

Association Between Folate and Health Outcomes: An Umbrella Review of Meta-Analyses

Yacong Bo^{1†}, Yongjian Zhu^{2†}, Yuchang Tao³, Xue Li^{1,4}, Desheng Zhai¹, Yongjun Bu¹, Zhongxiao Wan³, Ling Wang³, Yuming Wang⁵ and Zengli Yu^{1*}

¹ School of Public Health, Xinxiang Medical University, Xinxiang, China, ² Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, ³ School of Public Health, Zhengzhou University, Zhengzhou, China, ⁴ Centre for Population Health Sciences, University of Edinburgh, Edinburgh, United Kingdom, ⁵ Department of Administration, Henan University People's Hospital, Zhengzhou, China

Background: There is no study that has systematically investigated the breadth and validity of the associations of folate and multiple health outcomes. We aimed to evaluate the quantity, validity, and credibility of evidence regarding associations between folate and multiple health outcomes by using umbrella review of meta-analysis.

OPEN ACCESS

Edited by:

Vittorio Perduca, Université de Paris, France

Reviewed by:

Ersilia Lucenteforte, University of Pisa, Italy Gianni Virgili, University of Florence, Italy

*Correspondence: Zengli Yu yuzengli2017@126.com

[†]These authors have contributed equally to this work

Specialty section:

This article was submitted to Exposome, a section of the journal Frontiers in Public Health

Received: 10 April 2020 Accepted: 06 November 2020 Published: 15 December 2020

Citation:

Bo Y, Zhu Y, Tao Y, Li X, Zhai D, Bu Y, Wan Z, Wang L, Wang Y and Yu Z (2020) Association Between Folate and Health Outcomes: An Umbrella Review of Meta-Analyses. Front. Public Health 8:550753. doi: 10.3389/fpubh.2020.550753 **Methods:** We searched the MEDLINE, EMBASE, and Cochrane Library databases from inception to May 20, 2018, to identify potential meta-analyses that examined the association of folate with any health outcome. For each included meta-analysis, we estimated the summary effect size and their 95% confidence interval using the DerSimonian and Laird random-effects model. We used the AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) to assess methodological quality and the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation working group classification) to assess the quality of evidence for each outcome included in the umbrella review.

Results: Overall, 108 articles reporting 133 meta-analyses of observational studies and 154 meta-analyses of randomized controlled trials (RCTs) were included in the study. Among them, 108 unique exposure–outcome–population triplets (referred to as unique meta-analyses hereafter) of RCTs and 87 unique meta-analyses of observational studies were reanalyzed. Beneficial effects of folate were observed in the all-cause mortality rate and in a number of chronic diseases, including several birth/pregnancy outcomes, several cancers, cardiovascular disease and metabolic-related outcomes, neurological conditions, and several other diseases. However, adverse effects of folate were observed for prostate cancer, colorectal adenomatous lesions, asthma or wheezing, and wheezing as an isolated symptom and depression.

Conclusions: Current evidence allows for the conclusion that folate is associated with decreased risk of all-cause mortality and a wide range of chronic diseases. However, folate may be associated with an increased risk of prostate cancer. Further research is warranted to improve the certainty of the estimates.

Keywords: folate, meta-analysis, umbrella review, multiple health outcomes, chronic diseases

INTRODUCTION

Folate, which mediates the transfer of one-carbon units in methylation and biosynthesis of nucleotides, has been well-established to play important roles in the processes of DNA synthesis, stability, repair, and methylation (1). It has been known for more than 2 decades that folic acid supplements during a woman's pregnancy can reduce the risk of neural tube malformation. Since then, numerous studies have investigated the effects of folate on a wide range of health outcomes, including the all-cause and cause-specific mortality, cancer outcomes, cardiovascular disease (CVD), diabetes, neurocognitive disorders, and pregnancy and birth outcomes. It is also noteworthy that folate supplement has been becoming popular worldwide, although evidence regarding the associations between folate and various health outcomes is still inconclusive.

Given this, a systematic assessment of the credibility of the published evidence will provide important implications for folate in both clinical practice and public health. Previous original or meta-analysis studies of the health effects of folate usually focused on a single health outcome (e.g., neural tube malformation). We therefore carried out the current umbrella review of existing published data on the associations between folate exposure and diverse health outcomes. In addition, we aimed to describe the magnitude, direction, and significance of the suggested associations; evaluate the potential biases; and identify which studies produced the highest-quality evidence.

METHODS

Structure of Umbrella Review

The umbrella review method, which synthesizes information from meta-analyses both of observational studies and randomized controlled trials (RCTs) on multiple health outcomes associated with a particular exposure, could provide an instructive panorama for public health interventions (2, 3). We conducted this umbrella review of folate and multiple health outcomes by systematically searching for meta-analyses in which folate was part or all of the exposure of interest. Meanwhile, we excluded those systematic reviews without meta-analyses.

Search Strategy

The MEDLINE, EMBASE, and Cochrane Library databases were searched from inception to May 20, 2018 to identify meta-analyses that examined the association between folate and any health outcome. The detailed search strategies are presented in **Supplementary Table 1**. The titles, abstracts, and full texts of potentially eligible articles were screened by two researchers independently. Disagreements were arbitrated by a third researcher.

Eligibility Criteria

Articles with meta-analyses were included if they met the following inclusion criteria:

- (1) Meta-analyses of either observational (i.e., cohort, casecontrol, and cross-sectional studies) or interventional studies (i.e., RCTs)
- (2) Evaluating the association of folate (folate intake, folate supplementation, and folate concentration) with any health outcome
- (3) The included population aged 18 years or older
- (4) Published in peer-reviewed journals in English.

We excluded meta-analyses that evaluated the effects of genetic polymorphisms related to folate metabolism on health outcomes, animal research, and laboratory studies. If an article presented separate meta-analysis for more than one health outcome, we included each of these separately. For meta-analyses of observational studies, if more than one meta-analysis addressed the same research question, the one with the largest number of prospective cohort studies was included.

Data Extraction

Two investigators independently extracted information from eligible meta-analyses. For each meta-analysis, the following information was extracted: first author's last name, year of publication, number of studies included, populations, health outcomes of interest, study designs, exposure of folate, effect sizes [odds ratio (OR), risk ratio (RR), hazard ratio (HR), or mean difference (MD)], and the corresponding 95% confidence intervals (CIs), and types of effect model used in the metaanalysis (fixed or random). In addition, we also extracted number of cases and controls (for case-control studies), events and participant/person-years (for cohort studies), or number of subjects in interventional and control groups (for RCTs). For each original study included in each meta-analysis, the following data were extracted for further reevaluation: the effect estimates (OR, RR, HR, or MD) with 95% CI, number of cases, total number of participants, and study design.

Data Analysis

Summary effects and 95% CIs for each meta-analysis were reanalyzed by using a DerSimonian and Laird random-effects model to be consistent with the method widely used in the included meta-analyses. For any associations with p < 0.05, the following metrics were further estimated: the 95% prediction interval to evaluate the uncertainty for the effect that would be expected in a new original study (4, 5); the between-study heterogeneity (defined as significant for $I^2 \ge 50\%$ and p < 0.05); the excess significance test to assess whether the observed number (O) of studies with significant results (positive studies) was larger than the expected number (E) (6); and the presence of small-study effect by using Egger regression asymmetry test (significance threshold p < 0.10) (7).

For overlapping outcomes that were examined both in metaanalyses of RCTs and those of observational studies, we examined whether the observed direction and statistical significance were consistent between the two study types.

Assessment of Methodological Quality

We used the updated AMSTAR 2 (A Measurement Tool to Assess Systematic Reviews) to evaluate the methodological quality of the included meta-analyses. Compared with the original AMSTAR tool, the AMSTAR 2 emphasizes the risk-of-bias assessment in study design and heterogeneity and is a reliable and valid tool for quality assessment of meta-analyses of both interventional and observational research (8). The AMSTAR 2 includes 16 items for evaluating the methodological quality of systematic reviews/meta-analyses, with each item scoring 0 or 1. The methodological quality of each individual meta-analysis was then classified as high, moderate, low, or critically low accordingly.

Credibility of the Evidence

The Grading of Recommendations, Assessment, Development, and Evaluation working group classification (GRADE) was used to assess the quality of evidence for those meta-analyses included in the umbrella review (9, 10). The GRADE categorizes evidence from systematic reviews and meta-analyses into the levels of high, moderate, low, or very low. In the GRADE approach, RCTs start as high-quality evidence, and observational studies start as lowquality evidence. Other factors may then upgrade or downgrade the quality level. For example, unexplained heterogeneity or high probability of publication bias may downgrade the quality of evidence, whereas a large effect or dose-response gradient may upgrade it. Two reviewers independently assessed the included studies, and a third reviewer settled disagreements.

RESULTS

Literature Review

The flow of study selection is presented in **Figure 1**. We initially identified 1,975 unduplicated articles. After considering the inclusion and exclusion criteria, 108 articles were finally included in the study. Among them, 133 meta-analyses of observational studies were reported in 62 articles (11–72), and 154 meta-analyses of RCTs were reported in 51 articles (13, 20, 28, 47, 62, 73–118). Another five articles reported both meta-analyses with observational studies and RCTs (13, 20, 28, 47, 62). As a result, a total of 195 unique health outcomes classified into eight health fields (i.e., all-cause and cause-specific mortality rates, cancer outcomes, cardiovascular outcomes, birth outcomes, pregnancy outcomes, neurocognitive disorders, and other outcomes) were reported (**Supplementary Figure 1**).

Meta-Analysis of Observational Studies

As shown in **Supplementary Table 2**, the median number of meta-analyses with observational studies included in each outcome was 7 (range, 2–36), and the median numbers of participants/case numbers were 43,063 (range, 635–59,514,473) and 3,463 (range, 11–147,424), respectively. Twenty-one outcomes were reported in more than one meta-analysis.

After excluding 46 duplicated meta-analyses, we further analyzed 87 unique exposure-outcome-population triplets (referred to as unique meta-analyses hereafter) of observational studies with a wide range of outcomes (**Supplementary Table 3**): all-cause and cause-specific mortality (n = 3), birth outcomes (n = 28), cancer-related outcomes (n = 45), cardiovascular outcomes (n = 2), neurocognitive disorders (n = 5), pregnancy outcomes (n = 3), and other outcomes (n = 1). Figures 2, 3

show the summarized results of these 87 unique meta-analyses. Overall, 35 of the 87 (40.2%) meta-analyses reported nominally significant pooled results (p < 0.05).

Of these 87 unique meta-analyses, 10 (11.5%) were with statistical significance of $p < 10^{-6}$, 7 (8.0%) had a 95% prediction interval excluding the null, 60 (69.0%) had more than 1,000 cases (or more than 20,000 participants for continuous outcomes), 16 (18.4%) had neither evidence of excess significance bias (p > 0.10) nor small-study effects (p > 0.10), and 40 (46.0%) had no large heterogeneity ($I^2 < 50\%$ and p > 0.05).

