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Cancer diagnosis and classification have traditionally been based on the assessment of morphology by
microscopy. However, the histological classification system is challenging and demand for genetic
information is increasing in the era of targeted and personalized molecular therapy. Recently accumulated
comprehensive genomic data could be used to provide a molecular cancer classification alongside the
histological classification. This study identified a 19 gene signature able to classify endometrial cancers into
the two major histological subtypes, endometrioid and serous. In addition, when the genomic classifier was
applied to endometrioid adenocarcinoma of high grade (EM-HG), a subset (23.6%, 25/106) was predicted to
be similar to serous tumors at the molecular level. In analyses of multiple cancers, the classification model
may also be applicable to ovarian cancers.

ndometrial cancer is the most common gynecological malignancy in Western Europe and the USA, and is

the seventh most common cancer in women worldwide'?. The incidence of endometrial cancer has

increased steadily in correlation with the current epidemic of obesity®*. Endometrial cancers are classified
by their histologies. A dualistic model classifying endometrial cancers into type I and type I is widely accepted to
explain the pathogenesis>*.

Type I endometrial cancers comprise the majority of endometrial cancers. They occur on a background of
unopposed estrogen overstimulation, have endometrioid histology resembling a normal endometrial gland, and
are usually diagnosed as low-grade endometrioid adenocarcinoma (EM-LG). By contrast, type II endometrial
cancers exhibit non-endometrioid histology, such as serous adenocarcinoma (EM-Serous), and are frequently
associated with TP53 mutations and an aggressive clinical course. Despite the differences in pathobiology and
tumor behavior between the two types of endometrial cancers, differential diagnosis using the current histological
classification system is frequently challenging”®. In particular, this classification scheme does not always provide a
clear distinction of tumor type in cases of high-grade endometrioid adenocarcinoma (EM-HG), referred to as
FIGO (International Federation of Gynecology and Obstetrics) grade 3 endometrioid adenocarcinoma®®. The
distinction between type I and type II endometrial cancer is important because different treatments are recom-
mended for each type, and a different clinical course is observed.

Recently, comprehensive genomic data, including whole exome sequencing, RNA sequencing, and large-scale
copy number alteration (CNA), have become available for various cancers. These genomic data could be used to
provide a molecular cancer classification or identify molecular cancer markers, and, in this era of personalized
cancer therapy, to provide practical methods to build bridges between genomics and clinical practice.

In this study, we built classification models to predict the two major histologies of endometrial cancer using
whole exome sequencing data, RNA sequencing data, and global copy number data obtained from the TCGA
database (http://tcga-data.nci.nih.gov): type I endometrial cancers, i.e., tumors with endometrioid histology, and
type Il endometrial cancers, i.e., tumors with serous histology. These classification models were then compared to
identify the best predictive model with the highest accuracy. The selected classification model was verified using
an independent external data set, and the classification model was then applied to EM-HG, mixed-type and
multiple cancers, including ovarian serous adenocarcinoma (Ov-Serous) and eight non-gynecological cancers.

Results
Classification model building using expression data for endometrial carcinomas. To build a classification
model that is able to discriminate between endometrioid histology and serous histology in endometrial cancer,
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Figure 1| Classification modeling using expression and copy number data for histological subtypes of endometrial cancer. (a) All nine classifiers
showed a high performance, with high sensitivity, specificity, positive predicted value (PPV), negative predicted value (NPV), and (b) AUC values. (c)
Ten-fold cross-validated probabilities for each class and misclassification error rates are shown for the PAM method. (d) Other methods such as the
Bayesian compound covariate and (e) the Adaptive boosting method also showed the distinctive two probability patterns for endometrioid or serous
histologies. (f) Gene lists selected by PAM, Adaptive boosting, and the remaining seven classifiers (classical classifiers) are shown. (g) Performance of the

modeling using actual copy number data.

