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Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from
the outer surface to the inner compartments of the cell. Long considered as a passive
means to simply control subunits availability at the plasma membrane, an array of new
evidence establishes IFNAR endocytosis as an active contributor to the regulation of
signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated
at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2
subunits, will experience post-translational modifications and recruit specific effectors.
These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal
degradation vs. plasma membrane recycling) but also the control of IFN-induced signal
transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk
between membrane trafficking and intracellular signaling. Investigating the complexity of
IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of
IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.

Keywords: transmembrane receptor, interferon, endocytosis, intracellular signaling, traffic, JAK - STAT
signaling pathway
INTRODUCTION

The IFNAR signaling pathway plays a central role in the defenses of the organism by supporting one
of the major anti-viral and anti-proliferative cellular responses. Its dysregulation can also lead to
deleterious auto-inflammation in humans (1). Nowadays, it is accepted that endocytosis holds an
essential role in the activity of a large number of receptors including receptor tyrosine kinases (RTK)
and G protein-coupled receptors (GPCR) families [reviewed in (2, 3)]. The role of endocytosis in the
modulation of type I interferons receptor (IFNAR) has however lagged behind. Endocytosis is an
essential mechanism by which a cell can efficiently achieve the uptake of transmembrane proteins,
lipids, nutrients, extracellular molecules, and more generally cell surface cargos. The identification
and characterization of clathrin-coated pits shed light upon endocytosis as being an active and
highly regulated process mediated by clathrin and dynamin (4–6). Over the last decades, a strong
body of work has contributed to the complexification of the mechanisms involved in the
regulation of endocytosis. Early on, endocytosis was categorized as being mediated either by
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clathrin-dependent or clathrin-independent means. This simplistic
binary classification did not resist further investigations and today
several molecular machineries including caveolin, endophilinA2,
RhoA, Cdc42, Arf6, flotillin or endophilinA3/galectin8 selectively
control distinct endocytic pathways (7–9). Despite the existence of
specific molecular machineries, these different endocytic pathways
share the common property that is to modulate the cell surface
density of a multitude of receptors, a process that is essential for
the cell homeostasis and the transduction of receptor signaling (10,
11). Whereas the IFNAR signaling cascade has long been thought
to be linear and exclusively controlled at the plasma membrane
(PM) [reviewed in (12)], these studies allow to revisit its regulation
in the context of membrane trafficking. In this review, we will
describe recent studies on IFNAR journey from the cell surface to
the different endosomal compartments and how it is connected
with the regulation of signaling outputs.
MECHANISMS THAT CONTROL STEADY
STATE TYPE I INTERFERON RECEPTOR
LEVELS

The type I IFN receptor is composed of the IFNAR1 and
IFNAR2 subunits. IFNAR1 exists only as one isoform whereas
differential splicing of the IFNAR2 gene generates three isoforms.
The firstly discovered IFNAR2c is the longer isoform with
the full intracellular domain (13). IFNAR2b is a shorter
transmembrane isoform lacking the intracellular domain while
IFNAR2a is a soluble truncated form. The two latter isoforms can
still bind type I IFNs and interact with IFNAR1 but are unable
to transduce signal (14), suggesting they would be negative
regulators of JAK/STAT signaling (15). We will focus here
only on the full-length IFNAR2c which will be referred to
as IFNAR2.

IFNAR1 and IFNAR2 are ubiquitously expressed (16) albeit
with highly variable levels. The first quantifications of PM levels
relied on standard Scatchard analysis, which is based on the
saturation of IFNAR binding with iodinated IFNs and allow to
precisely determine ligand affinity and number of binding sites
(17). Published results showed large variations among cell types
with a number of binding sites ranging from 200 to up to 250,000
(18, 19). Today, Scatchard analysis has been replaced by more
acute and sophisticated measurements. For instance, single-
molecule imaging of fluorescently labelled IFN-a2 by total
internal reflection fluorescence (TIRF) microscopy could
measure a density of around 0.55 IFN bound per mm² in HeLa
cells, corresponding to 500–1000 binding sites per cell (20). The
same technique measured 0.58 IFNAR1 and 0.72 IFNAR2 per
mm² of PM in human retinal pigmented epithelial RPE1 cells
(21). While the IFNAR cytoplasmic pool is likely to be
important, few if any studies have determined the ratio of
internal versus surface IFNAR. Likewise, the PM IFNAR1/
IFNAR2 ratio is certainly critical for IFNAR signal
transduction. Finally, the two IFNAR2a and b shorter forms
Frontiers in Immunology | www.frontiersin.org 2
can compete with the long IFNAR2c by forming a non-signaling
complex (14).
Type I Interferon Receptor Intimate
Cytosolic Interactors
The lack of IFNAR intrinsic tyrosine kinase activity is
compensated by a non-covalent and constitutive association
with Janus tyrosine Kinases (JAK). The JAK family is
composed of four members: JAK1 and JAK2 (22), TYK2 (23,
24), and JAK3 (25). JAKs are large multidomain proteins with an
N-terminal part dedicated to the recognition and interaction
with the PM proximal region of the receptor and a C-terminal
part regulating its kinase activity (Figures 1A, B) [for more
details see reviews (26, 27)]. IFNAR1 is constitutively associated
with TYK2 (28, 29) and IFNAR2 with JAK1 (13, 30, 31). IFN-
induced association of the two IFNAR chains allow JAK1 and
TYK2 to form a functional signaling unit (Figure 1C). The
precise mapping of interactions between IFNAR and associated
JAK are well described (32, 33). TYK2 interaction with IFNAR1
was shown to stabilize IFNAR1 at the PM (34–36) thereby
controlling IFNAR1 PM pool. Moreover, both JAK1 and TYK2
play a central role in IFNAR trafficking and signaling by
regulating the recruitment and/or the activity of other IFNAR
interactors through JAK-dependent tyrosine phosphorylation.