Supplementary Table 4 provides a breakdown of the AMSTAR 2 scores for the meta-analyses representing each outcome. None of the 87 meta-analyses was rated at the high methodological level, and 3 (3.4%) were rated as moderate, leaving 31 (35.6%) as low and 53 (60.9%) as critically low. Regarding the GRADE classification for evidence level, 4 of the 87 meta-analyses (4.6%) were rated as high-quality evidence for the corresponding outcomes, 21 (24.1%) were rated as moderate, 12 (13.8%) were rated as low, and 50 (57.5%) were rated as very low quality (**Supplementary Table 5**).

Data Synthesis for High- or Moderate-Quality Meta-Analysis of Observational Studies

Among the 25 meta-analyses with high or moderate GRADE classification, we found that folate intake was associated with lower risks of low birth weight (during preconception), esophageal adenocarcinoma, gastric cancer, head and neck squamous cell carcinoma, pancreatic cancer, coronary heart disease, and serrated colorectal polyps (among adults undergoing endoscopic investigation of the colorectal), but it did not show a significant association with low birth weight (during post-conception pregnancy), colorectal cancer, lung cancer, and Parkinson disease. Folate supplementation was associated with lower risks of non-syndromic cleft lip with or without cleft palate and small for gestational age, but it did not show a significant association with non-syndromic cleft palate, wheezing, acute lymphoblastic leukemia, and gestational hypertension/preeclampsia. A higher level of circulating folate was associated with lower risks of cervical cancer, colorectal adenoma, and Alzheimer disease, but it did not show a significant association with lung cancer and coronary heart disease (Supplementary Figure 2). Interestingly, we found that circulating folate did not show a significant association with prostate cancer, but higher serum folate was associated with increased risk of prostate cancer.

Meta-Analyses of RCTs

As shown in **Supplementary Table 6**, the median number of meta-analyses of RCTs included in each outcome was 5.5 (range, 2–25), and the median numbers of participants and cases were 3,113 (range, 28–82,723) and 653 (range, 3–39,923), respectively. More than one meta-analysis was reported for 17 outcomes.

After removing 46 duplicated meta-analyses, we further analyzed 108 unique meta-analyses of RCTs for the associations of folate with all-cause and cause-specific mortality (n = 2),

Dutcomes	exposure	Population	No of participants	No of cases	RISK Ratio (95% CI)
	Distant falsts intoles	Preset concernationts	7200	1604	0.74/0.60.0.02
	Dietary Iolate Intake	Breast cancer patients	/299	752	0.74 (0.80, 0.92
in cause mortality	Diotony folate intake	Breast cancer patients	4105	732	- 0.93 (0.73, 1.13
reast cancer mortality	Dietary folate intake	Breast cancer patients	4024	505	0.79 (0.61, 1.01
irth outcomes					
sthma	Folate supplement	Pregnancy	14438	NA	1.06 (0.99, 1.14
isthma or wheezing	Folate supplement	Periconceptional pregnancy	44643	NA	1.05 (1.02, 1.09
topic dermatitis	Folate supplement	Early pregnancy	NA	NA 🚽	1.15 (0.91, 1.45
utism spectrum disorders	Folate supplement	pregnancy	632527	4514 🔶	0.77 (0.64, 0.93
Il cleft (case–control)	Folate supplement	Pregnancy	577298	4876 🔶	0.77 (0.66, 0.90
ll cleft (cohort)	Folate supplement	Pregnancy	13871	127	• 0.60 (0.35, 1.04
left lip with or without cleft palate	Folate supplement	Pregnancy	257840	4018 🔶	0.72 (0.61, 0.85
left lip with or without cleft palate (Prevalence)	Folate supplement	Pregnancy	18432895	18730 🔶	0.99 (0.92, 1.06
left palate	Folate supplement	Pregnancy	255036	1482	0.74 (0.54, 1.03
left palate (Prevalence)	Folate supplement	Pregnancy	18349548	10122	— 1.02 (0.89, 1.18
Congenital Heart Defects	Folate supplement	General	544908	16463 🔶	0.64 (0.57, 0.73
czema	Folate supplement	Other period in pregnancy	NA	NA 🔫	► 1.00 (0.91, 1.10
ow birthweight	Folate intake	Postconception pregnancy	43063	NA 🔶	• 0.82 (0.63, 1.06
ow birthweight	Folate intake	Pre-conception pregnancy	61096	NA 🔶	0.75 (0.61, 0.92
leural tube defects	Folate supplement	pregnancy	NA	NA 🔶	0.59 (0.52, 0.68
leural tube defects	Folate supplement	Previous of NTD pregnancy	3198772	3729 🔶	0.54 (0.47, 0.62
leural tube disorders recurrent	Folate supplement	Previous of NTD pregnancy	1342	101	0.63 (0.15, 2.64
Ion–syndromic cleft lip with or without cleft palate	Folate supplement	Pregnancy	4983797	NA 🔶	0.88 (0.80, 0.97
Ion-syndromic cleft palate only	Folate supplement	Pregnancy	5356574	NA —	1.01 (0.75, 1.35
Ion-syndromic orofacial clefts	Folate supplement	Pregnancy	5671797	7207	0.93 (0.83, 1.03
Drofacial clefts	Folate supplement	Pregnancy	59514473	64161	0.97 (0.92, 1.01
reterm delivery (High dose folate supplement vs no)	Folate supplement	pregnancy	37968	3463	0.67 (0.63, 0.72
reterm delivery (Moderate to low dose folate vs no)	Folate supplement	pregnancy	44819	3094 🔶	0.84 (0.74, 0.96
mall for gestational age	Folate supplement	pregnancy	71882	9837	0.76 (0.64, 0.91
Vheeze	Folate supplement	Any Pregnancy	NA	NA	1.05 (0.95, 1.15
Vheeze	Folate supplement	Early pregnancy	NA	NA	1.06 (1.02, 1.09
Vheeze	Folate supplement	Other period in pregnancy	NA	NA	1.00 (0.96, 1.03
regnancy outcomes					
estational hypertension	Folate supplement	Any use	1202706	77859	1.03 (0.98, 1.09
estational hypertension/preeclampsia	Folate supplement	Pregnancy	279286	147424	0.92 (0.79, 1.09
reeclampsia	Folate supplement	Any use	1242398	43818	► 0.99 (0.90, 1.08
ieurocognitive disorders	Commental i	Caracteria	2070	476	
NZREIMER'S DISEASE (LOWER'VS higher)	Serum tolate	General	2070	4/0	2.22 (1./1, 2.89
ognitive impairment (Lower vs higher)	Serum folate	Seniors	10104	NA	1.66 (1.40, 1.96
Depression	circulating folate	General	15215	1769	1.58 (1.17, 2.14
Depression	Serum folate	General	7949	1783	1.22 (1.02, 1.46
arkinson's disease	dietary folate intake	General	143643	/94	1.06 (0.78, 1.45)
Other outcomes					
errated Colorectal Polyps	dietary folate intake	General	32462	831 -	0.65 (0.50, 0.85
IOTE: Weights are from random effects analysis					
				0 1	2

birth outcomes (n = 17), cancer-related outcomes (n = 14), cardiovascular outcomes (n = 29), diabetes-related outcomes (n = 9), endothelial function (n = 5), neurocognitive disorders (n = 5), pregnancy outcomes (n = 8), and other outcomes (n = 19). The summarized results of these 108 unique meta-analyses are presented in **Figures 4**, **5**. Overall, 31 (28.7%) meta-analyses showed nominally significant pooled results (p < 0.05). Among the 31 meta-analyses, 6 were for birth outcomes, 3 were for cardiovascular outcomes, 5 were for diabetes-related outcomes, 1 was for neurocognitive disorders, 3 were for pregnancy outcomes, and 11 were for other outcomes, suggesting that folate supplementation was associated with a decreased risk of these aforementioned diseases. However, two meta-analyses for cancer-related outcomes reported pooled results with *p*-values

lower than 0.05, suggesting that folate supplementation was associated with increased risks of colorectal adenomatous lesion and prostate cancer.

As shown in **Supplementary Table 7**, 25 of the 108 metaanalyses (23.1%) showed statistical significance (p < 0.01); the 95% prediction interval excluded the null in 6 (5.6%), 14 (13.0%) had more than 1,000 cases (or more than 20,000 participants for continuous outcomes), 8 (7.4%) had no evidence of excess significance bias (p > 0.10) or small-study effects (p > 0.10), and 49 (45.4%) showed no great heterogeneity ($I^2 < 50\%$ and p > 0.05).

Supplementary Table 8 presents a breakdown of the AMSTAR 2 scores for the meta-analyses representing each outcome. None of the 108 meta-analyses was rated at a high

Outcomes	exposure	Population	No of participants	No of	Risk Batio (95% CI)
Sucomes	exposure	ropulation	participants		Natio (95% Cl)
Cancer outcomes					
Bladder cancer	Total folate intake	General	498372	6280	0.88 (0.78, 1.01
Breast cancer (case–control)	Blood folate	General	1337	545	0.58 (0.32, 1.05
Breast cancer (cohort)	Blood folate	General	8677	3815	1.08 (0.87, 1.35
Breast cancer	dietary folate intake	General Postmenopausal women Premenopausa women Premenopausa women General General General General General General General General General Inflammatory Bowel Disease	1836566 4893 162033 6568 155926 86647 543650 2383 3089 17831 10516 18992 471924 169360 4517	24083 2259 7130 2419 1828 2506 22134 873 1706 4812	0.99 (0.92, 1.06
Breast cancer (case–control, 100ug/d increase)	dietary folate intake				0.92 (0.83, 1.03
Breast cancer (cohort, 100ug/d increase)	dietary folate intake				1.01 (0.98, 1.05
Breast cancer(case–control, 100ug/d increase)	dietary folate intake				0.87 (0.78, 0.97
Breast cancer(cohort, 100ug/d increase)	dietary folate intake				1.00 (0.97, 1.04
Breast cancer	Folate supplement				1.07 (0.95, 1.21
Breast cancer	total folate intake				0.98 (0.90, 1.07
Cervical cancer (Deficient vs. normal)	Serum folate				1.91 (1.14, 3.30
Cervical neoplasm	Folate intake and serum folate				0.60 (0.41, 0.88
Colorectal adenoma (Lowest vs highest)	Circulating folate				1.23 (1.09, 1.39)
Colorectal cancer	circulating folate dietary folate intake dietary folate intake Folate supplement Folate supplement			3477 🛶	1.01 (0.87, 1.17
Colorectal cancer (case–control)				8328	0.87 (0.74, 1.02
Colorectal cancer (cohort)				6633	0.92 (0.81, 1.05
Colorectal cancer				3783	0.87 (0.74, 1.01
Colorectal cancer				638	0.71 (0.53, 0.96
Colorectal cancer	RBC folate	General	7908	3008	1.04 (0.84, 1.29
Colorectal cancer	total folate intake	General	1896788	23147 🔶	0.88 (0.81, 0.95
Endometrial cancer	total folate intake	General	270542	6151	0.89 (0.76, 1.05
Esophageal adenocarcinoma	dietary folate intake	General	1769	501	0.50 (0.49, 0.65
Esophageal cancer	Serum folate	General	36243	5489	0.70 (0.31, 1.59
Esophageal cancer	dietary folate intake	General	4480404	2036	0.66 (0.52, 0.83
Esophageal cancer	Folate intake and serum folate	General	557646	5442	0.59 (0.49, 0.71
Gastric cancer	dietary folate intake	General	209689	4414	0.94 (0.78, 1.13
Gastric cancer	Folate intake and serum folate	General	857918	6810	0.82 (0.71, 0.94
Head and neck squamous cell carcinoma	Folate intake and serum folate	ite General	14002	4090	0.52 (0.71, 0.54
lung Concor	diotany folato intako	General	509767	4090	0.03 (0.94, 1.01
	Corum folato	Conorol	508707	1492	0.52 (0.64, 1.01
	seruin loidle	General	10528	4300	0.78 (0.65, 0.84
	distanti folate intake	General	10526	4390	0.74 (0.83, 0.84
Ovarian cancer	dietary folate intake	General	22/859	56//	0.88 (0.75, 1.05
Pancreatic cancer	Blood folate	General	1/53	826	0.80 (0.45, 1.45
Pancreatic cancer	dietary folate intake	General	295776	2459	0.66 (0.49, 0.89
Pancreatic cancer	Folate intake and serum folate	General	997922	3067	0.76 (0.60, 0.96
Pancreatic cancer	Folate supplement	General	235389	1175	1.08 (0.82, 1.41
Prostate cancer	Blood folate	General	13232	6122	1.43 (1.06, 1.93
Prostate cancer (10 mmol/L increase)	Circulating Folate	General	9353	2958	1.11 (0.96, 1.28
Prostate cancer	dietary folate intake	General	120349	14290	0.98 (0.90, 1.07
Prostate cancer	Serum folate	General	36243	5489	1.21 (1.05, 1.39
Prostate cancer	total folate intake	General	93781	7114	• 0.99 (0.82, 1.19
Renal Cell Cancer	Folate supplement	General	374901	2723	0.89 (0.77, 1.02
Acute lymphoblastic leukemia	Folate supplement	1 month before pregnancy	2042	490	1.06 (0.77, 1.46
Cardiovascular outcomes					
Coronary heart disease	Blood folate	General	14533	1936	0.74 (0.53. 1.02
Coronary heart disease	dietary folate intake	General	221009	2682	0.69 (0.60, 0.80
NOTE: Weights are from random effects analysis					
					1
					2