low-grade (FIGO grades 1 and 2) endometrioid adenocarcinoma
(EM-LG, N = 184) and endometrial serous adenocarcinoma (EM-
Serous, N = 52) were defined as binary endpoints. The results of 10-
fold cross-validation (CV) using all nine classifiers showed high
performances (permutation p-value < 0.001) with high sensitivities,
specificities, positive predictive value (PPV), and negative predictive

value (NPV), irrespective of classifiers (Fig. la). Ten-fold cross-
validated receiver operating characteristic (ROC) curves showed
high area under curve (AUC) values of up to 0.988 (Fig. 1b). Ten-
fold cross-validated probabilities for prediction of histologies
between EM-LG and EM-Serous were distinctively distributed into
two patterns (toward 100% for the serous type or 0% for the
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Figure 2 | Classification modeling using mutation and binary copy number alteration data for the histological subtypes of endometrial cancer.
Distribution patterns by principal component (PC) and accuracy are shown for each model using mutation or copy number variation (CNV), or

mutation + CNV, respectively.

endometrioid type) that were clearly correlated with the actual
histological types using classification methods such as Prediction
Analysis for Microarrays (PAM) (Fig. 1c), Bayesian compound
covariates (Fig. 1d), and Adaboost classifiers (Fig. le). In the gene
selection from the full data set, seven genes were selected by classical
classifiers, eight genes by PAM, and 12 genes by Adaboost from the
full data set (Fig. 1f). Of these, two genes, CLDN6 and KIAA1324,
overlapped in all classification methods (Fig. 1f), suggesting that they
are the most important in the morphogenesis of endometrial cancer.
Detailed statistics are described for each gene in Supplementary
Tables 1-3.

Classification model building using mutation and/or CNA data.
We also built classification models using CNA data and/or mutation
data. For CNA data, two models were built with the two possible data
types: actual copy number data (continuous data) and GISTIC
results (binary data). When the actual copy number data classifi-
cation model was built, a relatively lower sensitivity was present
across all classifiers, except for PAM and Adaboost, compared to
the expression data classification model (Fig. 1g). For the GISTIC
or mutation classification models, reduced sensitivity was also
observed (Fig. 2). However, for models combining mutation and
GISTIC data, sensitivity increased to 0.83 (permutation p-value <
0.001) but remained lower than the sensitivity observed for the

expression data model. Overall, the distribution patterns between
EM-LG and EM-Serous were well separated, as shown by the
principal component (PC) 1 and PC 2 (Fig. 2). The selected genes
for mutation and CNA data are summarized in Supplementary Table
4. Specifically, two mutated genes were selected: PTEN mutations for
endometrioid tumors (+beta value) and TP53 mutations for serous
tumors (—beta value). For the CNAs, ten genes exhibiting amplifi-
cation, ABHD16B, BCL7C, BRD4, CCNE1, DNM2, FOSL2, GALK1,
PGAP3, TERC, and ZMYNDS, were selected and all indicated the
serous type (—beta value). There was a significant correlation
between the models that used the expression data and the models
that used mutation + CNA data (p-value = 0.003; Supplementary
Table 5).

External validation of the models using expression data. The
expression data classification model showed the best performance.
We focused on this classification model since producing expression
data is easier and cheaper than detecting mutations and CNAs. The
established classification model using expression data was applied to
an external independent data set generated using a microarray
containing 63 EM-LG and 12 EM-Serous. High sensitivity and
specificity were obtained for most classifiers, although two classi-
fiers including 3-Nearest Neighbors and Support Vector Machine
showed high error rate for serous (Fig. 3a). For each individual
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Figure 3 | External validation of the expression data model. (a) High sensitivities and specificities were identified using an independent external
validation set. (b) The predicted type and original histology of each sample are demonstrated. (c) Sensitivities and specificities and (d) subgrouping using

consensus clustering methods.

sample, detailed prediction results using the classification models are
shown according to the different classifiers (Fig. 3b). The high
correlations between the results predicted by the classification
model and the original histology are presented. To compare the
classifiers, we also applied hierarchical and non-negative matrix
factorization (NMF) consensus clustering using 19 selected genes.
Consensus clustering analysis showed lower specificity than the
classifiers (Fig. 3c). In this analysis, the samples were divided into
two groups (k = 2). All samples with EM-Serous histology were
found in one group; however, this group also contained many
samples with EM-LG histology (Fig. 3d).