The canonical type I IFN signaling pathway relies on the
phosphorylation and nuclear translocation of signal transducers
and activators of transcription (STAT) proteins. STATs share a
similar structure with an SH2 domain that allows the interaction
with cytokine receptors and regulators, and a DNA binding
domain that modulates gene transcription (37). Pull-down
experiments suggested that STAT2 was constitutively
associated with the cytosolic domain of IFNAR2 (Figure 1B)
(38). This interaction was further confirmed and visualized in
cells expressing HaloTag-IFNAR2 spatially constrained at the
PM by HaloTag ligand functionalized on a micropatterned
surface (39). Whereas STAT2-EGFP showed a strong
colocalization with patterned IFNAR2, a very limited
colocalization of STAT1-EGFP could be detected in the same
conditions. This probably reflects that STAT1 docking to
IFNAR2 occurs through STAT1-STAT2 heterodimerization in
agreement with the requirement of STAT2 for STAT1
phosphorylation by IFN (37, 40). These results suggest that
additional sites for STAT docking may be created by IFNAR
phosphorylation, thus enhancing binding of STAT1 and STAT2.
The precise mapping of STAT2 interaction that is still unknown
should lead to a better understanding of the IFNAR
complex organization.

STAT2 mediates the recruitment of the ubiquitin specific
peptidase 18 (USP18) to the IFNAR2 subunit (Figure 1B).
USP18 is an isopeptidase that promotes the de-conjugation of
the ubiquitin-like modifier interferon-stimulated gene 15
(ISG15) (41), a reaction known as deISGylation. USP18 is first
recruited to STAT2 (42), and then to IFNAR2 where it competes
with JAK1 binding, which results in JAK/STAT signaling
inhibition (43). USP18 binding to IFNAR2 stabilizes the
January 2021 | Volume 11 | Article 615603
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interaction of STAT2 with IFNAR2 (39) and inhibits IFN-a
binding (44, 45). Thus, both STAT2 and USP18 are important
for IFNAR complex trafficking and signaling.

The adaptor protein receptor for activated protein kinase C-1
(RACK-1) is also constitutively associated with IFNAR2 (46).
This interaction is maintained after IFN stimulation. RACK-1 is
Frontiers in Immunology | www.frontiersin.org 3
a scaffold protein with no enzymatic activity, which recruits
specific signaling elements. RACK-1 directly interacts with
IFNAR2, TYK2, and JAK1, and indirectly with IFNAR1 (47).
RACK1 is necessary for STAT1 and STAT2 phosphorylation.
The RACK-1 binding site on IFNAR2, partially overlaps with
JAK1 binding site.
FIGURE 1 | (A) The extracellular part of IFNAR1 is composed of four domains and exhibits 12 residues that are potentially N-glycosylated. IFNAR1 is S-
palmitoylated on the PM proximal Cys463 residue. IFNAR1 cytosolic tail interacts with TYK2 kinase FERM and SH2 domains through a minimal region that
corresponds to 486–511 residues (thick blue line). IFNAR1 interaction domain with TYK2 can be extended to a maximal region from residues 465 to 511 (thick and
thin blue line) that also covers a canonical tyrosine-based linear endocytic motif 466YVFF469. IFNAR1 cytosolic tail has three lysine residues that can be ubiquitinated
and a phosphodegron motif. (B) The extracellular part of IFNAR2 is composed of two domains presenting five putative N-glycosylation sites. IFNAR2 is meant to be
S-palmitoylated on two Cys residues: one near the PM (Cys271) and another one less likely, closer to the C-terminal part (Cys395). IFNAR2 interacts with its
associated JAK1 kinase through cytosolic tail box 1 and box 2 domains. At steady state, ubiquitin specific peptidase 18 (USP18) interacts with the DNA-binding and
coiled-coil domains of STAT2 but also with IFNAR2 box 1 and box 2 domains. Therefore, it can compete with JAK1 binding on IFNAR2. (C) (1) IFN-a/-b binding to
IFNAR1 and IFNAR2 subunits triggers several mechanistic events leading to the internalization of the receptor complex. (2) IFNAR associated JAK kinases are
brought in close proximity resulting in the concomitant tyrosine phosphorylation of JAK1 and TYK2 on Tyr1022-Tyr1023 and Tyr1054-Tyr1055 residues, respectively. (3)
Activated TYK2 can then phosphorylate the serine/threonine kinase PDK2 which in turn (4) phosphorylates the two serine residues of the IFNAR1 phosphodegron
534DSGNYS539. It acts as a docking site (5) for the Skp1-Cullin1-F-box complex E3 ubiquitin ligase (SCFbTrcp). (6) Once bound to IFNAR1, SCFbTrcp is able to
polyubiquitinate (blue spheres) lysine residues 501, 525 and 526 by adding Lys48 and Lys63 linkages. In parallel, the endocytic linear motif 466YVFF469 recruits AP50,
the m2 subunit of AP2 adaptor complex. (7) Together, AP50 binding and IFNAR1 polyubiquitination trigger the association of IFNAR receptor complex with the
clathrin machinery and its endocytosis via clathrin-coated vesicles.
January 2021 | Volume 11 | Article 615603
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Type I Interferon Receptor Proper
Function Depends on Posttranslational
Modifications
Receptor glycosylation is an important posttranslational
modification regulating their activity through various
mechanisms including proper folding in the ER, localization at
the PM (via interactions with galectins and with gangliosides in
microdomains for instance), ligand binding, intracellular
trafficking and signaling (48, 49). The two IFNAR subunit
extracellular domains are highly glycosylated resulting in their
high molecular weight (MW) (Figures 1A, B). Thus, human
IFNAR1 has an approximately 130 kDa MW instead of the
theoretically calculated 63.5 kDa MW corresponding to the 557
amino acids (aa) of IFNAR1, and human IFNAR2 has a 100-110
kDa MW instead of a theoretical 57.8 kDa MW for its 515
aa (50).

Levels of IFNAR1 and IFNAR2 at PM are likely to be
regulated independently from each other. The PEPD prolidase
is required for the maturation and surface expression of IFNAR1
but not of IFNAR2 (51). The importance of these
posttranslational modifications in IFN biological activity is
illustrated by NS5 viral proteins that are produced by some
Flaviviruses. NS5 can suppress IFNAR1 glycosylation by binding
to PEPD thereby interfering with IFNAR1 delivery from the
trans-Golgi network (TGN) to the PM (51, 52). Hence IFNAR1
glycosylation is likely to play an important role in signaling by
regulating IFNAR1 density at the cell surface.