FIGURE 3 | Summary random-effects estimates of all-cause and cause-specific mortality, birth outcomes, pregnancy outcomes, neurocognitive disorders, and other outcomes reported in meta-analyses of observational studies.

methodological level, and 14 (13.0%) were rated as moderate, leaving 36 (33.3%) as low and 58 (53.7%) as critically low. In terms of evidence quality for each outcome, 10 of the 108 meta-analyses (9.3%) were rated as high, 24 (22.2%) were rated as moderate, 22 (20.4%) were rated as low, and 52 (48.1%) were rated as very low quality by the GRADE classification (**Supplementary Table 9**).

Data Synthesis for High- or Moderate-Quality Meta-Analyses of RCTs

Among the 34 meta-analyses with high or moderate GRADE classification, we found that folate supplementation was associated with decreased risk of elective termination of pregnancy for fetal anomalies; megaloblastic anemia; neural

tube defects; CVD (among those with preexisting diseases); liver toxicity (patients receiving methotrexate); gestational hypertension/preeclampsia; low predelivery serum folate; decreased scores on the Hamilton Depression Rating Scale and levels of plasma homocysteine (both among patients with type 2 diabetes and the general population); increased levels of birth weight, red blood cell folate, and serum/plasma folate; and increased risk of prostate cancer (among those with preexisting diseases). However, we did not find any significant association between folate supplementation and the all-cause mortality rate (among those with preexisting diseases), cancer mortality rate (among those with preexisting diseases), low birth weight, preterm birth, stillbirths/neonatal deaths, cancer incidence (among those with preexisting diseases), colorectal

Dutcomes	exposure	Population	participants	cases	Risk Ratio (95% CI)
II cause and cause specific mostality					
Il cause mortality	Folate supplementation	Preexisting diseases	56841	7700	1.00 (0.96, 1.04)
ancer mortality	Folate supplementation	Preexisting diseases	31930	1005	1.01 (0.90, 1.15)
ith outcomes					
nencephalv	Folate supplementation	Pregnancy	4807	17	0.35 (0.13, 0.97)
Birth weight	Folate supplementation	Pregnancy	707	NA	1.02 (1.01, 1.03)
left lip	Folate supplementation	Pregnancy	5612	8	0.73 (0.12, 4.41)
left palate	Folate supplementation	Pregnancy	5612	3	0.73 (0.05, 10.56)
ongenital cardiovascular anomalies	Folate supplementation	Pregnancy	5612	22	0.54 (0.23, 1.27)
engenital cardiovascular anomalies	Folate supplementation	Pregnancy	7110	50	0.39 (0.15, 0.57)
aw birthwaight	Folate supplementation	Prognancy	2112	372	0.29 (0.15, 0.37)
Annala blantia annamia	Folate supplementation	Pregnancy	3030	2/3	0.09 (0.00, 1.10)
devel to be defecte	Folate supplementation	Pregnancy	5659	89	0.20 (0.14, 0.46)
veural tube defects	Folate supplementation	Pregnancy	6708	54	0.33 (0.18, 0.62)
Neural tube disorders recurrent	Folate supplementation	With history of NTD pregnancy	1563	34	0.30 (0.14, 0.65)
Other congenital anomalies	Folate supplementation	Pregnancy	5612	87	0.93 (0.53, 1.65)
Perinatal death	Folate supplementation	Pregnancy	4002	101	0.92 (0.58, 1.47)
Placental weight	Folate supplementation	Pregnancy	198	NA 🗭	1.03 (1.00, 1.06)
Preterm birth	Folate supplementation	Pregnancy	2959	NA	0.99 (0.71, 1.40)
5pina bifida	Folate supplementation	Pregnancy	4546	6	0.33 (0.06, 1.67)
Stillbirths	Folate supplementation	Pregnancy	6597	34	1.01 (0.51, 2.01)
Stillbirths/neonatal deaths	Folate supplementation	Pregnancy	3110	120	1.34 (0.97, 1.85)
regnancy outcomes	Folato supplemente"	Dreamange	2774	155	0.62 (0.44, 0.00)
destational hypertension/preeclampsia	Folate supplementation	Pregnancy	3//4		0.62 (0.44, 0.89)
Length of gestation	Folate supplementation	Pregnancy	380	NA T	1.00 (1.00, 1.01)
Low pre-delivery serum folate	Folate supplementation	Pregnancy	696	75	0.41 (0.28, 0.62)
Miscarriage	Folate supplementation	Pregnancy	7391	769	1.09 (0.93, 1.29)
Multiple pregnancy	Folate supplementation	Pregnancy	7280	82	1.39 (0.89, 2.15)
Pre-delivery anaemia	Folate supplementation	Pregnancy	4149	577	0.62 (0.36, 1.09)
Pre-delivery haemoglobin level	Folate supplementation	Pregnancy	1806	NA	0.95 (0.64, 1.42)
Pre-delivery serum folate	Folate supplementation	Pregnancy	1250	NA	\$ 39.86 (4.27, 372.09)
Neurocognitive disorders					
Reck Depression Inventory/Hamilton Depression Scale	Folate supplementation	Unipolar depressive disease	657	NA	0.49(0.21, 1.14)
Cognitive function test scores	Folate supplementation	General	71	NA	1.02 (0.87, 1.20)
Endpoint scores of the respective rating scales	Folate supplementation	Depressive disorder	567		0.62 (0.30, 1.20)
Endpoint scores of the respective rating scales	Folate supplementation	Canada	30/	NA III	0.02 (0.30, 1.31)
pliepsy seizure frequency	Folate supplementation	General Deserve diseador	/5		0.98 (0.32, 2.98)
Hamilton Depression Rating Scale score	Folate supplementation	Depressive disorder	124		0.01 (0.00, 0.51)
endothelial function					
Glyceryl–trinitrate (GTN) diameter change	Folate supplementation	Coronary artery disease	187	NA	23.39 (0.00, 1.60e+16)
Peak hyperemic flow	Folate supplementation	Coronary artery disease	187	NA 🗕	 0.23 (0.00, 4.60e+16)
Other outcomes					
Liver toxicity	Folate supplementation	Patients receiving methotrexate	302	65 🔶	0.20 (0.11, 0.36)
Nausea / Glupset	Folate supplementation	Patients receiving methotrexate	355	123	0.77 (0.58, 1.03)
Neutropenia	Folate supplementation	natients receiving methotrevate	302	8	168 (0.40, 6.98)
Plasma homocysteine	Folate supplementation	Type 2 diabetes	183	NA 📥	0.00 (0.00, 0.01)
	Folate supplementation	Childhearing and another distribution	103		0.00 (0.00, 0.01)
Plasma homocysteme	Folate supplementation	Crinicipeaning age, pregnant and factating women	2001		0.33 (0.85, 0.57)
Plasma homocystelne	Folate supplementation	General	3001	NA V	0.79 (0.76, 0.81)
lasma nomocysteine	Folate supplementation	Coronary artery disease	32/	NA	0.00 (0.00, 0.03)
Plasma homocysteine	Folate supplementation	Preexisting diseases	38418	NA 🗣	0.01 (0.00, 0.01)
Red blood cell folate	Folate supplementation	Childbearing age, pregnant and lactating women	1692	NA	1.47 (1.31, 1.66)
Red blood cell folate	Folate supplementation	General	1441	NA	1.32 (1.26, 1.39)
Serum/plasma folate	Folate supplementation	Childbearing age, pregnant and lactating women	692	NA	1.47 (1.31, 1.65)
Serum/plasma folate	Folate supplementation	General	2294	NA	1.55 (1.42, 1.70)
Stomatitis	Folate supplementation	Patients receiving methotrexate	302	45	0.89 (0.52, 1.52)
Fotal withdrawals	Folate supplementation	Patients receiving methotrexate	355	89 📥 🏅	0.44 (0.29, 0.65)
Amputation	Folate supplementation	Preexisting diseases	2294	116	2.10(0.20 22.62)
Baseline hyperemic flow	Folate supplementation	Coronary artery disease	187	NA	6 29 (0.00, 240000,00)
Contal Humoralasia index	Folate supplementation	Conoral a tery disease	10/		0.29 (0.00, 240000.00)
Dental hyperplasia index	Forate supplementation	General	20		1.02 (0.05, 1.60)
Dental Plaque index	Folate supplementation	General	28		0.97 (0.43, 2.15)
angival health index	Folate supplementation	General	28		0.99 (0.79, 1.25)
NOTE: Weights are from random effects analysis					
					-

FIGURE 4 | Summary random-effects estimates of all-cause and cause-specific mortality, birth outcomes, pregnancy outcomes, neurocognitive disorders, endothelial function, and other outcomes reported in meta-analyses of randomized controlled trials.

adenomatous lesion, colorectal cancer, coronary artery bypass grafting, diastolic blood pressure (among patients with coronary artery disease), end-diastolic diameter (among patients with coronary artery disease), myocardial infarction (among those with preexisting diseases), amputation, gingival health index, miscarriage, or multiple pregnancy (**Supplementary Figure 3**).

