center, Northwest Health Medical Center, and Provi-
dence Regional Medical Center) inside the United States. An
overview of the study design and datasets are illustrated in Fig. 1.
The research protocols and waiver of informed consent were
approved by the human subjects committee of the UI institutional
review board.
2.2. Clinical diagnosis and imaging studies

We obtained clinical, laboratory (Table 1), ECG, angiographic and
echocardiographic imaging data of studied patients and followed
updated diagnostic criteria for STEMI [8] and TTS. [3] The differentia-
tion between anterior wall STEMI and TTS were all confirmed by cor-
onary angiography (CAG). Cardiac catheterization with selective CAG,
left ventriculography (LVG) and percutaneous coronary intervention
were performed using standard techniques according to the updated
European Society of Cardiology/American College of Cardiology
guidelines. [8] Based on coronary artery anatomies, all ventricular
segments were divided into culprit and non-culprit artery territories.
Two interventional cardiologists, blind to clinical findings, indepen-
dently evaluated CAG and LVG images. Transthoracic echocardiogra-
phy (TTE) was performed using standard techniques of 2D
echocardiography following the guidelines of the American Society
of Echocardiography. [9] All images were stored digitally for playback
and subsequent offline analysis. The 2D grayscale images were
acquired in the standard apical views, and the standard apical 4-
chamber left ventricular (LV) focused view images and videos were
used for subsequent studies. Pixel data from the picture archiving
and communication systems were preprocessed into numeric arrays,
and the data were stored at a resolution of 800£ 600 pixels. If neces-
sary, they were rescaled through bilinear interpolation. In STEMI
patients with cardiac catheterization/coronary angiographically
(CAG)-proven significant stenosis (>70%) of the left anterior descend-
ing artery (LAD), transthoracic echocardiograms were performed
within 24 h of STEMI. Patients were excluded if they had primary val-
vular disorders, significant pulmonary hypertension, atrial fibrilla-
tion, anomalous LAD origin, or no wall motion abnormality in left
ventriculography (LVG) and transthoracic echocardiography. Based
on anatomic features, Gensini score, and culprit artery location and
dominant/major side-branch circulations, segments were divided
into culprit or non-culprit artery-supplied areas based on the stan-
dard 17-segment LV model and previous publications. [10,11]



Fig. 1. Study data for Deep learning (DL) neural network model development.
Ten-Fold cross validation is performed for DL model training and validation by randomly dividing dataset to ten equal subset in each stage. The total number of still frames and

videos of each of the folds in different stages of training and validation are shown.
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2.3. DL neural networks

2.3.1. Model construction
We developed an ROI selection algorithm (Supplemental methods

and Fig. 2A and 2B) to define the regions of interest (ROIs) in the
echocardiograms as the input to the DL models, which remove
artifacts and labels in the videos and also reduce the computational
demands. Three DCNN models and one RNN model were imple-
mented. The two DCNN models (Fig. 2.C.a) were both based on a VGG
network, [12] which consisted of nine convolution layers with 3£ 3
kernel size for each layer of convolution. The convolution stride was
fixed to one voxel and the spatial padding for each convolution layer



Fig. 2. DL Neural networks.
A.Method workflow for ROI selection, data augmentation, model training and prediction.
B. ROI extraction from the original echocardiogram: Center frame of a cardiac cycle is shown for visual convenience. a. Manual selection of lowest apex location. b. Cropping out-

side the selected point. c. Left and right part extraction. d. Triangle cut to remove artifacts and labels. e. Joining left and right cleaned parts horizontally. f. Final ROI cut with a
(448,480) bounding vox having the selected point in (a) as top middle point of each frame.

C. a. DCNN architecture. b. RNN architecture
D. Data augmentation from selected ROI in (4.a). Top row (4.b) shows augmentation with random rotation and intensity change and bottom row (4.c) shows augmentation with