Both IFNAR chains are palmitoylated on cysteins (Figures
1A, B) (53). Palmitoylation has been involved in the proper
addressing of proteins from the TGN to the PM, in protein-
protein interactions, and in the association with lipid
nanodomains, all steps that are important for the targeting,
stability and function of receptors at the PM (54). IFNAR1 is
mono-palmitoylated on Cys463 and the corresponding C463A
IFNAR1 mutant, totally lacking palmitoylation, showed no
alteration either in stability at the PM, IFN-a-induced
endocytosis or intracellular distribution but showed some
defects in the later steps of JAK/STAT signaling (53). Indeed,
although the very first events of JAK/STAT signaling (i.e. JAK1,
TYK2 and IFNAR1 tyrosine phosphorylations) were unchanged,
IFNAR1 palmitoylation was found to be required for STAT1 and
STAT2 downstream phosphorylation and nuclear translocation.
Therefore, IFNAR1 palmitoylation may participate to target
IFNAR1 to the proper PM nanodomains or the recruitment of
effectors associated to the signaling receptor complex. Although
IFNAR palmitoylation is not involved in IFNAR1 addressing to
the PM and IFNAR1 internalization, it is worth noting that the
inhibition of global protein palmitoylation by 2-bromopalmitate
strongly affects IFNAR1 internalization after IFN stimulation,
suggesting that yet to be identified palmitoylated effectors,
associated or not with the IFNAR complex control these
processes. Although little is known about the molecular
mechanisms linking palmitoylation and JAK/STAT signaling,
this posttranslational modification remains an interesting avenue
of investigation, as it may help us to reveal new links between
IFNAR subunit trafficking and its signaling.
Frontiers in Immunology | www.frontiersin.org 4
Whether multi-chain cytokine receptors are pre-associated or
not before their activation at the PM remains highly debated for
some members of this family as recently illustrated by the IFN
gamma receptor (55, 56). The debate seems closed for IFNAR as
several studies convincingly established that IFNAR1 and
IFNAR2 are not pre-associated at steady state and that
receptor dimerization occurs only upon ligand binding (57–
60). The two chains are nevertheless associated to other partners
such as lipids or proteins, whose main function is to maintain the
receptor at the PM and keep the receptor-bound JAK
kinases inactive.

Receptor Partitioning in Plasma
Membrane Nanodomains
Based on IFNAR density at the cell surface, the constant rate of
ligand association/dissociation predicts that IFNAR1 and
IFNAR2 subunits should not be able to form stable complexes
if they were uniformly distributed (59). The two chains of IFNAR
should therefore be clustered in the same local structures at the
PM. Twenty years ago, in mouse embryonic fibroblasts (60),
IFNAR1, like many other receptors at that time (61), was
proposed to be associated with lipid rafts, these PM
asymmetric lipid assemblies thought to be detected in
detergent resistant membranes (DRM). If this technique is
today outdated, more sophisticated cell imaging methods have
led to a finest characterization of the nanoscale distribution of
IFNAR at the PM.

Caveolae are characteristic small buds present at the PM of
many cell types, that are enriched in cholesterol and
glycosphingolipids, and coated with the structural protein
caveolins (Cav) and assembly proteins cavins (62). The early
finding that caveolae could biochemically fractionate in DRM
fractions has led to refer to them as a subtype of lipid rafts (63).
While this definition is not accurate any longer (64), the role of
caveolae in IFNAR distribution has remained elusive. Indeed,
early electron microscopy (EM) studies failed to detect human
IFN-a or murine IFN-b in caveolae (65, 66). More recently, the
overexpression of the chain cytokine receptor family B1
(CRFB1), the zebrafish IFNAR ortholog, resulted in its
colocalization with Cav1b domains at the PM using super
resolution microscopy (67). The finding that Cav1b depletion
significantly decreased CRFB1 PM clustering and IFN-induced
STAT1 signaling is in strong support of an important role of
Cav1b in zebrafish IFN-R system and not of caveolae since the
other caveolae constituents like cavins were not studied.
However, the analysis of gene sequences and structures of
zebrafish IFN-R complexes such as CRFB5 chain associated
with either CRFB1 or CRFB2, revealed important differences
with mammalian IFNAR and closer homology with IFN-lR (68,
69). IFN-j was proposed as a new nomenclature for fish IFN to
close the debate (70). The regulation of CRFB1 by Cav1b seems
therefore less relevant to human IFNAR for which no strong
evidence of a role of caveolae and/or caveolin was brought so far.

By using super-resolution microscopy restricted to the PM, a
study revealed that overexpressed IFNAR1 and IFNAR2 were
partially co-clustered in nanoscale domains (71). These clusters
January 2021 | Volume 11 | Article 615603
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were weakly co-localized with clathrin, the structural core protein
of endocytic clathrin-coated pits, but frequently found in the vicinity
of actin structures. On the contrary, a new study by the same team
based on quantitative ligand-binding with fluorescently-labeled IFNs
described the presence of continuously diffusing IFNAR in a random
and non-clustered distribution at the PM (20). This apparent
discrepancy could result from the high density of receptors caused
by their overexpression, which could artificially induce IFNAR1/
IFNAR2 co-clustering at steady state (72). Nevertheless, the
confinement of the receptor chains at physiological density (5–10
chains per mm²) in the cortical actin meshwork was confirmed by
single quantum dot tracking and localization microscopy (73). In
this study, the longer lifetime of the IFN-a2 induced ternary
complex measured in cells in comparison with artificial
membranes in vitro was attributed to its stabilization through an
active nano-confinement in 70 nm cortical actin sub-domains
organizing larger domains of 300 nm. Disrupting these domains
decreased the stability of the ternary complex and JAK/STAT
downstream signaling. In summary, these studies indicate that
IFNAR chains are confined in actin-dependent nanodomains at
the PM. It is likely that the continuous technological developments in
super-resolution microscopy will reveal new features of IFNAR
nanoscale partitioning and functions at the PM that could not be
detected with conventional fluorescence microscopy.
THE BASIC INTERFERON—TYPE I
INTERFERON RECEPTOR COMPLEX

Binding of IFN to IFNAR2 is followed by IFNAR1 association
with the IFN/IFNAR2 subcomplex (Figure 1C). IFNAR1
binding is associated with a major conformational change
involving movement within the four extracellular SD domains,
resulting in the efficient capping of IFN molecule (74, 75). IFN
binding has also been shown to reduce the force needed to unfold
the IFNAR1 extracellular domains (76). The reduction in
IFNAR1 rigidity would enable the propagation of IFN-induced
conformational changes closer to or even across the PM.
Interestingly, comparison of the ternary complexes formed by
the two IFNAR1 and IFNAR2 receptor chains with IFN-a or
IFN-b by single-particle EM analysis could not reveal any
difference (74). Likewise, no difference could be detected
regarding the IFNAR1 residues involved in the interaction with
IFN-a or IFN-b. For instance, IFN-b maintains the same overall
fold, and shares the same binding interface with IFNAR1 and
IFNAR2, similarly to IFN-a2 (10). Interestingly, it was observed
that among the IFN subtypes, increased binding affinities are
correlated with a higher rate of IFN-IFNAR endocytosis (75).
This faster entry within the endosomal system has been proposed
to lead to earlier signal triggering but also to rapid termination.
Thus, it was proposed that it could explain, at least partially,
some of the signaling differences, such as anti-proliferative
activities, observed between IFN-a, IFN-b, and IFN-w.