Comparison Findings in Meta-Analysis of Observational Studies and Those of RCTs

One hundred eighty (92.3%) unique meta-analyses examined only observational studies (n = 77) or RCTs (n = 103), so

the evidence from those meta-analyses could not be compared between observational and randomized studies.

Five outcomes from 15 meta-analyses were investigated by meta-analyses of both observational studies (n = 10) and RCTs (n = 5) (**Supplementary Table 10**): cleft palate, neural tube defects, recurrence of neural tube defects, colorectal cancer, and gestational hypertension/preeclampsia. Between meta-analyses of observational studies and those of RCTs, the direction of the association/effect and level of statistical significance were concordant for cleft palate, neural tube defects, and the effects of different folate exposure [dietary folate intake (both case-control and cohort studies), red blood cell folate, circulating folate, and

utcomes	exposure	Population	No of participants	No of cases	Risk Ratio (95% C
ancer outcomes			4000		4 07 (0 00 4 00)
dvanced colocteral lesion	Folate supplementation	Patients with an adenoma history	1922	202	1.07 (0.82, 1.39)
reast cancer	Folate supplementation	Preexisting diseases	19800	203	0.84 (0.63, 1.12)
ancer incidence	Folate supplementation	Preexisting diseases	49621	3713	1.05 (0.97, 1.15)
olorectal adenoma	Folate supplementation	Preexisting diseases	2652	168	1.32 (0.88, 1.97)
olorectal adenoma recurrence	Folate supplementation	General	1486	564	1.08 (0.87, 1.33)
olorectal adenomatous lesion	Folate supplementation for up to 3 years	General	3686	850	1.09 (0.93, 1.28)
olorectal adenomatous lesion	Folate supplementation for over 3 years	General	6736	383	1.34 (1.06, 1.70)
olorectal cancer	Folate supplementation	General	34598	381	1.00 (0.82, 1.22)
aematological cancers	Folate supplementation	Preexisting diseases	NA	NA 🔷	1.16 (0.55, 2.43)
ematological malignancy	Folate supplementation	Preexisting diseases	25670	170	0.70 (0.24, 1.99)
ung Cancer	Folate supplementation	Preexisting diseases	NA	NA 🗕 🔶	1.07 (0.88, 1.29)
lelanoma	Folate supplementation	Preexisting diseases	19128	38	0.51 (0.24, 1.10)
rostate cancer	Folate supplementation	Preexisting diseases	25738	632	1.24 (1.04, 1.49)
ardiovascular outcomes					
ardiovascular disease	Folate supplementation	Preexisting diseases	74346	9739	0.94 (0.90. 0.99)
ardiovascular events	Folate supplementation	Preexisting diseases	57592	9531	0.98 (0.93, 1.03)
arotid intima-media thickness	Folate supplementation	Preexisting diseases	2052	NA 🛋	0.92 (0.89, 0.96)
oranary syndrom	Folate supplementation	Preexisting diseases	19050	3148	0.98 (0.85, 1.14)
oronany artery bypass grafting	Folate supplementation	General	10703	811	0.90 (0.78 1.03)
oronany heart disease	Folate supplementation	Preevicting diseases	78107	5800	1 04 (0 00 1 00)
oronany mean disease	Folate supplementation	General	026	224	1.04 (0.99, 1.09)
oronany resteriosis	Folate supplementation	General	320	224	0.02 (0.02, 0.85)
oronary revascularization	Forate supplementation	General	2/418		0.99 (0.89, 1.11)
iastolic blood pressure	Folate supplementation	Coronary artery disease	23/		1.17 (0.02, 60.47)
lastolic blood pressure	Folate supplementation	Patients with metabolic diseases	262	NA	0.34 (0.06, 1.96)
nd diastolic diameter	Folate supplementation	Coronary artery disease	237		0.95 (0.69, 1.31)
DL–cholesterol	Folate supplementation	Patients with metabolic diseases	492	NA T	1.08 (0.52, 2.23)
eart rate	Folate supplementation	Coronary artery disease	237	NA 🔷	0.49 (0.01, 45.64)
DL–cholesterol	Folate supplementation	Patients with metabolic diseases	432	NA 🔶	0.78 (0.37, 1.64)
lyocardial infarction	Folate supplementation	Preexisting diseases	2917	39923 🔶	0.99 (0.93, 1.07)
ercutaneous coronary intervention	Folate supplementation	General	10703	1592 🛶	0.97 (0.84, 1.13)
rimary cardiovascular clinical end point	Folate supplementation	Preexisting diseases	19497	7265 🔶	1.02 (0.95, 1.09)
evascularization	Folate supplementation	General	29314	2979	1.06 (0.99, 1.13)
evascularization	Folate supplementation	Preexisting diseases	38068	2939	1.10 (0.96, 1.26)
troke	Folate supplementation	Preexisting diseases	82723	3308	0.88 (0.81, 0.97)
vstolic blood pressure	Folate supplementation	Coronary artery disease	237	NA	0.14 (0.00, 246.78
vstolic blood pressure	Folate supplementation	Patients with metabolic diseases	262	NA	0.21 (0.04, 1.18)
otal cholesterol	Folate supplementation	Patients with metabolic diseases	492	NA	1.03 (0.56 1.87)
riglycerides	Folate supplementation	Patients with metabolic diseases	232	NA	0.98 (0.31, 3, 11)
LDL-cholesterol	Folate supplementation	Patients with metabolic diseases	71	NA	1.15 (0.64, 2.19)
iabetes related outcomes					
asting Glucose	Folate supplementation	Metabolic Diseases	521		0.58 (0.32, 1.04)
asting Glucose	Folate supplementation	General	16769		0.36 (0.52, 1.04)
hA1c	Folate supplementation	Metabolic Diseases	10/00		0.50 (0.33, 0.97)
bA1c	Folate supplementation	Gonoral	200		0.39 (0.35, 1.04)
	Folate supplementation	General Tumo 2 diabatas	515		0.74 (0.41, 1.34)
	Folate supplementation	iype 2 diabetes	142		0.51 (0.14, 1.89)
UMA-IK	Folate supplementation	Metabolic Diseases	494		0.15 (0.04, 0.51)
OMA-IR	Folate supplementation	General	435	NA -	0.22 (0.10, 0.51)
isulin	Folate supplementation	Metabolic Diseases	463		0.10 (0.03, 0.36)
OTE: Weighte are from random offt	notate supplementation	General	300		0.05 (0.00, 0.33)
UIE: weights are from random effects ar	laiysis				
				0 1	2

FI randomized controlled trials.

folate supplementation] on colorectal cancer. The direction of the association/effect but not the level of statistical significance was concordant for gestational hypertension/preeclampsia and the recurrence of neural tube defects among women with a previous pregnancy with indicators of neural tube defects. In addition, the pooled results of the effect of total folate intake on colorectal cancer from observational studies were also discordant with those from RCTs both in direction and the level of significance.

DISCUSSION

In this study, we first provided an overview and appraisal of the relationships between folate exposure and a wide range of health outcomes. We found that folate is more often associated with benefit than harm for a range of health outcomes across multiple measures of exposure, including folate intake, folate supplementation, and folate concentration. Overall, we observed the beneficial effects of folate intake/level/supplementation on all-cause mortality and a number of chronic diseases, including cancers, CVD, and metabolic-related outcomes, as well as several birth outcomes. However, adverse effects of supplemented/serum folate were observed on prostate cancer, colorectal adenomatous lesion, asthma or wheezing, and wheezing as an isolated symptom.

The beneficial effects of folate on the aforementioned health outcomes might be explained by a number of plausible mechanisms. First, folate is the cofactor for methionine synthase, which catalyzes the conversion of homocysteine, and folate levels are therefore inversely associated with homocysteine levels (119, 120). Hyperhomocysteinemia has been found to be associated with higher risks of some birth/pregnancy outcomes (121–123), cancers (124–126), CVD (127), and neurological conditions (128, 129). Second, the polymorphisms of 5,10methylenetetrahydrofolate reductase, which are critical junctions in the folate-metabolizing pathway via their role of guiding folate metabolites to the DNA methylation pathway and away from the DNA synthesis pathway, may modulate the susceptibility of subjects to several birth/pregnancy outcomes (130–132), cancers (133, 134), CVD (135), and neurological conditions (136).

The evidence on the association of folate with the all-cause mortality rate in the general population remains controversial. Several studies have demonstrated that folate supplementation could reduce the risk of CVD-related death, which might be attributable to serum homocysteine reduction (137). In contrast, Ebbing et al. reported that folate treatment was associated with increased risks of cancer outcomes and allcause mortality in patients with ischemic heart disease (138). Excess folic acid intake may stimulate the growth of established neoplasms in experimental animals (139). As such, establishing the appropriate range of folate dosage might be crucial to balance the benefits against the risks and allow us to more accurately study the associations of folate with all-cause or causerelated mortality.

Other than the reasons mentioned above, the associations between folate and cancers may also be explained by two further mechanisms: (1) folate deficiency may induce complete transformation of deoxyuridylate monophosphate to deoxythymidylate monophosphate, which induces misincorporation of uracil into DNA and leads to chromosomal breaks and mutations (140, 141); and/or (2) folate deficiency may cause abnormal methylation of DNA, leading to alterations in expression of critical protooncogenes and tumor suppressor genes (142, 143). Experiments *in vivo* on mice and dogs have suggested that increased folate intake altered DNA methylation and in turn reduced the risks of cancers (144, 145).

Studies have suggested that folate can also prevent and reverse endothelial dysfunction (146, 147), which is an important risk factor for CVD (148, 149). Folate may improve the bioavailability of nitric oxide (NO) by increasing endothelial NO synthase coupling and NO production and by directly scavenging superoxide radicals (150, 151). By enhancing NO bioavailability, folate may improve endothelial function, thereby preventing or reversing the progression of CVD (147).

In contrast to its many beneficial effects, we observed adverse effects of folate on prostate cancer, colorectal adenomatous lesion, asthma or wheezing, and wheezing as an isolated symptom. For the adverse effect of folate on increased risk of prostate cancer/asthma, we found that the significant associations were both driven by one individual study. And the removal of these two influential studies from the respective meta-analysis resulted in non-significant results. However, the assessment of New Castle–Ottawa scale suggested that both of these two studies were with low risks of bias (i.e., scored 7–9 out of 10, data not shown). We thus speculate that the inconsistent findings across the included studies may be ascribed to the heterogeneity of population and study design. Further meta-analyses with larger sample size are warranted to verify these associations. For the association between folate and increased risk of colorectal adenomatous lesion, the most likely explanation is that undiscovered early precursor lesions might have existed in the mucosa of these patients, and folate could have accelerated the proliferation and growth of these paraneoplastic lesions.