random scaling and intensity change.
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input was applied so that the spatial resolution was preserved
after convolution. Max-pooling was performed over a 2£ 2 win-
dow to down-sample the feature maps by two, with a stride of
one. We started with 16 feature maps in the first convolution
layer, which were doubled after every two convolution layers. At
the end of these convolution layers, all feature maps were flat-
tened and a dense layer with two channels (one for each class)
was added with a soft-max activation to have a probability predic-
tion for each class. All hidden layers were equipped with non-lin-
ear rectification (ReLU). [13] In our first DCNN model, we labeled
each grayscale frame from all echocardiograms as separate indi-
vidual cases and used them as the input to the DCNN model with
a single-channel (DCNN [2D SCI]). We implemented the second
model with exactly the same architecture as the first, but took all
frames from a single echocardiogram as a whole to feed into the
DCNN model with multiple-channels (DCNN[2D MCI]). The third
model was also based on a VGG network with the same structure
as the first two. However, instead of using 2D frames as input, we
used the echocardiogram videos as a 3-dimension input. Hence, in
this model, all convolution and pooling layers were equipped with
3£ 3£ 3 and 2£ 2£ 2 kernels, respectively. The other network
parameters were the same as those in the first two models. We
denoted this model as DCNN(2D+t). The fourth model was a recur-
rent neural network (RNN) with four long short-term memory
(LSTM) layers stacked consecutively. The last LSTM layer con-
nected to a dense layer with 32 neurons, followed by a soft-max
layer with two neurons for class prediction. We flattened all echo-
cardiogram frames of a video and used them as an input to the
recurrent neural network. The DCNN and RNN architectures/algo-
rithms detailed in Fig. 2C and Supplemental methods.



Table 1
Demographic, clinical, and basic echocardiography assessment data of
STEMI and TTS patients.

TTS STEMI P-Value

Total Patients, n 140 160
Age, years (SD) 64¢0 (13¢1) 61¢3 (13¢3) 0¢08
Male, n (%) 24 (17¢1) 112 (70¢0) <0¢0001
CAD with PCI, n (%) 16 (11¢4) 26 (16¢3) 0¢27
HTN, n (%) 93 (66¢4) 104 (65¢0) 0¢88
HLD, n (%) 46 (32¢9) 77 (48¢1) 0¢04
DM, n (%) 34 (24¢3) 38 (23¢8) 0¢92
COPD, n (%) 24 (17¢1) 10 (6¢3) 0¢01
CKD, n (%) 21 (15¢0) 19 (11¢9) 0¢46
Hyperthyroid, n (%) 3 (2¢1) 1 (0¢63) 0¢26
Smoking, n (%)a 88 (65¢7) 107 (67¢7) 0¢57
ACEi/ARB, n (%) 44 (31¢4) 53 (33¢1) 0¢80
BB, n (%) 51 (36¢4) 46 (28¢8) 0¢24
Chest Pain, n (%) 36 (25¢7) 122 (76¢3) <0¢0001
Peak CTnT, ng/ml (SD)b 0¢61 (0¢83) 5¢63 (7¢94) <0¢0001
LVH, n (%) 36 (25¢7) 44 (27¢5) 0¢77
Ejection Fraction <40, n (%) 113 (80¢7) 106 (66¢3) 0¢14
LA Enlargement, n (%) 45 (32¢1) 51 (31¢9) 0¢97
a TTS: 134/140 patients; STEMI: 158/160 patients.
b TTS: 137/140 patients; STEMI: 147/160 patients

CAD: coronary artery disease; PCI: percutaneous coronary intervention;
HTN: hypertension; HLD: hyperlipidemia; DM: diabetes mellitus; COPD:
chronic obstructive pulmonary disease; CKD: chronic kidney disease;
ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin receptor
blocker; BB: beta blocker; CTnT: cardiac troponin; LVH: left ventricular
hypertrophy; LA: left atrium
There were more male STEMI patients than TTS patients (70% vs.17.1%,
P<0.0001). There were more STEMI patients with hyperlipidemia
(48.1% vs. 32.9%, P = 0.04). There were more TTS patients with chronic
obstructive pulmonary disease (7.1% vs. 6.3%, P = 0.01). The mean peak tro-
ponin T levels in STEMI subjects was higher than TTS patients (5.63 ng/ml
vs. 0.61 ng/ml, P<0.0001). More STEMI patients presented with chest pain
than TTS patients (P<0.001).
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2.3.2. Data training and validation
The data training and validation was based on an image database