Upon formation of the ternary complex, JAK1 and TYK2 are
both brought in close contact, which leads to a repositioning of
Frontiers in Immunology | www.frontiersin.org 5
their respective pseudokinase domain, thereby relieving the self-
inhibition by the JH1/JH2 domains (77). While the exact
underlying molecular mechanism remains debated, the first
activating events would involve the concomitant tyrosine
phosphorylation of JAK1 and TYK2 on Tyr1022-Tyr1023 and
Tyr1054-Tyr1055 residues, respectively (Figure 1C) (78).

Following JAK activation, several other post-translational
modifications within the receptor complex lead to the
recruitment and regulation of new partners, to the internalization
of the complex and also to the priming of the IFN-induced
signaling cascade. Several of these steps have been studied but
there is still a lot of mechanisms of this finely tuned pathway that
need further investigation.

Upon IFN stimulation, the serine/threonine kinase PKD2 is
recruited to IFNAR1. PKD2 is then TYK2 phosphorylated on
Tyr438 (79) and activated PKD2 can in turn phosphorylate
IFNAR1 on Ser535 and Ser539 res idues within the
534DSGNYS539 phosphodegron—also called destruction motif
(Figure 1C) (80). The SCFbTrcp (Skp1-Cullin1-F-box complex)
E3 ubiquitin ligase binds to the destruction motif of IFNAR1 and
adds polyubiquitin chains on lysine residues 501, 525, and 526
(80, 81). The ubiquitination process plays an import role in the
internalization of the IFNAR complex since interfering with
either Ser535 phosphorylation, SCFbTrcp recruitment or
polyubiquitination inhibits endocytosis (82). TYK2 kinase
activity is essential for IFNAR1 Ser535 phosphorylation, which
in turn is required for IFNAR1 ubiquitination-dependent
endocytosis. It is therefore expected that IFNAR1 Ser535

phosphorylation and ubiquitination should represent the very
first steps that follow the reunion of the two chains of the
receptor initiated by IFN binding.
BEGINNING OF THE JOURNEY: EN
ROUTE TO THE ENDOSOME

IFNAR, like most transmembrane signaling receptors, is
endocytosed by clathrin mediated endocytosis (CME). Earlier
EM studies localized IFN-a (65) and IFN-b (66) in clathrin
coated pits (CCP). The role of CME in IFNAR uptake was
definitely established by the finding that IFNAR uptake required
key elements of the clathrin-dependent endocytosis machinery
(Figure 2) including clathrin heavy chain, the a2 adaptin
protein-2 (AP2) complex, the GTPase dynamin and Eps15 (53,
82, 83).

CME is initiated at the PM by the recruitment of
transmembrane receptors to the clathrin machinery thanks to
the interaction of the AP2 adaptor complex with a tyrosine-based
linear endocytic motif YXXF that is found in the receptor
cytoplasmic tail (7). Although this endocytic motif is present
in many transmembrane receptors, very few examples have
documented a direct interaction with AP2 (5, 6, 84). It is
therefore worth noting that AP50, the m2 subunit of AP2, was
shown to recognize 466YVFF469 domain in IFNAR1 (Figure 1A),
a canonical tyrosine-based linear endocytic motif. At steady
state, the interaction between IFNAR1 and AP50 is prevented
January 2021 | Volume 11 | Article 615603
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by the physical masking of 466YVFF469 by TYK2 (36). The
endocytic motif is in close proximity to the TYK2 minimal
interaction domain (486-511) and is inserted in the TYK2
maximal interaction domain (465-511) (32). It was shown that
IFNAR1 stability at the PM is reduced in the absence of TYK2,
probably by allowing at steady state the interaction of the
otherwise masked endocytic motif with AP50 and thus the
internalization of IFNAR1 (34–36). Upon ligand binding, one
can speculate that the endocytic motif would be unmasked by
TYK2 as a result of the various conformational changes
associated with IFNAR chains complexes and JAK
rearrangement and activation.

The 466YVFF469 motif is highly conserved within species
except for the mouse (36), which could explain why the
stability of murine IFNAR1 at the PM was not affected by the
absence of TYK2 (85–87). This does not explain however
the mechanism by which the AP2 complex would be recruited
to the murine receptor. Other sequences such as di-leucine and
iso-leucine can also be recognized by clathrin adaptors subunits
(84). Indeed, leucine-based motifs are found in the mouse but
also in the human IFNAR1. While it is likely that these sequences
can also modulate the uptake of IFNAR, no study has so far
documented their function. It is also possible that the
endocytosis of murine IFNAR depends exclusively on IFNAR1
ubiquitination since the S526A ubiquitination deficient mutant,
which is unable to interact with SCFbTrcp, shows a significant
reduced internalization (80). Finally, one cannot rule out a
participation of several of these mechanisms in a process as
finely tuned as CME.
Frontiers in Immunology | www.frontiersin.org 6
If the importance of IFNAR1 Tyr466 in clathrin-dependent
endocytosis is clear, the role of phosphorylated Tyr466 is more
obscure. Phosphorylation of the tyrosine motif YXXF is likely to
inhibit AP50 recruitment, as the negatively charged phosphate
group would prevent the endocytic motif to fit into AP50 binding
pocket (88, 89). The fact that IFNAR1 Tyr466 phosphorylation
occurs as early as 5 min after IFN-a stimulation (29) questions
the chronology of these events within the time range of
internalization and signaling. That AP50 cannot interact with
the phosphorylated (pY)XXF motif (90) infers that IFNAR1
Tyr466 should not be phosphorylated during the recruitment of
the endocytic machinery. It was suggested that Tyr466 was
phosphorylated immediately after ligand binding, and then
dephosphorylated by the PTP1B phosphatase, thereby allowing
the interaction with AP50 (91). This phosphorylation/
dephosphorylation cycle is, however, unlikely if one considers
that IFNAR1 is endocytosed very rapidly after IFN stimulation
whereas IFNAR1 Tyr466 phosphorylation can still be detected by
western blotting at longer time points (92). Although
experimental evidence is yet lacking, it seems more likely that
IFNAR1 Tyr466 phosphorylation occurs after AP50 binding.
Whether it happens at the PM just after AP50 recruitment to
the IFNAR1 or later after IFNAR complex endocytosis is
unknown. In this context, it was shown that AP50 binding to
the EGFR, that occurs only when the YXXF motif is not
phosphorylated, was still maintained after phosphorylation of
the YXXF motif (90).