We found high-quality evidence that folate supplementation was associated with a lower risk of several birth/pregnancy outcomes (neural tube defects, megaloblastic anemia, elective termination of pregnancy for fetal anomalies, small for gestational age, non-syndromic cleft lip with or without cleft palate, gestational hypertension/preeclampsia, and low predelivery serum folate), decreased scores on the Hamilton Depression Rating Scale (in a population with depressive disorder) and levels of plasma homocysteine, and increased serum/plasma folate. Although the meta-analyses of these outcomes might still be subject to potential biases, such as those without a preregistered protocol and the presence of high heterogeneity (for outcomes of small for gestational age and serum/plasma folate), our results are encouraging enough to verify the recommendation that women of child-bearing age should take folate supplementation to prevent adverse birth/pregnancy outcomes.

We found moderate-quality evidence from meta-analyses of observational studies that serum folate was associated with a higher risk of prostate cancer, which is consistent with the high-quality evidence from meta-analyses of RCT that folate supplementation was associated with increased risk of prostate cancer. The potential mechanism of folate in the development of this cancer is unclear. *In vitro* models using human prostate tissue have shown enhanced proliferation of tumor cells under conditions of elevated folate concentrations (152). Elsewhere, mice with transgenic adenoma of mouse prostate (TRAMP) that were fed a folate-depleted diet had lower cellular proliferation than mice with TRAMP fed a normal or high-folate diet (153).

In this umbrella review, the specific trends of relationships between folate and increased risks of neurocognitive disorders (such as cognitive impairment, Alzheimer disease, and depression) were also observed. The proposed mechanisms through which folate affects these diseases include suppression of DNA methylation and reduction of tetrahydrobiopterin levels, hyperhomocysteinemia, and excessive mis-incorporation of uracil into DNA (154). In contrast to the evidence that folate supplementation reduced the risk of stroke, the effect of folate on improving cognitive function or slowing cognitive decline in healthy or cognitively impaired older individuals was inconclusive (155). Prospective studies are strongly warranted to cover this knowledge gap.

Strengths and Limitations

This umbrella review has several strengths. First, we are the first to summarize the evidence for the associations between folate intake/levels and a wide range of healthrelated outcomes by incorporating information from published meta-analyses of observational studies or RCTs. Second, we used systematic methods that included a robust search strategy of three scientific literature databases and independent study selection and extraction by two investigators. When possible, we repeated each meta-analysis with a standardized approach that included the use of random-effects analysis and produced measures of heterogeneity and publication bias to allow better comparison across outcomes. We also used standard approaches to assess the quality of methods (AMSTAR 2) and the quality of evidence (GRADE) of the included meta-analyses.

Our study should also be interpreted cautiously with several limitations. First, the credibility assessment method was based on established tools for observational evidence, which are susceptible to bias and uncertainty. Another limitation of the umbrella review approach is the use of existing meta-analyses. Meta-analyses are known to have important limitations, such as limited coverage of the literature search, quality of included studies, and selective outcome reporting.

CONCLUSIONS

Our umbrella review found high- and moderate-quality evidence for the effect of folate on health outcomes such as mortality, cancers, CVD, and metabolic-related outcomes, as well as several birth outcomes. Therefore, our results support the current recommendation of daily folate supplementation for preventing adverse birth/pregnancy outcomes, cardiovascular and metabolic disease, and other disease. Further RCTs with large sample sizes are warranted to confirm these observed findings and to study the

REFERENCES

- Plumptre L, Masih SP, Ly A, Aufreiter S, Sohn KJ, Croxford R, et al. High concentrations of folate and unmetabolized folic acid in a cohort of pregnant Canadian women and umbilical cord blood. *Am J Clin Nutr.* (2015) 102:848–57. doi: 10.3945/ajcn.115.110783
- Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. *Int J Evid Based Healthc.* (2015) 13:132–40. doi: 10.1097/XEB.00000000000055
- 3. Kalliala I, Markozannes G, Gunter MJ, Paraskevaidis E, Gabra H, Mitra A, et al. Obesity and gynaecological and obstetric conditions: umbrella review of the literature. *BMJ*. (2017) 359:j4511. doi: 10.1136/bmj.j4511
- Jackson D, Bowden J. A re-evaluation of the 'quantile approximation method' for random effects meta-analysis. *Stat Med.* (2009) 28:338–48. doi: 10.1002/sim.3487
- Higgins JP. Commentary: heterogeneity in meta-analysis should be expected and appropriately quantified. *Int J Epidemiol.* (2008) 37:1158-60. doi: 10.1093/ije/dyn204
- 6. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant findings. *Clin Trials.* (2007) 4:245–53. doi: 10.1177/1740774507079441
- Egger M, Davey Smith G, Schneider M, Minder C. Bias in metaanalysis detected by a simple, graphical test. *BMJ*. (1997) 315:629–34. doi: 10.1136/bmj.315.7109.629
- 8. Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or

concentration-response relationships between folate exposure and health outcomes.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

ZY was the project lead for the current study. YBo and YZ searched databases and screened the articles. YBo and YT extracted the data. YBo, XL, and YZ conducted statistical analysis. YBo wrote the manuscript. DZ, YBu, ZW, LW, and ZY reviewed and revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the National Natural Science Foundation of China No. 21577119. The funder was not involved in the design of the study and collection, analysis and interpretation of data, and in writing the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpubh. 2020.550753/full#supplementary-material

non-randomised studies of healthcare interventions, or both. BMJ.~(2017)358:j4008. doi: 10.1136/bmj.j4008

- Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol. (2011) 64:383–94. doi: 10.1016/j.jclinepi.2010.04.026
- Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. *J Clin Epidemiol.* (2011) 64:401–6. doi: 10.1016/j.jclinepi.2010.07.015
- Badovinac RL, Werler MM, Williams PL, Kelsey KT, Hayes C. Folic acidcontaining supplement consumption during pregnancy and risk for oral clefts: a meta-analysis. *Birth Defects Res A Clin Mol Teratol.* (2007) 79:8–15. doi: 10.1002/bdra.20315
- Bailie L, Loughrey MB, Coleman HG. Lifestyle risk factors for serrated colorectal polyps: a systematic review and meta-analysis. *Gastroenterology*. (2017) 152:92–104. doi: 10.1053/j.gastro.2016.09.003
- Blencowe H, Cousens S, Modell B, Lawn J. Folic acid to reduce neonatal mortality from neural tube disorders. *Int J Epidemiol.* (2010) 39(Suppl. 1):i110–21. doi: 10.1093/ije/dyq028
- Burr NE, Hull MA, Subramanian V. Folic acid supplementation may reduce colorectal cancer risk in patients with inflammatory bowel disease: a systematic review and meta-analysis. *J Clin Gastroenterol.* (2017) 51:247–53. doi: 10.1097/MCG.00000000000498
- Chen P, Li C, Li X, Li J, Chu R, Wang H. Higher dietary folate intake reduces the breast cancer risk: a systematic review and meta-analysis. *Br J Cancer*. (2014) 110:2327–38. doi: 10.1038/bjc.2014.155

- Chuang SC, Rota M, Gunter MJ, Zeleniuch-Jacquotte A, Eussen SJ, Vollset SE, et al. Quantifying the dose-response relationship between circulating folate concentrations and colorectal cancer in cohort studies: a meta-analysis based on a flexible meta-regression model. *Am J Epidemiol.* (2013) 178:1028– 37. doi: 10.1093/aje/kwt083
- Collin SM, Metcalfe C, Refsum H, Lewis SJ, Zuccolo L, Smith GD, et al. Circulating folate, vitamin B12, homocysteine, vitamin B12 transport proteins, and risk of prostate cancer: a case-control study, systematic review, and meta-analysis. *Cancer Epidemiol Biomarkers Prev.* (2010) 19:1632–42. doi: 10.1158/1055-9965.EPI-10-0180
- Crider KS, Cordero AM, Qi YP, Mulinare J, Dowling NF, Berry RJ. Prenatal folic acid and risk of asthma in children: a systematic review and metaanalysis. *Am J Clin Nutr.* (2013) 98:1272–81. doi: 10.3945/ajcn.113.065623
- Dai WM, Yang B, Chu XY, Wang YQ, Zhao M, Chen L, et al. Association between folate intake, serum folate levels and the risk of lung cancer: a systematic review and meta-analysis. *Chin Med J.* (2013) 126:1957–64. doi: 10.3760/cma.j.issn.0366-6999.20130391
- Dean SV, Lassi ZS, Imam AM, Bhutta ZA. Preconception care: nutritional risks and interventions. *Reprod Health.* (2014) 11(Suppl. 3):S3. doi: 10.1186/1742-4755-11-S3-S3
- Du L, Wang Y, Zhang H, Zhang H, Gao Y. Folate intake and the risk of endometrial cancer: a meta-analysis. *Oncotarget.* (2016) 7:85176–84. doi: 10.18632/oncotarget.13211
- Fan C, Yu S, Zhang S, Ding X, Su J, Cheng Z. Association between folate intake and risk of head and neck squamous cell carcinoma: an overall and dose-response PRISMA meta-analysis. *Medicine*. (2017) 96:e8182. doi: 10.1097/MD.00000000008182
- Feng Y, Wang S, Chen R, Tong X, Wu Z, Mo X. Maternal folic acid supplementation and the risk of congenital heart defects in offspring: a metaanalysis of epidemiological observational studies. *Sci Rep.* (2015) 5:8506. doi: 10.1038/srep08506
- Gilbody S, Lightfoot T, Sheldon T. Is low folate a risk factor for depression? A meta-analysis and exploration of heterogeneity. *J Epidemiol Commun Health*. (2007) 61:631–7. doi: 10.1136/jech.2006.050385
- He H, Shui B. Folate intake and risk of bladder cancer: a metaanalysis of epidemiological studies. *Int J Food Sci Nutr.* (2014) 65:286–92. doi: 10.3109/09637486.2013.866641
- Heine-Broring RC, Winkels RM, Renkema JM, Kragt L, van Orten-Luiten AC, Tigchelaar EF, et al. Dietary supplement use and colorectal cancer risk: a systematic review and meta-analyses of prospective cohort studies. *Int J Cancer.* (2015) 136:2388–401. doi: 10.1002/ijc.29277
- 27. Hodgetts VA, Morris RK, Francis A, Gardosi J, Ismail KM. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: a population study, systematic review and meta-analysis. *BJOG.* (2015) 122:478–90. doi: 10.1111/1471-0528. 13202
- Hua X, Zhang J, Guo Y, Shen M, Gaudet L, Janoudi G, et al. Effect of folic acid supplementation during pregnancy on gestational hypertension/preeclampsia: a systematic review and meta-analysis. *Hypertens Pregnancy*. (2016) 35:447–60. doi: 10.1080/10641955.2016.1183673
- Imdad A, Yakoob MY, Bhutta ZA. The effect of folic acid, protein energy and multiple micronutrient supplements in pregnancy on stillbirths. *BMC Public Health.* (2011) 11(Suppl. 3):S4. doi: 10.1186/1471-2458-11-S3-S4
- Johnson CY, Little J. Folate intake, markers of folate status and oral clefts: is the evidence converging? *Int J Epidemiol.* (2008) 37:1041–58. doi: 10.1093/ije/dyn098
- Kennedy DA, Stern SJ, Moretti M, Matok I, Sarkar M, Nickel C, et al. Folate intake and the risk of colorectal cancer: a systematic review and metaanalysis. *Cancer Epidemiol.* (2011) 35:2–10. doi: 10.1016/j.canep.2010.11.004
- 32. Kim DH, Smith-Warner SA, Spiegelman D, Yaun SS, Colditz GA, Freudenheim JL, et al. Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. *Cancer Causes Control.* (2010) 21:1919–30. doi: 10.1007/s10552-010-9620-8
- Larsson SC, Giovannucci E, Wolk A. Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. *Gastroenterology.* (2006) 131:1271–83. doi: 10.1053/j.gastro.2006. 08.010