consisting of 17,280 still-frame images and 540 videos from apical 4-
chambal view 2D echocardiograms in 540 patients in the University
of Iowa (UI) and eight other medical centers. The internal training
and validation were performed in two stepwise stages: control versus
disease and TTS versus STEMI. We used ten-fold cross-validation for
training and validation on 14,400 still-frame images and 450 videos
from the echocardiograms of UI patients (150 control, 140 TTS and
160 STEMI). The dataset was randomly divided into ten subsets with
the same ratio among the classes as the original dataset to maintain
the class balance. Each model was validated on each subset of the
data with the model trained on the remaining nine subsets. The per-
formance of the model was the average of all ten validation scores. In
addition, each model was trained with augmented data (detailed in
Supplemental methods). The models for the TTS vs STEMI classifica-
tion task were also tested for generalizability on an external dataset
consisting of 2880 still-frame images and 90 videos from the echocar-
diograms of 90 patients with either TTS or STEMI in eight external
centers (Fig. 1).

2.4. Human image survey

We used Qualtrics� software (October 2020 version) to create
video image surveys: de-identified echocardiographic videos of stan-
dard apical 4-chamber view were used for image surveys from 300
individual patients (160 STEMI and 140 TTS). The survey was anony-
mous and distributed through electronic links to all 57 participants.
The only additional information we requested was participants’ clini-
cal specialty with training/working time. A total of 49 readers eventu-
ally completed all 300 video readings for the human-side
classification. They included 30 board-certified cardiologists (8
interventional board-certified cardiologists and 22 National Board of
Echocardiography board-certified general cardiologists), 11 senior
The American Registry for Diagnostic Medical Sonography board-cer-
tified cardiology sonographers, and 8 frontline care (emergency and
critical care) physicians with more than three years’ experience of
POCUS training (Acknowledgement list). The readers were blind to
any additional clinical, laboratory, ECG, echocardiography, angiogra-
phy, or ventriculography data.

2.5. DL and human result comparison

We evaluated and compared image survey results with the cross-
validated results of the DCNN(2D+t) and RNN models. We combined
all (49) human outputs by majority voting and defined them as
human (voting) results. The correctness for human results was
defined as the percentage of human readers who made the same
diagnosis as the coronary angiography. Conversely, the correctness of
the DCNN and RNN models were the estimated probability that the
model made the same prediction as the coronary angiography. We
examined and reported the data distributions and confusion matrices
of the accuracy of the human results in comparison to that of the
DCNN(2D+t) and RNN results, and visualized the results using Princi-
pal Component Analysis (PCA) method.

2.6. Statistical analysis

We evaluated the performance of the DL neural networks and the
human readers using receiver operating characteristic (ROC) curve
analysis and confusion matrix with respect to coronary angiography
results. Pairwise comparisons of the area under the ROC curve (AUC)
were carried out according to the DeLong method [14] while the pair-
wise comparison of the confusion matrices were applied based on
Fisher’s exact test. All statistical analysis was performed using the
opensource software Python 3.7.4 with package Scipy. Statistical sig-
nificance was defined as P value <0¢05.

2.7. Access to the study data

Drs. FZ, RP, KL and XDW have full access to the study data.

2.8. Role of the funding source

The funders had no role in the study design; collection, analysis,
and interpretation of data; writing of the report; or the decision to
submit the article for publication.

3. Results

The demographic, clinical, and basic echocardiography assess-
ment data of STEMI and TTS patients are summarized in Table 1.

3.1. Visual interpretation

To perform quality assessment of disease prediction, we use the
interpretability method of Gradient-weighted Class Activation Map-
ping (GradCAM), [15] which aims to unfold the activations of the net-
work layers in a deep neural network. In the heatmap, a brighter
point indicates that the corresponding pixel in the input image and
plays a more important role in class prediction. Fig. 3 showed
weighted GradCAM heatmaps overlay on randomly chosen samples
from each of the classes for the TTS versus MI classification and the
five best- weighted activation maps for each of the randomly chosen
TTS or MI samples. The color range of each of the heatmaps are from
dark blue to dark red, where dark blue marks the least important and
dark red marks the most important pixels for model prediction.



Fig. 3. GradCAM interpretation heatmaps for the prediction with different DCNN models on the Control vs Disease and Takotsubo syndrome (TTS) vs anterior wall ST segment ele-
vation myocardial infarction (STEMI).

A,B,C and D shows the echocardiographic imges with corresponding GradCAM heatmap of DCNN (2D SCI) and DCNN (2D+t) prediction models (left to right: Control, Disease, TTS
and STEMI, respectively).