The formation of the IFNAR complex allows the activation
and recruitment of additional regulating partners such as
FIGURE 2 | In the absence of IFN (left), constitutively internalized IFNAR1 and IFNAR2 subunits may recycle from the sorting endosome to the PM. While the
mechanism is unknown for IFNAR2, IFNAR1 is sorted back to the PM through its interaction with the endosomal sorting nexin (SNX)-BAR sorting complex for
promoting exit 1 (ESCPE-1). ESCPE-1 complex (top right inset) is composed of SNX heterodimers formed by SNX1 or SNX2 that are associated with SNX5 or
SNX6. Whether IFNAR1 transits through the trans-Golgi Network during its recycling to the PM has not been investigated yet. Upon IFN stimulation (right), the IFN-
bound receptor complex is endocytosed via clathrin-coated pits. Upon arrival to the sorting endosome, IFNAR receptor complex is dissociated: 1) IFNAR1 is
addressed to the lysosomal degradative pathway, first through multivesicular bodies, then in lysosomes where it is fully degraded, and 2) IFNAR2 interacts with the
endosomal retromer complex which controls its recycling to the PM. The retromer (bottom right inset) is formed by the cargo-selective-complex (CSC), a trimer
composed of vacuolar protein sorting-associated protein 35 (VPS35)-VPS29-VPS26 proteins, associated with the nexin SNX3 and the small GTPase Rab 7.
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phosphatases (SHP1, SHP2, PTP1B, TCPTP, CD45) or SH2
domain-containing proteins (SOCS, LNK) [reviewed in (77,
78)]. Whether the recruitment of these effectors takes place at
the PM or later along the endocytic route is a question that is
difficult to tackle because of the intrinsic rapidity of the endocytic
process. New approaches such as the functionalization of
micropatterned surface with Halo ligands that retain IFN-
IFNAR complex at the PM will help to better understand these
processes (39).

During acute brain infection by the simian immunodeficiency
virus (SIV), IFN-a signaling is drastically hampered with a
down-regulation of downstream effectors such as TYK2,
STAT1 and IRF7, in contrast to IFN-b signaling that remains
fully active (93). A follow-up study using SIV as a model of
infection in macrophages, revealed that the inhibition of IFN-a
signaling in the central nervous system was triggered by CCL2, a
chemokine secreted by astrocytes (94). Interestingly, confocal
microscopy revealed in leukocytes that b-arrestin 2 was recruited
to endomembranes positive for CCR2B, the CCL2 receptor,
upon CCL2 treatment (95). b-arrestins (1 and 2) play a central
role in GPCR desensitization, internalization and intracellular
trafficking. They act as adapters that build a bridge between
activated i.e. phosphorylated GPCRs and the two main
components of the clathrin-dependent endocytic machinery,
AP-2, and clathrin (96–98). In support of this, it was recently
reported that silencing RNA against b-arrestin 2, but not b-
arrestin 1, restored IFN-a levels of SIV infected macrophages in
a CCL2/CCR2-dependent manner (99). They further showed
that b-arrestin2 was required for IFNAR1 internalization, in
agreement with the first implication of AP2 in IFNAR1
endocytosis (83).

Type I Interferon Receptor Endocytosis Is
Mandatory for JAK/STAT Signaling
Although JAK/STAT signaling has a pivotal role in key cellular
processes, the underlying molecular mechanisms controlling its
Frontiers in Immunology | www.frontiersin.org 7
activation by IFNAR and the determination of IFN signal
specificity have remained poorly understood (100–104). In
2006, in line with the original studies establishing the role of
endocytosis in the regulation of receptor signaling, the Lamaze
group revealed for the first time that IFNAR endocytosis was
required to trigger JAK/STAT signaling downstream of IFN-a
stimulation (83) (Figure 3). Blocking IFNAR CME with the
dominant negative mutant DynK44A or a siRNA against clathrin
heavy chain strongly decreased the level of STAT1 and STAT2
phosphorylation induced by IFN-a but not by IFN-g.
Accordingly, it was later shown that IFN-g receptor subunits
need to be associated with specific cholesterol/sphingolipid
enriched PM nanodomains for JAK/STAT activation IFN-g,
independently from receptor endocytosis (55). The essential
role of CME in JAK/STAT signaling was further confirmed a
year later in Drosophila with the receptor Domeless (Dome)
whose internalization is also required to transduce JAK/STAT
signaling, (105). Like IFNAR1 and IFNAR2, Dome presents
fibronectin type-III extracellular domains (106) and a
conserved di-leucine motif in its cytosolic tail (107). These data
emphasize that the control of JAK/STAT signaling by receptor
endocytosis is a conserved mechanism among species.
SORTING ENDOSOME: THE PLACE TO BE

Today, the central role of the endosomal network in membrane
trafficking is not questioned. Endosomes have been classically
divided into early and late endosomes to reflect the chronology of
cargo delivery. Early endosomes represent the first intracellular
station downstream of endocytosis at the PM, where receptors
are sorted from ligands. The central function of early endosomes
in cargo sorting led to rename them as sorting endosomes [for
review see (108, 109)]. In the late 1990s, two seminal studies
simultaneously revealed that the sorting endosome could serve as
A B DC