- Larsson SC, Giovannucci E, Wolk A. Folate and risk of breast cancer: a meta-analysis. JNCI. (2007) 99:64–76. doi: 10.1093/jnci/djk006
- Lewis SJ, Harbord RM, Harris R, Smith GD. Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk. J Natl Cancer Inst. (2006) 98:1607–22. doi: 10.1093/jnci/djj440
- Li B, Lu Y, Wang L, Zhang CX. Folate intake and breast cancer prognosis: a meta-analysis of prospective observational studies. *Eur J Cancer Prev.* (2015) 24:113–21. doi: 10.1097/CEJ.000000000000028
- 37. Li C, Chen P, Hu P, Li M, Li X, Guo H, et al. Folate intake and MTHFR polymorphism C677T is not associated with ovarian cancer risk: evidence from the meta-analysis. *Mol Biol Rep.* (2013) 40:6547–60. doi: 10.1007/s11033-013-2686-0
- Lin HL, An QZ, Wang QZ, Liu CX. Folate intake and pancreatic cancer risk: an overall and dose-response meta-analysis. *Public Health.* (2013) 127:607–13. doi: 10.1016/j.puhe.2013.04.008
- 39. Liu M, Cui LH, Ma AG, Li N, Piao JM. Lack of effects of dietary folate intake on risk of breast cancer: an updated meta-analysis of prospective studies. *Asian Pac J Cancer Prev.* (2014) 15:2323–8. doi: 10.7314/APJCP.2014.15.5.2323
- Liu W, Zhou H, Zhu Y, Tie C. Associations between dietary folate intake and risks of esophageal, gastric and pancreatic cancers: an overall and dose-response meta-analysis. *Oncotarget.* (2017) 8:86828–42. doi: 10.18632/oncotarget.18775
- 41. Liu Y, Yu Q, Zhu Z, Zhang J, Chen M, Tang P, et al. Vitamin and multiple-vitamin supplement intake and incidence of colorectal cancer: a meta-analysis of cohort studies. *Med Oncol.* (2015) 32:434. doi: 10.1007/s12032-014-0434-5
- Liu YX, Wang B, Wan MH, Tang WF, Huang FK, Li C. Meta-analysis of the relationship between the metholenetetrahydrofolate reductase C677T genetic polymorphism, folate intake and esophageal cancer. Asian Pac J Cancer Prev. (2011) 12:247–52.
- Mao B, Li Y, Zhang Z, Chen C, Chen Y, Ding C, et al. One-carbon metabolic factors and risk of renal cell cancer: a meta-analysis. *PLoS ONE.* (2015) 10:e0141762. doi: 10.1371/journal.pone.0141762
- 44. Michelakos T, Kousoulis AA, Katsiardanis K, Dessypris N, Anastasiou A, Katsiardani KP, et al. Serum folate and B12 levels in association with cognitive impairment among seniors: results from the VELESTINO study in Greece and meta-analysis. *J Aging Health.* (2013) 25:589–616. doi: 10.1177/0898264313482488
- Millacura N, Pardo R, Cifuentes L, Suazo J. Effects of folic acid fortification on orofacial clefts prevalence: a meta-analysis. *Public Health Nutr.* (2017) 20:2260–8. doi: 10.1017/S1368980017000878
- 46. Milne E, Royle JA, Miller M, Bower C, de Klerk NH, Bailey HD, et al. Maternal folate and other vitamin supplementation during pregnancy and risk of acute lymphoblastic leukemia in the offspring. *Int J Cancer.* (2010) 126:2690–9. doi: 10.1002/ijc.24969
- 47. Moazzen S, Dolatkhah R, Tabrizi JS, Shaarbafi J, Alizadeh BZ, de Bock GH, et al. Folic acid intake and folate status and colorectal cancer risk: a systematic review and meta-analysis. *Clin Nutr.* (2017) 37(6 Pt A):1926–34. doi: 10.1016/j.clnu.2017.10.010
- Myung SK, Ju W, Kim SC, Kim H. Vitamin or antioxidant intake (or serum level) and risk of cervical neoplasm: a meta-analysis. *BJOG*. (2011) 118:1285–91. doi: 10.1111/j.1471-0528.2011.03032.x
- Park YM, Youn J, Cho CH, Kim SH, Lee JE. Circulating folate levels and colorectal adenoma: a case-control study and a meta-analysis. *Nutr Res Pract.* (2017) 11:419–29. doi: 10.4162/nrp.2017.11.5.419
- Petridou ET, Kousoulis AA, Michelakos T, Papathoma P, Dessypris N, Papadopoulos FC, et al. Folate and B12 serum levels in association with depression in the aged: a systematic review and meta-analysis. *Aging Ment Health.* (2016) 20:965–73. doi: 10.1080/13607863.2015.1049115
- 51. Price AJ, Travis RC, Appleby PN, Albanes D, Barricarte Gurrea A, Bjorge T, et al. Circulating folate and Vitamin B12 and risk of prostate cancer: a collaborative analysis of individual participant data from six cohorts including 6875 Cases and 8104 Controls. (2016) *Eur Urol.* 70:941–51. doi: 10.1016/j.eururo.2016.05.024
- Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. Folate intake and colorectal cancer risk: a meta-analytical approach. *Int J Cancer*. (2005) 113:825–8. doi: 10.1002/ijc.20648

- Shen L. Associations between B Vitamins and Parkinson's Disease. Nutrients. (2015) 7:7197–208. doi: 10.3390/nu7095333
- Shen L, Ji HF. Associations between homocysteine, folic acid, Vitamin B12 and Alzheimer's disease: insights from meta-analyses. J Alzheimers Dis. (2015) 46:777–90. doi: 10.3233/JAD-150140
- Tio M, Andrici J, Cox MR, Eslick GD. Folate intake and the risk of upper gastrointestinal cancers: a systematic review and meta-analysis. J Gastroenterol Hepatol. (2014) 29:250–8. doi: 10.1111/jgh.12446
- Tio M, Andrici J, Cox MR, Eslick GD. Folate intake and the risk of prostate cancer: a systematic review and meta-analysis. *Prostate Cancer Prostatic Dis.* (2014) 17:213–9. doi: 10.1038/pcan.2014.16
- 57. Tio M, Andrici J, Eslick GD. Folate intake and the risk of breast cancer: a systematic review and meta-analysis. *Breast Cancer Res Treat.* (2014) 145:513–24. doi: 10.1007/s10549-014-2969-8
- Wang M, Li K, Zhao D, Li L. The association between maternal use of folic acid supplements during pregnancy and risk of autism spectrum disorders in children: a meta-analysis. *Mol Autism.* (2017) 8:51. doi: 10.1186/s13229-017-0170-8
- Wang R, Zheng Y, Huang JY, Zhang AQ, Zhou YH, Wang JN. Folate intake, serum folate levels, and prostate cancer risk: a meta-analysis of prospective studies. *BMC Public Health*. (2014) 14:1326. doi: 10.1186/1471-2458-14-1326
- Wang T, Zhang HP, Zhang X, Liang ZA, Ji YL, Wang G. Is folate status a risk factor for asthma or other allergic diseases? *Allergy Asthma Immunol Res.* (2015) 7:538–46. doi: 10.4168/aair.2015.7.6.538
- Wang ZM, Zhou B, Nie ZL, Gao W, Wang YS, Zhao H, et al. Folate and risk of coronary heart disease: a meta-analysis of prospective studies. *Nutr Metab Cardiovasc Dis.* (2012) 22:890–9. doi: 10.1016/j.numecd.2011. 04.011
- Wien TN, Pike E, Wisloff T, Staff A, Smeland S, Klemp M. Cancer risk with folic acid supplements: a systematic review and meta-analysis. *BMJ Open*. (2012) 2:e000653. doi: 10.1136/bmjopen-2011-000653
- 63. Xu A, Cao X, Lu Y, Li H, Zhu Q, Chen X, et al. A meta-analysis of the relationship between maternal folic acid supplementation and the risk of congenital heart defects. *Int Heart J.* (2016) 57:725–728. doi: 10.1536/ihj.16-054
- 64. Yang X, Chen H, Du Y, Wang S, Wang Z. Periconceptional folic acid fortification for the risk of gestational hypertension and pre-eclampsia: a meta-analysis of prospective studies. *Matern Child Nutr.* (2016) 12:669–79. doi: 10.1111/mcn.12209
- 65. Zhang Q, Wang Y, Xin X, Zhang Y, Liu D, Peng Z, et al. Effect of folic acid supplementation on preterm delivery and small for gestational age births: a systematic review and meta-analysis. *Reprod Toxicol.* (2017) 67:35–41. doi: 10.1016/j.reprotox.2016.11.012
- Zhang YF, Shi WW, Gao HF, Zhou L, Hou AJ, Zhou YH. Folate intake and the risk of breast cancer: a dose-response meta-analysis of prospective studies. *PLoS ONE.* (2014) 9:e100044. doi: 10.1371/journal.pone. 0100044
- Zhang YF, Zhou L, Zhang HW, Hou AJ, Gao HF, Zhou YH. Association between folate intake and the risk of lung cancer: a dose-response meta-analysis of prospective studies. *PLoS ONE.* (2014) 9:e93465. doi: 10.1371/journal.pone.0093465
- Zhao Y, Guo C, Hu H, Zheng L, Ma J, Jiang L, et al. Folate intake, serum folate levels and esophageal cancer risk: an overall and dose-response meta-analysis. *Oncotarget.* (2017) 8:10458–69. doi: 10.18632/oncotarget. 14432
- Zhou X, Meng Y. Association between serum folate level and cervical cancer: a meta-analysis. Arch Gynecol Obstet. (2016) 293:871–7. doi: 10.1007/s00404-015-3852-5
- Ni Y, Du J, Yin X, Lu M. Folate intake, serum folate, and risk of esophageal cancer: a systematic review and dose-response meta-analysis. *Eur J Cancer Prev.* (2018) 28:173–80. doi: 10.1097/CEJ.00000000000441
- Jahanbin A, Shadkam E, Miri HH, Shirazi AS, Abtahi M. Maternal folic acid supplementation and the risk of oral clefts in offspring. *J Craniofac Surg.* (2018) 29:e534–41. doi: 10.1097/SCS.00000000004488
- Yang L, Jiang L, Bi M, Jia X, Wang Y, He C, et al. High dose of maternal folic acid supplementation is associated to infant asthma. *Food Chem Toxicol.* (2015) 75:88–93. doi: 10.1016/j.fct.2014.11.006