Table 2
Prediction accuracy of DL neural networks.

UI Dataset (450 echocardiograms) Control vs Disease Model Control Disease Accuracy

Sensitivity Specificity PPV F1 Sensitivity Specificity PPV F1

DCNN (2D [SCI]) 0¢60 0¢87 0¢70 0¢64 0¢87 0¢60 0¢81 0¢84 0¢78
DCNN (2D [MCI]) 0¢69 0¢90 0¢79 0¢73 0¢90 0¢69 0¢86 0¢88 0¢83
DCNN (2D+t) 0¢86 0¢94 0¢89 0¢87 0¢94 0¢86 0¢93 0¢94 0¢92
RNN 0¢69 0¢87 0¢74 0¢70 0¢87 0¢69 0¢85 0¢86 0¢81

UI Dataset (300 echocardiograms) TTS vs STEMI Model TTS STEMI Accuracy
Sensitivity Specificity PPV F1 Sensitivity Specificity PPV F1

DCNN (2D [SCI]) 0¢67 0¢78 0¢74 0¢69 0¢78 0¢67 0¢74 0¢75 0¢73
DCNN (2D [MCI]) 0¢73 0¢77 0¢74 0¢73 0¢77 0¢73 0¢77 0¢76 0¢75
DCNN (2D+t) 0¢79 0¢80 0¢78 0¢78 0¢80 0¢79 0¢83 0¢81 0¢80
RNN 0¢71 0¢79 0¢75 0¢72 0¢79 0¢71 0¢76 0¢77 0¢75

External Dataset (90 echocardiograms) TTS vs STEMI Model TTS STEMI Accuracy
Sensitivity Specificity PPV F1 Sensitivity Specificity PPV F1

DCNN (2D [SCI]) 0¢85 0¢63 0¢72 0¢78 0¢63 0¢85 0¢79 0¢70 0¢74
DCNN (2D [MCI]) 0¢94 0¢53 0¢68 0¢79 0¢53 0¢94 0¢92 0¢66 0¢74
DCNN (2D+t) 0¢97 0¢57 0¢70 0¢81 0¢57 0¢97 0¢96 0¢70 0¢77
RNN 0¢88 0¢57 0¢69 0¢77 0¢57 0¢88 0¢85 0¢66 0¢73
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3.2. Model performance

The class specific sensitivity, specificity, PPV, and F1 scores for dif-
ferent models were shown in Table 2. Briefly, the DCNN(2D SCI),
DCNN(2D MCI), DCNN(2D+t), and RNN models for the control vs dis-
ease prediction showed mean accuracies of 78%, 83%, 92%, and 81%,
respectively. The DCNN(2D SCI), DCNN(2D MCI), DCNN(2D+t), and
RNN models for TTS vs STEMI prediction showed mean accuracies
73%, 75%, 80%, and 75% respectively, and the mean accuracies of 74%,
74%, 77%, and 73% respectively on the external validation.

3.3. Performance comparison/data visualization

The numbers of correct human readings (consistent with coronary
angiographic results) on STEMI showed a (left skewed) normal distri-
bution pattern. In contrast, the correct human readings on TTS were
rather random (Fig. 4). The confusion matrices showed that the
DCNN(2D+t) (81¢4% correctness) and RNN (70¢7% correctness) out-
performed human readers (54¢3% correctness) to diagnose TTS
(P = 0¢000,002 and 0¢006, respectively, Fisher’s exact test) while their
performances (77¢5% and 78¢8% correctness) are comparable to that
of the human readers (79¢4%) on STEMI (P = 0¢786 and 1¢0, respec-
tively, Fisher’s exact test) (Fig. 4). The AUC analysis showed that
DCNN(2D+t) (0¢787 vs. 0¢699, P = 0¢015) and RNN models (0¢774 vs.
0¢699, P = 0¢033) consistently outperformed human readers in differ-
entiating TTS and STEMI (Fig. 5). In PCA, the DCNN(2D+t) result
appeared to be the closest to the coronary angiography results, fol-
lowed by the RNN and the human results (Fig. 5).

4. Discussion

The present study shows that spatio-temporal hybrid DL neural
networks can reduce erroneous human “judgement calls” in distin-
guishing TTS from anterior wall STEMI based on bedside echocardio-
graphic videos, and demonstrates the potential of DL to assist in
frontline triage and management of cardiovascular emergencies.