FIGURE 3 | (A) Immediately after type I IFN binding the IFNAR1-IFNAR2 receptor complex is actively endocytosed from the PM and addressed to the endosomal
network. (B) Five to 20 min after IFN stimulation, the IFN-IFNAR complex arrives at the sorting endosome where JAK/STAT signaling is triggered, which results in P-
STAT nuclear translocation. (C) For the following 20 min, IFNAR signaling is maintained at the endosome where it reaches its maximum (highest P-STAT1 level). The
subsequent sorting of IFNAR1 to multivesicular bodies results in signaling termination whereas IFNAR2 is recycled to the PM. (D) After 40 min of IFN stimulation,
IFNAR1 is degraded through the lysosomal pathway whereas IFNAR2 is ready for a new round of IFN binding at the PM. Nuclear levels of P-STAT return to pre-
stimulation levels.
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a relay where receptor signaling could be controlled. Thus, nerve
growth factor (NGF) and its receptor gp140TrkA (TrkA) were
rapidly endocytosed by CME into early endosomes where TrkA
-bound NGF could activate TrkA resulting in TrkA tyrosine
phosphorylation and in the binding to the downstream effector
PLC-g1 (110). At the same time, another study took advantage of
the first molecular possibility to selectively inhibit clathrin-
dependent endocytosis using a dominant negative mutant of
dynamin, the GTPase required for the scission of clathrin-coated
pits from the PM (111). Inhibition of EGF receptor (EGFR)
endocytosis with the dynamin mutant revealed that in addition
to attenuate EGFR signaling, endocytosis was also required to
deliver activated EGFR in early endosomes where EGF specific
signaling pathways could be either activated or terminated (112).
These pioneering studies established the essential role that
endosomes could play in the control of signal transduction.
This groundbreaking work has been followed by numerous
studies that contributed to definitely upgrade the early
endosome from a sorting organelle to an active signaling hub
and to establish the new concept of the signaling endosome. The
signaling endosome has since been extensively investigated and
became a major center of interest in the understanding of the cell
biology of signaling receptor trafficking and signaling as
described in many reviews (113–118).

The requirement for IFNAR endocytosis in JAK/STAT
signaling implies that endosomal sorting machineries should
be at work in this process. Recent studies have indeed uncovered
the role of a major endosomal sorting machineries in IFNAR
trafficking and signaling, namely the endosomal sorting complex
required for transport (ESCRT). ESCRT has a central position
as the major complex mediating the entry of ubiquitinated
cargos into the lysosomal degradation pathway (119, 120). The
ESCRT machinery consists of four protein complexes: ESCRT-
0, -I, -II, and -III, and include several accessory components
that are highly conserved from yeast to human. Over the past
decade, structural and biochemical studies have uncovered the
sequential process by which ESCRT assembly occurs [reviewed
in (121–123)]. ESCRT-0 is tethered on the endosomal
membrane where it recruits ubiquitinated cargos and interacts
with ESCRT-I. ESCRT-0 is composed of two subunits:
hepatocyte growth factor-regulated tyrosine kinase substrate
(Hrs), which binds to the ubiquitinated substrate, and signal-
transducing adaptor molecule (STAM) (124–127). Hrs and its
partner STAM, both ubiquitously expressed, play a vital role in
biology and development as shown by the death of Hrs deficient
mice in utero (128–130). Hrs is recruited to the early endosome
where it binds to endosomal specific PI(3)P phosphoinositide
through its FYVE-domain and initiates the formation of
intraluminal vesicles (ILV) found inside multivesicular bodies
(MVB) (123).

During the last decades, our understanding of the cellular
functions of ESCRT have evolved from a sequential process
controlling cargo entry into the lysosomal degradation pathway
to more diverse biological activities such as virus budding,
membrane repair, cytokinesis, regulation of gene transcription,
autophagy, quality control of nuclear pore complexes (131–137).
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Hrs/STAM for Type I Interferon Receptor
Sorting: Insights From Drosophila
Following the first report of EGFR signaling control by clathrin-
dependent endocytosis (112), efforts were directed at elucidating
the molecular mechanisms underpinning EGFR endosomal
sorting and signaling. Thus, EGFR sorting toward the
lysosomal degradation pathway was found to require Hrs
recognition of EGF-induced ubiquitinated EGFR (113, 138–
142). Before arrival to the lysosome, ubiquitinated EGFR
accumulate into ILVs of MVBs (143). This physically removes
the signaling tail of EGFR from the cytosol, effectively
terminating the downstream signaling cascade (144). In this
context, cells depleted for the Hrs gene revealed that Hrs
negat ively controls EGFR signal ing in Drosophi la
embryogenesis with an increase of EGFR signaling activity and
an accumulation of ubiquitinated cargos in enlarged endosomes,
including EGFR and other activated signaling receptors such as
PDGF/VEGF receptors, or Notch (105, 145–147).

Based on the prototypical example of EGFR sorting and
signaling control by Hrs, numerous studies have addressed the
role of Hrs in receptor signaling especially for GPCRs. Thus, the
b2-adrenergic receptor (b2AR) and the d-opioid neuropeptide
receptor (DOR), are two examples of GPCRs that are regulated
by Hrs. Both receptors are ubiquitinated on lysine residues in the
carboxyl terminal tail and are endocytosed in a clathrin- and b-
arrestin-dependent manner (148–155). Similarly to EGFR, DOR
sorting toward the lysosomal degradation pathway requires Hrs
(156). Hrs has a different effect on b2AR since it mediates its
recycling to the PM, a process associated with b2AR
resensitization (157). Hrs-dependent recycling was shown to
rely on an acidic di-leucine motif present in the C-terminal tail
of the b2AR but not on ubiquitination (158, 159). Hrs and STAM
were also required for efficient fibroblast growth factor receptor
(FGFR) endosomal sorting and signaling in Drosophila. This
study revealed an opposite role of Hrs and STAM depending on
the location of the complex since EGFR signaling was
downregulated by Hrs and STAM in the embryo but fully
activated during wing development (147).