Application of the model to EM-HG and mixed endometrial
carcinoma. This classification model is able to distinguish endome-
trioid from serous histology in endometrial cancers with a high
performance and accuracy. We applied this classification model to
EM-HG and endometrial cancers that were originally classified as
mixed histology. When the model was applied to samples with mixed

histology (N = 10), three (30%) samples were classified as endome-
trioid and the remaining seven (70%) were classified as serous
(Fig. 4a). When we reviewed the histology for the three available
tumors, the histology of the sample predicted as serous was consis-
tent with it being of serous histology, and the sample predicted as
endometrioid showed predominantly endometrioid histology by
hematoxylin and eosin (H&E) staining (Fig. 4a, H&E slides, upper
and mid). One sample predicted as serous showed mixed pattern of
serous and endometrioid histology (Fig. 4a, H&E slide, lower). The
classification model was also applied to EM-HG, as it can be
uncertain whether EM-HG belongs to the endometrioid or serous
type of tumor. Of the 106 samples with EM-HG histology, the
classifiers predicted that 25 (23.6%) samples were serous and the
remaining 81 (76.4%) were endometrioid (Fig. 4b). Although
the 106 samples were originally diagnosed as endometrioid type
with FIGO grade 3, a subset of samples were reclassified as serous,
suggesting that the reclassified samples are more similar to EM-
Serous than endometrioid tumors at the molecular level. When the
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Figure 4 | Application of the classification model to mixed endometrial carcinoma and high-grade endometrioid adenocarcinoma (EM-HG). (a) In the
mixed endometrial carcinoma, the predicted type and reviewed histology are well correlated. (b) In the EM-HG, a subset of samples were predicted
as serous tumors and (c) the model prediction tended to be correlated with clustering using a whole gene expression pattern.

clustering analysis was performed using all endometrial cancers,
including samples with EM-LG, EM-HG, and EM-Serous histo-
logy, EM-HG samples within the EM-LG cluster tended to be
predicted as endometrioid, and EM-HG samples within the EM-
Serous cluster tended to be predicted as serous (Fig. 4c).

Application of the model to multiple cancers. Finally, we applied
the classification model to nine cancer types. The median values of
the probabilities were around 50%, although colorectal cancers
tended to be classified as endometrioid as opposed to serous. Most
ovarian serous adenocarcinomas were predicted to be serous with
high probabilities (Figure 5a). When the clustering analysis was
performed for nine cancer types (N = 3766), some cancer types
even derived from the same organ were clustered differently,
irrespective of tumor origin; however, endometrial cancers and
ovarian cancers clustered together (Fig. 5b), suggesting that our
model can also be applied to ovarian cancer.

Discussion

In this study, we constructed a classification model using mutation
data, CNA data and expression data to distinguish between histolo-
gical subtypes of endometrial cancer. Recent high-throughput
sequencing technology has generated an enormous amount of data
for somatic mutations and CNAs in a range of cancer types. The
development of models that use somatic mutation data or CNA data
is an effective clinical use of genomic data. In our previous study, we
made a predictive model using a somatic mutation profile to predict
patient survival in ovarian cancer’. In this study, we showed that
classification models using mutation and/or discrete copy number
data are effective and applicable. These models, using binary data,
show high performance, although sensitivity is lower than that of the

expression data model. The lower sensitivity of the mutation or copy
number data models is probably due to the low frequency of muta-
tions in most genes and to the high frequency of CNAs in EM-Serous
but not in EM-LG tumors'. Among the mutations, only the well-
known mutations PTEN and TP53 were included in the classifi-
cation model: PTEN mutations occur frequently in endometrioid
adenocarcinoma, and TP53 mutations frequently occur in serous
adenocarcinoma.

Our study suggests that expression patterns using up to 19 genes
are able to classify endometrial cancer into two subgroups: endome-
trioid and serous. Of the 19 genes, six genes (LICAM, CLDNG,
RSPO4, PLAG1, FCHOI, and DHCR24) were elevated in EM-
Serous, and the remaining 13 genes (PIGR, IHH, TFF3, SPDEF,
KIAA1324, C90ORF152, FOXA2, CNGAI, HHAT, UQCRII,
MDM?2, SORBS2, and PPAP2C) were elevated in EM-LG. Among
them, CLDN6 and KIAA1324 were consistently selected in all nine
classifiers, suggesting that these genes are the most important in the
morphogenesis of endometrial cancer. KIAA1324 is induced by
estrogen and is a good endometrial biomarker associated with a
hyperestrogenic state and estrogen-related type I endometrial adeno-
carcinoma''. The two types of endometrial adenocarcinomas can be
distinguished by claudin 1 (CLDNI) and claudin 2 (CLDN2)".
Therefore, the related gene CLDN6 may also be a useful marker to
discriminate between the two groups.