Although echocardiographic videos indeed hold comprehensive
imaging information allowing wide-ranging measurements of overt
and covert ventricular function, human assessment often subcon-
sciously limits the sampling of spatio-temporal information due to
time restriction. While human brains are wired to have a bias toward
specific areas of the images based on personal knowledge and experi-
ence, DL neural networks speedily analyze every individual pixel,
generating the potential to objectively identify delicate features and
uncover the predictive ability that may be lost by human readers.
[16,17] This lays the foundation for using spatio-temporal convolu-
tions on classification of echocardiographic studies to support real-
time differential diagnosis during acute cardiovascular disorders.



Fig. 4. DCNN (2D+t) and RNN reduce erroneous human “judgement calls” on TTS based on bedside echocardiograms.
Top row: histograms of correctness on TTS. Middle row: histograms of correctness on STEMI. Bottom row: confusion matrices.
Left column: human result. Middle column: DCNN(2D+t) result. Right column: RNN result.
Correctness for human result is the percentage of human readers who make the same diagnosis as the coronary angiography. Correctness for DCNN and RNN models are the

estimated probability the model makes the same prediction as the coronary angiography.

Fig. 5. DCNN(2D+t) and RNNmodels outperform human readers in differentiating TTS and STEMI.
Left: the ROC curves of the overall human, DCNN(2D+t) and RNN, as well as the ten best human results. The P value of the area under the curve (AUC) between DCNN and the

overall human results is 0.015, and the P-value of the AUC between RNN and human result is 0.033. The blue circles represent 10 human readers with best performance.
Right: visualization of DCNN(2D+t)/RNN and individual human results with principal component analysis. The human, angiography, DCNN(2D+t) and RNN results are shown by

different shapes. The specalities of human reader are shown by different colors. Each point represents the comprehensive diagnosis on all 300 echocardiograms from patients (with
TTS or STEMI) given by one human reader or one model. These results are projected onto a two-dimensional space using a dimension reduction method � principal component
analysis.
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DL neural networks have been increasingly used to investigate
cardiac pathology based on still-frame echocardiographic images.
Although increased image data yield helps binary classifications and
computable decision boundaries, their accuracies to identify
“advanced” markers appear to be variable. [18�20] The myocardial
contractile and relaxing process is highly heterogeneous and time-
dependent. Classifying individual image frames in isolation may limit
the perception of temporal features during or between cardiac cycles.
Instead, composed spatio-temporal information within or between
consecutive static images likely empowers the applicability of DL
neural models in recognizing subtle changes of myocardial contractil-
ity and function. [21 23]
In the present study, DCNN(2D+t) model based on echocardiogra-
phy videos outperformed the DCNN(2D) models based on static
image frames. From heatmap data visualization, much of the benefit
appeared to be through improved discrimination between certain
pairs of views that the DCNN(2D) models found challenging. In such
cases, the temporal arm’s saliency map showed intense focal activa-
tion over the basal LV and right ventricle (RV) segments in echocar-
diographic videos of TTS and STEMI patients (Fig. 3). The DCNN(2D
MCI) model showed slightly improved performance over DCNN(2D
SCI), even just with its very limited capacity of making use of spatial
feature changes between image frames. The true interpretation
emerged when a temporal imaging sequence is integrated. Both



8 F. Zaman et al. / EClinicalMedicine 40 (2021) 101115
DCNN(2D+t) and RNNmodels explore temporal motion features in an
echocardiographic video. By leveraging spatial and temporal infor-
mation from multiple image frames across an echocardiographic
video, DCNN(2D+t) and RNN models have the potential to detect sub-
tle functional/motion changes through a cumulative evaluation of the
continuous movements of the heart, therefore being likely more sen-
sitive than DCNN(2D) models. [21,23] The visualization data support
the theory that the DCNN(2D+t) network’s ability to discriminate
between such classes may be in part due to its ability to track the
movement of cardiac structures (basal LV and RV walls) throughout
the simultaneous multi-dimensional motion, in order to increase
data resolution and catch “invisible” spatio-temporal imaging infor-
mation. With a limited view of the receptive field, DCNN(2D+t) is
able to “see” only a limited number of frames concurrently with the
3D convolution operations, which enables learning of relatively
regional ventricular motions. [21,22]