The role of Hrs in IFNAR trafficking and signaling had not
been investigated until recently. A first evidence came from
studies in Drosophila where the disruption of Hrs in egg
chambers transiently expressing Dome receptor led to an
inhibition of STAT activation upon Dome stimulation (105). A
recent study showed the constitutive association of STAM2,
without Hrs, with IFNAR1 and TYK2 at the PM preventing
TYK2 activation by IFN (160). IFN-a induced receptor
endocytosis delivers the STAM-IFNAR1-TYK2 complex to
early endosomes positive for PI(3)P where Hrs interaction
abolishes STAM inhibitory effect and triggers IFNAR
endosomal signaling. In contrast, IFN-b stimulation results in
IFNAR sorting to a distinct endosomal subdomain where
endosomal JAK/STAT signaling occurs independently from
Hrs. This study put into question the classical dogma stating
that Hrs and STAM are always constitutively associated on the
endosomal membrane to form the ESCRT-0 complex. Indeed, a
few studies suggest that this assumption may suffer some
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exceptions. Thus, a truncated mutant of STAM lacking the
coiled-coil domain of interaction with Hrs was reported to
promote the relocation of Hrs in the cytoplasm (161). Hrs was
reported to be targeted to early endosomes independently of
STAM, and STAM was also localized at the PM in HeLa cells
(162). In line with this study, a recombinant Hrs purified in the
absence of STAM could be detected on membranes as
hexamers (163).

The role of Hrs/STAM in cytokine signaling is not exclusive
to JAK/STAT signaling by the IFNAR complex. Indeed, more
than fifty cytokines can signal via the JAK/STAT pathway (164).
Among them, IL-4 signals through both the type I receptor
consisting of the IL-4Ra and the common gamma chain (gC),
and the type II receptor composed of IL-4Ra and IL-13Ra1
(164). IL-2 activates JAK/STAT signaling downstream of the
trimeric IL-2R composed of a, b, and gC chains (165). Hrs
controls IL-2R and IL-4R signaling albeit through its classical
regulatory function as it is required for IL-4Ra and IL-2Rb
endosomal sorting toward the degradation pathway, resulting in
receptor cell surface downregulation and signaling termination.
Thus, in contrast to IFNAR1, the binding of Hrs on IL-4Ra and
IL-2Rb is not required for endosomal signaling, (166, 167).
Finally, as reported above for GPCRs, Hrs can regulate IL-2Ra
recycling to the PM by binding to a hydrophobic amino acid
cluster in an ubiquitin-independent manner (167). The absence
of such motifs in the C-terminal tail of IFNAR1 and IFNAR2
may explain why Hrs is not involved in IFNAR recycling
(see below).
ENDOSOMAL EXIT: CHOOSE YOUR
DESTINY

After internalization and arrival in early endosomes, cargos are
classically sorted to three possible destinations: (1) fast recycling
to the cell surface via the endosomal recycling pathway, (2)
recycling to the PM through the retromer or retriever complexes
or via the TGN (retrograde recycling), and (3) degradation in
lysosomes. Although these three main routes have been
investigated for several signaling membrane receptors, mainly
EGFR, IL2-R, and growth hormone receptor (GHR), the
intracellular fate of the IFNAR receptor complex upon its
endocytosis has long remained mysterious.
Type I Interferon Receptor Recycling to
the Plasma Membrane
In contrast to IFNAR1, whose final fate is degradation in the
lysosome (see below), IFNAR2, which is not ubiquitinated, takes
a different path. IFNAR2 intracellular trafficking has long
remained poorly characterized. A first study measured
unchanged IFNAR2 levels at the PM during IFN-a stimulation
while IFNAR1 was efficiently degraded (168). These data
suggested that after IFNAR endocytosis, IFNAR2 was probably
recycled back to the PM by unknown mechanisms.
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The retromer complex plays a central role in both the
retrograde transport of endosomal proteins to the TGN and in
the endosomal recycling of cargos to the PM (169–171). The
retromer complex is assembled by a first sub-complex called
cargo-selective-complex (CSC), a trimer made of vacuolar
protein sorting-associated protein 35 (VPS35)-VPS29-VPS26
proteins, that are highly conserved among species (169, 172,
173). The CSC binds PI(3)P, an early endosome specific
phosphoinositide, through the Phox-homology (PX) domain
present in sorting nexins (SNX), which together with the small
GTPase Rab7a, assembles the second sub-complex of the
retromer (174, 175). In addition to membrane tethering, SNX
bend and remodel the endosomal membrane to create recycling
tubules for cargo trafficking [reviewed in (176)]. Cargo selection
is mediated through the FERM-like domain of SNX17 whereas
SNX27 interacts with cargos via its PDZ domain. Recently,
SNX17 has been shown to interact with another endosomal
sorting complex called the retriever, a heterotrimer harboring
similarities with the retromer. The retriever and SNX17 can
associate with other complexes to prevent cargo lysosomal
degradation and to promote cell surface recycling (177).

Upon IFN-a stimulation, IFNAR2, in contrast to IFNAR1,
could not be colocalized with LAMP1, a bona fide marker of late
endosomes and lysosomes (21). Instead, IFNAR2 was
accumulated in early endosomes in the absence of Rab11A or
Rab4, two GTPases involved in cargo recycling to the PM. These
findings therefore suggest that IFNAR2 is not directed towards
the lysosomal degradation pathway but recycled back to the PM.
Indeed, mass spectrometry analysis revealed that upon IFN-a
stimulation, IFNAR2 could interact with Rab11A and Rab4.
IFNAR2 could also interact with Rab35 and VPS26A, VPS29
and VPS35 – the components of the retromer cargo-recognition
trimer (Figure 2). Accordingly, under IFN stimulation, cells
depleted of VPS35 accumulated IFNAR2 in early endosomes
together with a decreased amount of IFNAR1 sorted for
lysosomal degradation. The same phenotype was observed in
the absence of IFN stimulation, indicating that IFNAR is sorted
by the retromer complex under basal and stimulated conditions.
In agreement with the interaction of the Rab7 GTPase with the
retromer complex (175), Rab7 depletion led to the same
phenotype than Vps35 depletion. These data agree with a
previous study showing an accumulation of IFNAR1 in early
endosomes in Rab7A depleted cells (178). Although the retromer
complex has been involved in the retrograde trafficking of
mannose-6-phosphate (179), sortilin-related (180) and Wnt
receptors (181) from endosomes to the TGN, the possibility of
IFNAR2 retrograde trafficking to the TGN by the retromer
complex was ruled out (21).