In this study, a high error rate was present in predicting the serous
type of cancer in a few classifiers. Possible reasons include the fol-
lowing: 1) certain classifiers, such as Support Vector Machine, may
be inappropriate for binary classification schemes in this data set; 2)
unequal distribution of samples between the endometrioid and ser-
ous types (fewer serous than endometrioid tumors); and 3) model
building relied on RNA sequencing data (TCGA data set), which
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have a larger dynamic range of expression than the independent
microarray data used for validation. Another possible reason is
potentially flawed histology since serous tumors may be confused
with high-grade endometrioid carcinoma. In addition, different
molecular profiles may be present in the same tumor, with increased
heterogeneity in high-grade tumors such as serous carcinomas. In
this study, we used nine classifiers for classification modeling.
Among them, two classifiers, 3-Nearest Neighbors and Support
Vector Machine, showed a high error rate for serous cancers. The
remaining seven classifiers showed zero or very low error rates for
prediction of the serous type, which suggests that the cause of the
error rate lies with a few classifiers rather than with the histology or
the data. Therefore, the use of several classifiers may be important to
minimize misclassification in clinical application. In addition, cor-
relation between histologic and molecular classification is important
to lead to the correct diagnosis in clinical application.

When the model was applied to the ten mixed-type histologies,
three (30%) samples were classified as endometrioid and the remain-
ing seven (70%) were classified as serous. Although we did not review
the histology in all cases, one case predicted as endometrioid showed
predominantly endometrioid histology and two cases predicted as
serous contained serous areas, which suggests that the classification
model correlates with histology. In this study, one of the interesting
findings is a discrepancy between histologic diagnosis and classifica-
tion by modeling in EM-HG, 23.6% of which were classified as ser-
ous. Many samples were reclassified as serous using the classification
model, which suggests that a subset of EM-HG may be more similar
to the EM-Serous type than to the endometrioid type at the molecu-
lar level. This finding also suggests that EM-HGs may be more mole-
cularly and histologically heterogeneous than initially thought.

We performed clustering analysis for multiple cancers and found
that the cancers did not cluster by tumor origin. This suggests that
classification according to molecular features is more effective for
treatment. We also found that endometrial cancers and ovarian can-
cers were closely linked and clustered together. Therefore, our model
may be applicable to the classification of ovarian cancers having
histological subtypes of serous and endometrioid adenocarcinoma.

In summary, we created endometrial cancer classification models
using different platforms and validated the models. A model using a
19 gene signature was able to classify endometrial cancers into the
two major histological subtypes. Classification models using geno-
mic data may complement histology in establishing diagnoses, and
this study also suggests that using multiple classifiers could be
important to minimize misclassification in clinical application. In
the era of targeted molecular therapy, it is potentially important to
report molecular classification predictions alongside histological
classifications.

Methods

Genomic data. For endometrial cancer modeling, the following genomic data were
used.

Expression data: mRNA expression data were derived from the RNA seqV2 RESM
for endometrial cancer (N = 370), breast cancer (N = 914), colorectal cancer (N =
243), glioblastoma (N = 153), lung adenocarcinoma (N = 230), lung squamous cell
carcinoma (N = 347), melanoma (N = 282), renal cell carcinoma (N = 480), Ov-
Serous (N = 261), and thyroid papillary carcinoma (N = 486). The data were nor-
malized using quantile normalizations with log, transformations.

Mutation data: for modeling, all observed somatic mutations across all sequenced
cases (N. = 232) and mutated genes, as determined by a merger of the MutSig v2.0
and MutSigCV v0.9 (Q-value =< 0.1) test results'’, were used. There are 29 genes in the
list of genes significantly mutated in endometrial cancer (Supplementary Table 6).

Copy number data: segmented copy number data generated using an Affymetrix
Single Nucleotide Polymorphism (SNP) 6.0 array (N = 492) were used. The down-
loaded segmented copy number data were analyzed with GISTIC2.0'*'* to identify
significant focal CNAs. The thresholds for significant focal CNAs were as follows:
amplification and deletion threshold, 0.1; cap-values, 1.5; broad length cut-off, 0.7;
confidence level, 0.95; joint segment size, 4; level peel-off, 1; and maximum sample
segments, 2000. Details of each of these parameters have been previously described.
For modeling using CNA data, both actual copy number data and discrete copy
number results determined by GISTIC were used. For the discrete copy number

results with high-level amplifications or homozygous deletions, a one-tail Wilcoxon
signed-rank test was used to filter the cases in which mRNA expression values were
significantly higher or lower in amplified or homozygously deleted samples versus
diploid samples.