In the present study, DL networks significantly reduced erroneous
human “judgement calls” on TTS. In contrast to a normal distribution
pattern of the numbers of readers making the correct diagnosis on
STEMI, the distribution of the numbers of readers that correctly iden-
tified TTS appears to be random and arbitrary (Fig. 4), which did not
reflect readers’ various training background and experiences. The
readers’ presumption on low prevalence of TTS in their previous
experience may generate judgment bias. In real life practice, it may
be further augmented by a fear of missing the diagnosis of possibly
life-threatening anterior wall STEMI. Imaging training and research
on rare diseases usually relies on establishing national/international
registries to build a large-scale image database. Due to a paucity of
automated resources for processing raw images and no consistent
reporting of data quality measures, this practice requires the great
collaboration of multiple medical centers in sharing of data and study
model settings. [2] For many such diseases, including TTS, there cur-
rently exists no publicly available image database to enrich readers’
training and education. Without well-accepted consensus, reading
physicians sometimes have to rely on instinct and personal experi-
ence to make judgment calls for the diagnosis. The inherent subjec-
tivity likely results in inter-observer variations and errors. Since DL
image processing and analysis can reduce human readers’ perfor-
mance variability due to various training background and experience,
our results and further data visualization may help explore possible
caveats during the imaging training pathways of human readers,
which would contribute to tailoring and standardizing future imag-
ing training strategies. [24,25]

The present study has several limitations. 1. Both STEMI and TTS
are dynamic and time-variant processes, and contractile dysfunction
patterns likely vary at different time points, which has made differen-
tial diagnosis even more challenging with a single-time echocardiog-
raphy. Enriching training echocardiographic datasets with TTS/STEMI
imaging features in different evolving stages may help further
improve the diagnostic accuracy of DL neural networks. [26,27] 2.
The RNN model, which implements the concept of memory with
introducing feedback links between layers backward, has the capabil-
ity of learning temporal context across video frames, which captures
more global motion features; however, our current experiments
based on limited views of echocardiograms shows that the RNN
model is inferior to DCNN (2D+t), which may be due to RNN’s rela-
tively weak capability of learning spatial features. An interesting
future work would be to unify the strength of both DCNNs and RNNs
in a single neural network to more deeply explore the spatio-tempo-
ral information to further improve the diagnostic accuracy. 3. The
present study was designed to differentiate typical (apical) type TTS
and anterior STEMI, which did not apply for atypical (inverse and
biventrcilar) type TTS. The diagnostic value of CAG may be limited
since TTS can be present even in patients with significant coronary
artery disease. [3] Due to the reotrspective nature of the present
study, we were unable to apply cardiovascular magnetic resonance
imaging in most patients to define STEMI vs. TTS, which helps further
differentiate atypical STEMI and TTS phenotypes. For example, the
comparable contractility patterns with typical apical TTS phenotype
(“Takotsubo effect”) have been increasingly reported and recognized
in patients with STEMI, [10,11,28,29] but not been excluded from our
training database including echocardiograms in the past 10 years.
New training datasets with more delicate phenotyping of STEMI may
help further refine the prediction models. 4. Human echocardiogra-
phy interpretations usually rely on comprehensive echocardio-
graphic techniques in addition to 2D studies, such as Doppler and
myocardial strain. The clinical context and information also contrib-
ute to the final (differential) diagnosis. Therefore, the present study
was not designed to compare the real-life (differential) diagnostic
accuracy between AI and human readers. Instead, we aimed to deter-
mine the possible added values of DL neural networks to assist non-
expert imaging readers for urgently needed disease triage and man-
agement decisions during cardiovascular emergencies. During the
COVID-19 pandemic, the utilization of comprehensive TTE has been
significantly replaced by focused bedside echocardiography and
POCUS, to limit exposure and viral transmission. [7] Meanwhile,
maintaining diagnostic accuracy and goal-directed therapy in
patients with cardiac injuries based on focused echocardiography
and POCUS becomes a compelling challenge. Our study serves as a
proof-of-concept that DL can streamline and empower currently
available bedside imagining tools to effectively and efficiently sup-
port real-time triage and management of cardiovascular emergen-
cies, particularly in rural areas or during a global healthcare crisis.
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