A recent proteomic study identified IFNAR1 as a possible
cargo recognized by SNX5 nexin through binding to
466YVFFP470, a consensus ФxWxФ recycling motif (182).
Interestingly, the SNX5-binding motif covers the endocytic
motif 466YVFF469 described before (36). The endosomal SNX-
BAR sorting complex for promoting exit 1 (ESCPE-1), identified
in this study, allows to couple cargo recognition with SNX-
mediated biogenesis of tubulo-vesicular transport carriers that
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recycle cargo to the PM or send them to the TGN (182). Whether
this new recycling pathway mediates IFNAR1 basal recycling to
the PM will need further investigation (Figure 2).

Degradation of Type I Interferon Receptor
1 in Lysosomes
Early studies performed with human radiolabelled 125I-IFN-a led
to the first report of the degradation of IFN-a after IFNAR
endocytosis, probably in lysosomes since it was blocked by
chloroquine, a lysosomotropic agent (65, 183). IFNAR1
degradation was first described after IFN-a stimulation of Daudi
cells (19). The lysosomal proteolysis of IFNAR1, excluding
proteosomal degradation, was later established with lysosome
inhibitors (80, 184). Several IFN-induced post-translational
modifications in the cytosolic tail of IFNAR1 are necessary for its
targeting to lysosomes. Upon IFN stimulation, the ubiquitination
of IFNAR1 proximal lysine residues adds K48 and K63 linkages
which are known to sort polyubiquitinated cargos to the
proteasome or lysosomes for degradation (Figure 2) (81, 185, 186).

IFNAR1 ubiquitination occurs probably mainly at the PM
after IFN binding, but could also take place at the endosomal
level as described for GHR (187). This study showed that SCFb-
Trcp was active at the cell surface and in endosomes. Silencing
SCFb-Trcp or deleting the GHR ubiquitin-dependent endocytosis
motif forced GHR recycling from endosomes to the PM,
indicating that GHR sorting to lysosomes depends on an active
ubiquitin system. More recently, several studies revealed that
ubiquitinated receptors can be sorted to ILVs independently
from ESCRT as shown for GPCR with ALG-2-interacting
Protein X (ALIX) or EGFR, PDGFR and a5b1 integrin with
the histidine domain phosphotyrosine phosphatase (HD-PTP)
[review in (188)]. The precise molecular mechanism mediating
IFNAR1 lysosomal degradation will require further
investigations. Whether ALIX and HD-PTP are part of
IFNAR1 sorting machinery are still open questions.

Type I Interferon Receptor Complex
Dissociation and Signaling Termination
Whether and how the retromer complex contributes to the
regulation of intracellular signaling are still poorly understood.
How ligand-induced receptor phosphorylation can influence
decisions between recycling versus degradation and signaling was
first described for b2AR and EGFR. EGFR activation by TGFa led
to sustained MAPK activation and retrieval/recycling of the
receptor, whereas activation by EGF induces fast receptor
degradation and a transient MAPK activation (189). The SNX27-
retromer retrieval subdomain allows to terminate G protein-
coupled parathyroid hormone receptor signaling, a key regulation
as shown by the deleterious effect of its constitutive activation on
bone formation observed in Snx27 deficient mice (190).

By controlling the residency time of internalized IFNAR
complex in the endosome, the retromer is directly implicated
in the fine tuning of JAK-STAT signaling duration and
downstream transcription outputs (Figure 3). Indeed, a
significant upregulation of genes known to be dependent on
IFN stimulation was observed in VPS35 depleted cells upon IFN-
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a/-b activation, suggesting an aberrant prolonged activation of
the JAK/STAT pathway (21). Thus, this study establishes a direct
link between retromer-mediated sorting and modulation of
intracellular signaling and gene transcription. In this context, a
recent study proposed that the long-term effects of type I IFN
could be explained by the persistence of receptor bound IFN-a2
inside endosomes. Endosomal IFN could even continue to signal
from this compartment for days when the IFN-IFNAR complex
negative regulators ISG15 or USP18 were missing (191). The
endosome is therefore a crucial sorting station where a concerted
choreography between Hrs/STAM and retromer complexes
sequentially control the initiation and the termination of IFN-
induced JAK/STAT signaling.
DISCUSSION

Since their discovery more than 60 years ago, numerous studies
have tried to unravel the mechanisms underlying the signaling
activity of IFNs and their cognate IFNAR receptor. Until recently,
these studies have mainly focused on the initiation of JAK/STAT
signaling at the plasma membrane in a linear manner. IFNAR
membrane trafficking has been much less studied and all the less
so when it comes to understand the role of the intracellular
journey of IFNAR and its signaling. In agreement with the
dogma that has long prevailed for transmembrane receptors,
IFNAR trafficking was seen as a simple way to terminate
signaling by passively removing receptors from the PM away
from IFNs. This simplistic picture has recently changed with the
demonstration that IFNAR trafficking is tightly associated with
the control of JAK/STAT signaling. Nevertheless, the
characterization of IFNAR trafficking has only recently begun
and further studies are clearly needed to better understand the role
of each trafficking step in the final IFN signaling response.

While most studies have addressed these mechanisms using
IFN-a2 as a ligand, how IFN-b can transduce distinct activities
remains a challenging and unresolved question. This is also the
case for the other human type I IFNs including the twelve
subtypes of IFN-a, IFN-ϵ, IFN-k, and IFN-w. Their distinct
structures and IFNAR binding affinities may be translated into a
selective modulation of IFNAR trafficking characteristics that it
would be interesting to relate to their specific activities. Distinct
IFN affinities could determine distinct IFNAR endocytosis rate
and potentially control when signal is terminated at the
endosomal level. Modulations of these parameters would
eventually adjust the signal duration for each IFN subtype.
Therefore, the regulation of trafficking events may add another
level of complexity and control of the IFN stimulation outcomes.

The importance of better understanding IFNAR trafficking is
not restricted to IFNAR as it will probably establish new
paradigms in the control of signaling by trafficking for cytokine
and transmembrane receptors beyond the prototypical EGFR and
GPCRs. The extremely dynamic nature of the endosomal network
and the rapid movement of vesicles through the cytosol, make it
challenging to follow receptors during their journey in live cells. In
particular, it is not known whether IFN receptor complexes made
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from different IFN subtypes would be found in common or
separate endosomal compartments. However, the recent and
continuous improvements in live cell imaging such as super
resolution microscopy and AI-based segmentation approaches
will enable us to make substantial progress in the near future. No,
the journey does not end here.
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