Classification modeling and internal validation. The methods used to build the
classification models using continuous variables, such as expression data or actual
copy number data, were as follows: compound covariate predictors, diagonal linear
discriminant analysis, 1-Nearest Neighbor, 3-Nearest Neighbors, Nearest centroid,
Support Vector Machine (SVM), Bayesian compound covariates, class prediction
using PAM", and the Adaptive boosting (Adaboost) method'. Genes with significant
differences between the two classes (t-test, p < 0.001) and genes in which the fold-
difference between the two classes exceeded 30 were used to fit the classification
model. For binary outcome data, such as mutation data and the discrete CNV data
from GISTIC, we used a classification method combining Fisher’s exact test and 1-
norm SVM" to predict the binary response using mutation and/or CNA data. We
selected the significant genes (Fisher exact test p < 0.001) before fitting the
classification model. A chi-square test was used for testing the association between the
original and predicted responses. To evaluate the predictive performance of the
classification models, 10-fold CV procedure was used as follows:

Step 1. The total data were randomly divided into ten equally sized subsets.

Step 2. A single subset was used as the validation data, and the remaining nine
subsets were used as training data.

Step 3. The significant genes (t-test, p < 0.001 for continuous data, or Fisher exact
test, p < 0.001 for binary data) were selected from the training set.

Step 4. The classification method was applied to the selected genes and a clas-
sification model was fitted.

Step 5. A fitted classification model was applied to the validation data and the
responses were predicted.

Step 6. Steps 3-5 were repeated ten times.

Step 7. The chi-square p-value was calculated using the original and predicted
responses.

To remove the overfitting bias of the 10-fold CV, we calculated a permutation p-
value, as in Simon et al.'® and Pang and Jung'’, as follows: 1) the naive chi-square p-
value (Py) was computed from the 10-fold CV procedure for the original data, 2) the
chi-square p-value (P,) was computed from the 10-fold CV procedure for the b-th

permuted data (b = 1, ..., B), and 3) a permutation p-value was calculated using the
o B
equation p=B~" Zb:l I(P, < Py).

Measurement of the accuracy of the predictive model. Cross-validated ROC curves
and AUC values were used. The performance measurements used were sensitivity
(the probability that the EM-Serous would be correctly predicted as EM-Serous),
specificity (the probability that the EM-LG would be correctly predicted as EM-LG),
PPV (the probability that a sample predicted as EM-Serous actually belongs to EM-
Serous), and NPV (the probability that a sample predicted as EM-LG actually belongs
to EM-LG). In addition, normalized gene expression data from 91 stage I endometrial
cancers derived from the Affymetrix Human Genome U133 Plus 2.0* were used for
external validation.

Microscopy imaging data. Three available histological images of mixed-type
endometrial cancer (TCGA-AX-A1CR, TCGA-BK-AOCA, and TCGA-D1-A0ZZ)
were obtained from Berkeley Cancer Morphometric Data (http://tcga.lbl.gov/biosig/
tcgadownload.do).

Consensus clustering for expression data. A consensus hierarchical and NMF
clustering with iterative feature selection was performed. Consensus clustering is a
resampling-based procedure that repeatedly samples a sample subset and then uses
clustering to find intrinsic groupings*"*>. Consensus clustering records the
proportion of resamplings in which pairs of tumors were in the same clusters
NMEF is an algorithm based on decomposition by parts that can reduce the dimension
of the data; it is also an efficient method for the identification of distinct molecular
patterns and provides a powerful method for class discovery*. These algorithms have
been previously described®**.

21,22

Statistical analysis and data mining. Modeling, data analysis, and data mining were
performed using the BRB array tool* and R-program (version 2.14.2; www.r-project.
org). Consensus clustering analysis was performed using GenePattern from the Broad
Institute with the “ConsensusClustering” and “NMFConsensus” modules and
pipelines™. Statistical analyses for association tests were performed using Stata/IC
statistical software (version 12; StataCorp, TX) or the R-program (version 2.14.2;
WWW.I-project.org).
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