- Homocysteine Lowering Trialists' Collaboration. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a metaanalysis of the randomized trials. *Am J Clin Nutr.* (2005) 82:806–12. doi: 10.1093/ajcn/82.4.806
- Baggott JE, Oster RA, Tamura T. Meta-analysis of cancer risk in folic acid supplementation trials. *Cancer Epidemiol.* (2012) 36:78–81. doi: 10.1016/j.canep.2011.05.003
- Bazzano LA, Reynolds K, Holder KN, He J. Effect of folic acid supplementation on risk of cardiovascular diseases: a metaanalysis of randomized controlled trials. *JAMA*. (2006) 296:2720–6. doi: 10.1001/jama.296.22.2720
- Berti C, Fekete K, Dullemeijer C, Trovato M, Souverein OW, Cavelaars A, et al. Folate intake and markers of folate status in women of reproductive age, pregnant and lactating women: a meta-analysis. J Nutr Metab. (2012) 2012:470656. doi: 10.1155/2012/470656
- 77. Carroll C, Cooper K, Papaioannou D, Hind D, Tappenden P, Pilgrim H, et al. Meta-analysis: folic acid in the chemoprevention of colorectal adenomas and colorectal cancer. *Aliment Pharmacol Ther.* (2010) 31:708–18. doi: 10.1111/j.1365-2036.2010.04238.x
- Clarke R, Armitage J. Vitamin supplements and cardiovascular risk: review of the randomized trials of homocysteine-lowering vitamin supplements. *Semin Thromb Hemost.* (2000) 26:341–8. doi: 10.1055/s-2000-8101
- de Bree, van Mierlo LA, Draijer R. Folic acid improves vascular reactivity in humans: a meta-analysis of randomized controlled trials. *Am J Clin Nutr.* (2007) 86:610–7. doi: 10.1093/ajcn/86.3.610
- de-Regil LM, Pena-Rosas JP, Fernandez-Gaxiola AC, Rayco-Solon P. Effects and safety of periconceptional oral folate supplementation for preventing birth defects. *Cochrane Database Syst Rev.* (2015) 12:Cd007950. doi: 10.1002/14651858.CD007950.pub3
- Duffy ME, Hoey L, Hughes CF, Strain JJ, Rankin A, Souverein OW, et al. Biomarker responses to folic acid intervention in healthy adults: a metaanalysis of randomized controlled trials. *Am J Clin Nutr.* (2014) 99:96–106. doi: 10.3945/ajcn.113.062752
- Fekete K, Berti C, Trovato M, Lohner S, Dullemeijer C, Souverein OW, et al. Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. *Nutr J.* (2012) 11:75. doi: 10.1186/1475-2891-11-75
- Fife J, Raniga S, Hider PN, Frizelle FA. Folic acid supplementation and colorectal cancer risk: a meta-analysis. *Colorectal Dis.* (2011) 13:132–7. doi: 10.1111/j.1463-1318.2009.02089.x
- Figueiredo JC, Mott LA, Giovannucci E, Wu K, Cole B, Grainge MJ, et al. Folic acid and prevention of colorectal adenomas: a combined analysis of randomized clinical trials. *Int J Cancer.* (2011) 129:192–203. doi: 10.1002/ijc.25872
- Huo Y, Qin X, Wang J, Sun N, Zeng Q, Xu X, et al. Efficacy of folic acid supplementation in stroke prevention: new insight from a meta-analysis. *Int J Clin Pract.* (2012) 66:544–51. doi: 10.1111/j.1742-1241.2012.02929.x
- Ibrahim EM, Zekri JM. Folic acid supplementation for the prevention of recurrence of colorectal adenomas: metaanalysis of interventional trials. *Med Oncol.* (2010) 27:915–8. doi: 10.1007/s12032-009-9306-9
- Lassi ZS, Salam RA, Haider BA, Bhutta ZA. Folic acid supplementation during pregnancy for maternal health and pregnancy outcomes. *Cochrane Database Syst Rev.* (2013) Cd006896. doi: 10.1002/14651858.CD006896.pub2
- Lee M, Hong K-S, Chang S-C, Saver JL. Efficacy of homocysteine lowering therapy with folic acid in stroke prevention: a meta-analysis. *Stroke*. (2010) 41:1205–12. doi: 10.1161/STROKEAHA.109.573410
- 89. Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB. Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. *J Am Heart Assoc.* (2016) 15:e003768. doi: 10.1161/JAHA.116.003768
- McRae MP. High-dose folic acid supplementation effects on endothelial function and blood pressure in hypertensive patients: a meta-analysis of randomized controlled clinical trials. J Chiropr Med. (2009) 8:15–24. doi: 10.1016/j.jcm.2008.09.001
- Miller ER, 3rd, Juraschek S, Pastor-Barriuso R, Bazzano LA, Appel LJ, Guallar E. Meta-analysis of folic acid supplementation trials on risk of cardiovascular disease and risk interaction with baseline homocysteine levels. *Am J Cardiol.* (2010) 106:517–27. doi: 10.1016/j.amjcard.2010.03.064

- Myung SK, Ju W, Cho B, Oh SW, Park SM, Koo BK, et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. *BMJ.* (2013) 346:f10. doi: 10.1136/bmj.f10
- Qin T, Du M, Du H, Shu Y, Wang M, Zhu L. Folic acid supplements and colorectal cancer risk: meta-analysis of randomized controlled trials. *Sci Rep.* (2015) 5:12044. doi: 10.1038/srep12044
- Qin X, Cui Y, Shen L, Sun N, Zhang Y, Li J, et al. Folic acid supplementation and cancer risk: a meta-analysis of randomized controlled trials. *Int J Cancer*. (2013) 133:1033–41. doi: 10.1002/ijc.28038
- 95. Qin X, Fan F, Cui Y, Chen F, Chen Y, Cheng X, et al. Folic acid supplementation with and without vitamin B6 and revascularization risk: a meta-analysis of randomized controlled trials. *Clin Nutr.* (2014) 33:603–12. doi: 10.1016/j.clnu.2014.01.006
- 96. Qin X, Huo Y, Langman CB, Hou F, Chen Y, Matossian D, et al. Folic acid therapy and cardiovascular disease in ESRD or advanced chronic kidney disease: a meta-analysis. *Clin J Am Soc Nephrol.* (2011) 6:482–8. doi: 10.2215/CJN.05310610
- 97. Qin X, Xu M, Zhang Y, Li J, Xu X, Wang X, et al. Effect of folic acid supplementation on the progression of carotid intima-media thickness: a meta-analysis of randomized controlled trials. *Atherosclerosis.* (2012) 222:307–13. doi: 10.1016/j.atherosclerosis.2011.12.007
- Ranganathan LN, Ramaratnam S. Vitamins for epilepsy. *Cochrane Database* Syst Rev. (2005) 2:CD004304. doi: 10.1002/14651858.CD004304.pub2
- Saccone G, Berghella V. Folic acid supplementation in pregnancy to prevent preterm birth: a systematic review and meta-analysis of randomized controlled trials. *Eur J Obstet Gynecol Reprod Biol.* (2016) 199:76–81. doi: 10.1016/j.ejogrb.2016.01.042
- Schefft C, Kilarski LL, Bschor T, Kohler S. Efficacy of adding nutritional supplements in unipolar depression: a systematic review and meta-analysis. *Eur Neuropsychopharmacol.* (2017) 27:1090–109. doi: 10.1016/j.euroneuro.2017.07.004
- 101. Schwingshackl L, Boeing H, Stelmach-Mardas M, Gottschald M, Dietrich S, Hoffmann G, et al. Dietary supplements and risk of cause-specific death, cardiovascular disease, and cancer: a systematic review and meta-analysis of primary prevention trials. *Adv Nutr.* (2017) 8:27–39. doi: 10.3945/an.116.013516
- 102. Shea B, Swinden MV, Tanjong Ghogomu E, Ortiz Z, Katchamart W, Rader T, et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. *Cochrane Database Syst Rev.* (2013) 5:CD000951. doi: 10.1002/14651858.CD000951.pub2
- 103. Sudchada P, Saokaew S, Sridetch S, Incampa S, Jaiyen S, Khaithong W. Effect of folic acid supplementation on plasma total homocysteine levels and glycemic control in patients with type 2 diabetes: a systematic review and meta-analysis. *Diabetes Res Clin Pract.* (2012) 98:151–8. doi: 10.1016/j.diabres.2012.05.027
- 104. Tabrizi R, Lankarani KB, Akbari M, Naghibzadeh-Tahami A, Alizadeh H, Honarvar B, et al. The effects of folate supplementation on lipid profiles among patients with metabolic diseases: a systematic review and metaanalysis of randomized controlled trials. *Diabetes Metab Syndr.* (2018) 12:423–30. doi: 10.1016/j.dsx.2017.12.022
- 105. Taylor MJ, Carney SM, Goodwin GM, Geddes JR. Folate for depressive disorders: systematic review and meta-analysis of randomized controlled trials. J Psychopharmacol. (2004) 18:251–6. doi: 10.1177/0269881104042630
- Tian T, Yang KQ, Cui JG, Zhou LL, Zhou XL. Folic acid supplementation for stroke prevention in patients with cardiovascular disease. *Am J Med Sci.* (2017) 354:379–87. doi: 10.1016/j.amjms.2017.05.020
- 107. van Dijk M, Pot GK. The effects of nutritional interventions on recurrence in survivors of colorectal adenomas and cancer: a systematic review of randomised controlled trials. *Eur J Clin Nutr.* (2016) 70:566–73. doi: 10.1038/ejcn.2015.210
- 108. Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J, Lonn E, et al. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50 000 individuals. *Lancet.* (2013) 381:1029–36. doi: 10.1016/S0140-6736(12) 62001-7
- 109. Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized

trials. Am J Med. (2010) 123:522-7.e2. doi: 10.1016/j.amjmed.2010. 01.017

- 110. Wang X, Qin X, Demirtas H, Li J, Mao G, Huo Y, et al. Efficacy of folic acid supplementation in stroke prevention: a meta-analysis. *Lancet.* (2007) 369:1876–82. doi: 10.1016/S0140-6736(07)60854-X
- 111. Yang HT, Lee M, Hong KS, Ovbiagele B, Saver JL. Efficacy of folic acid supplementation in cardiovascular disease prevention: an updated metaanalysis of randomized controlled trials. *Eur J Intern Med.* (2012) 23:745–54. doi: 10.1016/j.ejim.2012.07.004
- 112. Yi X, Zhou Y, Jiang D, Li X, Guo Y, Jiang X. Efficacy of folic acid supplementation on endothelial function and plasma homocysteine concentration in coronary artery disease: a meta-analysis of randomized controlled trials. *Exp Ther Med.* (2014) 7:1100–10. doi: 10.3892/etm.2014.1553
- Zhao M, Wu G, Li Y, Wang X, Hou FF, Xu X, et al. Meta-analysis of folic acid efficacy trials in stroke prevention: insight into effect modifiers. *Neurology*. (2017) 88:1830–8. doi: 10.1212/WNL.00000000003909
- Zhou YH, Tang JY, Wu MJ, Lu J, Wei X, Qin YY, et al. Effect of folic acid supplementation on cardiovascular outcomes: a systematic review and metaanalysis. *PLoS ONE*. (2011) 6:e25142. doi: 10.1371/journal.pone.0025142
- Roberts E, Carter B, Young AH. Caveat emptor: folate in unipolar depressive illness, a systematic review and meta-analysis. J Psychopharmacol. (2018) 32:377–384. doi: 10.1177/0269881118756060
- 116. Akbari M, Tabrizi R, Lankarani KB, Heydari ST, Karamali M, Kashanian M, et al. The effects of folate supplementation on diabetes biomarkers among patients with metabolic diseases: a systematic review and meta-analysis of randomized controlled trials. *Horm Metab Res.* (2018) 50:93–105. doi: 10.1055/s-0043-125148
- 117. Zhao JV, Schooling CM, Zhao JX. The effects of folate supplementation on glucose metabolism and risk of type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. *Ann Epidemiol.* (2018) 28:249–57.e1. doi: 10.1016/j.annepidem.2018.02.001
- 118. Hsu CY, Chiu SW, Hong KS, Saver JL, Wu YL, Lee JD, et al. Folic acid in stroke prevention in countries without mandatory folic acid food fortification: a meta-analysis of randomized controlled trials. *J Stroke*. (2018) 20:99–109. doi: 10.5853/jos.2017.01522
- 119. Javadi L, Pourghassem Gargari B, Salekzamani S, Yousefzadeh R. Folate and homocysteine levels and their association with dietary intakes in Iranian patients infected with *Helicobacter pylori*: a case-control study. *Acta Med Iran.* (2015) 53:162–7.
- 120. Serapinas D, Boreikaite E, Bartkeviciute A, Bandzeviciene R, Silkunas M, Bartkeviciene D. The importance of folate, vitamins B6 and B12 for the lowering of homocysteine concentrations for patients with recurrent pregnancy loss and MTHFR mutations. *Reprod Toxicol.* (2017) 72:159–3. doi: 10.1016/j.reprotox.2017.07.001
- 121. Limpach A, Dalton M, Miles R, Gadson P. Homocysteine inhibits retinoic acid synthesis: a mechanism for homocysteine-induced congenital defects. *Exp Cell Res.* (2000) 260:166–74. doi: 10.1006/excr.2000.5000
- 122. Smedts HP, van Uitert EM, Valkenburg O, Laven JS, Eijkemans MJ, Lindemans J, et al. A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring. *Nutr Metab Cardiovasc Dis.* (2012) 22:477–85. doi: 10.1016/j.numecd.2010.07.016
- 123. Gaiday AN, Tussupkaliyev AB, Bermagambetova SK, Zhumagulova SS, Sarsembayeva LK, Dossimbetova MB, et al. Effect of homocysteine on pregnancy: A systematic review. *Chem Biol Interact.* (2018) 293:70–6. doi: 10.1016/j.cbi.2018.07.021
- 124. Chiang FF, Wang HM, Lan YC, Yang MH, Huang SC, Huang YC. High homocysteine is associated with increased risk of colorectal cancer independently of oxidative stress and antioxidant capacities. *Clin Nutr.* (2014) 33:1054–60. doi: 10.1016/j.clnu.2013.11.007
- 125. Lin J, Lee IM, Song Y, Cook NR, Selhub J, Manson JE, et al. Plasma homocysteine and cysteine and risk of breast cancer in women. *Cancer Res.* (2010) 70:2397–405. doi: 10.1158/0008-5472.CAN-09-3648
- 126. Zhang D, Wen X, Wu W, Guo Y, Cui W. Elevated homocysteine level and folate deficiency associated with increased overall risk of carcinogenesis: meta-analysis of 83 case-control studies involving 35,758 individuals. *PLoS ONE.* (2015) 10:e0123423. doi: 10.1371/journal.pone.0123423

- Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. (2015) 14:6. doi: 10.1186/1475-2891-14-6
- 128. Clarke R, Bennett D, Parish S, Lewington S, Skeaff M, Eussen SJ, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. *Am J Clin Nutr.* (2014) 100:657–66. doi: 10.3945/ajcn.113.076349
- Hu Q, Teng W, Li J, Hao F, Wang N. Homocysteine and Alzheimer's disease: evidence for a causal link from mendelian randomization. J Alzheimers Dis. (2016) 52:747–56. doi: 10.3233/JAD-150977
- 130. Yin M, Dong L, Zheng J, Zhang H, Liu J, Xu Z. Meta analysis of the association between MTHFR C677T polymorphism and the risk of congenital heart defects. *Ann Hum Genet.* (2012) 76:9–16. doi: 10.1111/j.1469-1809.2011.00687.x
- 131. Wu H, Zhu P, Geng X, Liu Z, Cui L, Gao Z, et al. Genetic polymorphism of MTHFR C677T with preterm birth and low birth weight susceptibility: a meta-analysis. Arch Gynecol Obstet. (2017) 295:1105–18. doi: 10.1007/s00404-017-4322-z
- 132. Zhang Y, He X, Xiong X, Chuan J, Zhong L, Chen G, et al. The association between maternal methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphism and birth defects and adverse pregnancy outcomes. *Prenat Diagn.* (2018) 39:3–9. doi: 10.1002/pd.5396
- 133. Yi K, Yang L, Lan Z, Xi M. The association between MTHFR polymorphisms and cervical cancer risk: a system review and meta analysis. Arch Gynecol Obstet. (2016) 294:579–88. doi: 10.1007/s00404-016-4037-6
- 134. Liu W, Li Y, Li R, Han X, Ma Y, Liu B, et al. Association of MTHFR A1298C polymorphism with breast cancer and/or ovarian cancer risk: an updated meta-analysis. *Afr J Tradit Complement Altern Med.* (2016) 13:72– 86. doi: 10.21010/ajtcam.v13i5.11
- 135. Nassereddine S, Kassogue Y, Korchi F, Habbal R, Nadifi S. Association of methylenetetrahydrofolate reductase gene (C677T) with the risk of hypertension in Morocco. *BMC Res Notes.* (2015) 8:775. doi: 10.1186/s13104-015-1772-x
- Rai V. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and Alzheimer disease risk: a meta-analysis. *Mol Neurobiol.* (2017) 54:1173–86. doi: 10.1007/s12035-016-9722-8
- 137. Sonawane K, Zhu Y, Chan W, Aguilar D, Deshmukh AA, Suarez-Almazor ME. Association of serum folate levels with cardiovascular mortality among adults with rheumatoid arthritis. *JAMA Netw Open.* (2020) 3:e200100. doi: 10.1001/jamanetworkopen.2020.0100
- Ebbing M, Bønaa KH, Nygård O, Arnesen E, Ueland PM, Nordrehaug JE, et al. Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA. (2009) 302:2119–26. doi: 10.1001/jama.2009.1622
- Ulrich CM, Potter JD. Folate and cancer-timing is everything. *JAMA*. (2007) 297:2408–9. doi: 10.1001/jama.297.21.2408
- Duthie SJ, Narayanan S, Brand GM, Pirie L, Grant G. Impact of folate deficiency on DNA stability. J Nutr. (2002) 132(8 Suppl):2444s-9s. doi: 10.1093/jn/132.8.2444S
- 141. Wei Q, Shen H, Wang LE, Duphorne CM, Pillow PC, Guo Z, et al. Association between low dietary folate intake and suboptimal cellular DNA repair capacity. *Cancer Epidemiol Biomarkers Prev.* (2003) 12:963–9. doi: 10.1023/A:1026300619747
- 142. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. *Proc Natl Acad Sci USA*. (1997) 94:3290–5. doi: 10.1073/pnas.94.7.3290

- Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutr. (2000) 130:129–32. doi: 10.1093/jn/130.2.129
- 144. Xiao SD, Meng XJ, Shi Y, Hu YB, Zhu SS, Wang CW. Interventional study of high dose folic acid in gastric carcinogenesis in beagles. *Gut.* (2002) 50:61–4. doi: 10.1136/gut.50.1.61
- 145. Gonda TA, Kim YI, Salas MC, Gamble MV, Shibata W, Muthupalani S, et al. Folic acid increases global DNA methylation and reduces inflammation to prevent Helicobacter-associated gastric cancer in mice. *Gastroenterology*. (2012) 142:824–833.e7. doi: 10.1053/j.gastro.2011.12.058
- 146. Moat SJ, Lang D, McDowell IF, Clarke ZL, Madhavan AK, Lewis MJ, et al. Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem. (2004) 15:64–79. doi: 10.1016/j.jnutbio.2003.08.010
- 147. Stanhewicz AE, Kenney WL. Role of folic acid in nitric oxide bioavailability and vascular endothelial function. *Nutr Rev.* (2017) 75:61–70. doi: 10.1093/nutrit/nuw053
- Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. *Adv Exp Med Biol.* (2017) 956:511–40. doi: 10.1007/5584_2016_90
- 149. Sun HJ, Hou B, Wang X, Zhu XX, Li KX, Qiu LY. Endothelial dysfunction and cardiometabolic diseases: role of long non-coding RNAs. *Life Sci.* (2016) 167:6–11. doi: 10.1016/j.lfs.2016.11.005
- 150. Chalupsky K, Kracun D, Kanchev I, Bertram K, Gorlach A. Folic acid promotes recycling of tetrahydrobiopterin and protects against hypoxia-induced pulmonary hypertension by recoupling endothelial nitric oxide synthase. *Antioxid Redox Signal.* (2015) 23:1076–91. doi: 10.1089/ars.2015.6329
- 151. Stanhewicz AE, Alexander LM, Kenney WL. Folic acid supplementation improves microvascular function in older adults through nitric oxide-dependent mechanisms. *Clin Sci.* (2015) 129:159–67. doi: 10.1042/CS20140821
- 152. Petersen LF, Brockton NT, Bakkar A, Liu S, Wen J, Weljie AM, et al. Elevated physiological levels of folic acid can increase in vitro growth and invasiveness of prostate cancer cells. *BJU Int.* (2012) 109:788–95. doi: 10.1111/j.1464-410X.2011.10437.x
- 153. Bistulfi G, Foster BA, Karasik E, Gillard B, Miecznikowski J, Dhiman VK, et al. Dietary folate deficiency blocks prostate cancer progression in the TRAMP model. *Cancer Prev Res.* (2011) 4:1825–34. doi: 10.1158/1940-6207.CAPR-11-0140
- Vlachos GS, Scarmeas N. Dietary interventions in mild cognitive impairment and dementia. *Dialogues Clin Neurosci.* (2019) 21:69–82. doi: 10.31887/DNC.2019.21.1/nscarmeas
- Araújo JR, Martel F, Borges N, Araújo JM, Keating E. Folates and aging: role in mild cognitive impairment, dementia and depression. *Ageing Res Rev.* (2015) 22:9–19. doi: 10.1016/j.arr.2015.04.005

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Bo, Zhu, Tao, Li, Zhai, Bu, Wan, Wang, Wang and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.