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Researchers in neuroscience computing experience difficulties when they try to carry out neuroanalysis in practice or when they
need to design an explainable brain-computer interface (BCI) with quick setup and minimal training phase. )ere is a need of
interpretable computational intelligence techniques and new brain states decoding for more understandable interpretation of the
sensory, cognitive, and motor brain processing. We propose a general-purpose fuzzy software system shell for developing a
custom EEG BCI system. It relies on the bursts of the ongoing EEG frequency power synchronization/desynchronization at scalp
level and supports quick BCI setup by linguistic features, ad hoc fuzzy membership construction, explainable IF-THEN rules, and
the concept of the Internet of )ings (IoT), which makes the BCI system device and service independent. It has a potential for
designing both passive and event-related BCIs with options for visual representation at scalp-source level in response to time.)e
feasibility of the proposed system has been proven by real experiments and bursts for β and c frequency power have been detected
in real time in response to evoked visuospatial selective attention. )e presence of the proposed new brain state decoding can be
used as a feasible metric for interpretation of the spatiotemporal dynamics of the passive or evoked neural oscillations.

1. Introduction

An EEG-based brain-computer interface (BCI) uses an elec-
trophysiological monitoring method to measure the scalp
electrical potentials resulting from ionic currents within the
neurons of the brain. By placingmultiple electrodes on the scalp,
the brain signals correlated with user’s emotions and intentions
can be registered, featured, classified, and translated into artificial
commands for control or communication with the digital de-
vices and services around.)e stages of pattern recognition and
classification in BCIs call for elements of Artificial Intelligence
(AI). Because humans are involved, interpretable and explain-
able Artificial Intelligence (XAI) [1] needs to be included in the
system design. Interpretability means that the cause and effect
can be easily determined in the machine learning (ML) models.
XAI is a new trend of AI to explain the black-box approaches in
ML by context-specific methods in order to make humans
understand the reasoning behind their predictions and the
errors they make.

BCI community is a multidisciplinary research field
where neuroscientists, biomedical engineers, and computer
scientists need to work together. Very often this collabo-
ration is impossible and researchers experience difficulties
when they try to use the available BCI software tools, such as
BCILAB [2], EEGLAB [3], OpenVibe [4], BCI2000 [5],
Neuromore [6] and other tools surveyed in [7]. )ese
general-purpose software applications aid the design and
testing of both passive and event-related BCIs in different
applications. BCILAB [2], an open source MATLAB-based
toolbox, provides an organized collection of 100 pre-
implemented methods and method variants. EEGLAB [3] is
an open source toolbox for analysis of EEG dynamics by
Independent Component Analysis (ICA). )e OpenVibe [4]
is a user-friendly software for BCI with graphical user drag-
and-drop interface. BCI2000 [5] is a general-purpose BCI
system for different task specific BCI applicable methods.
Some of these tools are optimized for real-time EEG data
processing using Python, C++, or MATLAB scripting box
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for online processing: OpenVibe Acquisition Server [http://
openvibe.inria.fr/acquisition-server], BCI2000 Webserver
[http://www.bci2000.org], and MatRiver, a MATLAB
DataRiver client [7]. Neuromore [6] allows users to connect
to biosensors, such as EEG, and is a biodata acquisition,
streaming, processing, and visualization software. It has
drag-and-drop user interface allowing the users to get dif-
ferent views of the raw EEG data simultaneously. Neuro-
more is open source and has a cloud-based platform that
connects with wearable devices and provides cloud-based
collaborative research and cloud data management. )e
OpenVibe is considered to be the most user-friendly tool
and can be used without much programming skills. How-
ever, the use of the real-time WebSocket for BCI online
operation needs ITskills in client-server programming and is
time-consuming. Although these tools are “general-pur-
pose” ones, they lack comprehensible features and models in
designing a custom EEG-based BCI and a lot of skills in
MATLAB programming and other software languages are
required to support brain computations of the neurosci-
entists. Widely accepted in the experimental science, such as
neuroscience, are the research claims to be based on sta-
tistical tests [8]. )erefore, testing the null-hypothesis (also
known as significance testing) by Analysis of Variation
(ANOVA) and multiple comparison statistics is essential to
be friendly configured and embedded in the BCIs for
neuroresearch in order to support neuroscientists in their
experiments.

On the other hand, computer scientists easily use these
tools but face difficulties in designing custom BCI appli-
cations.)e available today portable brain-listening headsets
come with accessible brain measuring hardware and the
computer scientists commonly use BCIs to control digital
devices or services. )e task-evoked underlying neural ac-
tivity needs to be translated into artificial commands and
before designing a specific BCI the computer scientists need
to find and map the published neuroexpertise into features,
patterns, and control actions. It will be helpful if this
mapping is human interpretable. Because the expert opinion
is involved for classification, the black-box ML models for
classification are not sufficient. We support the computer
scientists by quick setup of a fuzzy system. Fuzzy rule-based
classifiers can be built using expert opinion, data, or both
and are considered more intuitive and AI explainable [9].

We seek to close the gap between computer scientists
and neuroscientists by providing a general-purpose fuzzy
software system shell for designing a real-time operating
EEG-based BCI system with ad hoc brain state decoding by
linguistic variables and fuzzy sets participating in inter-
pretable fuzzy IF-THEN rules. )e decision-making re-
sponse is based on the neurons involved in a particular
neural computation in terms of the trend (derivatives) in the
evoked oscillatory rhythms and neuronal assembly at scalp
locations over time. One of our goals in the design of the
proposed BCI fuzzy shell (BCIFS) was to profile the data
analysis of the software: ready-to-use data for post hoc
interpretation by ANOVA and multiple comparison sta-
tistics for the neuroscientists and post hoc training and
optimization of the fuzzy system parameters for the

computer scientists. )us, the neuroscientists can test their
hypothesis and perform initial experiments for testing
multiple predictions with contradictions in assumptions
simultaneously, while the computer users can digitally
translate the published neuroscience findings in interpret-
able IF-THEN rules for fuzzy interpretation of the spatio-
temporal dynamics of the passive or evoked oscillatory
rhythms. Additionally, the computer scientists have the
freedom to exploit the resulting ready-to-use data in
MATLAB for post hoc training and optimization of the
fuzzy sets, fuzzy membership functions, and the fuzzy rule-
based classifier with different ML algorithms.

)e rest of the paper is organized as follows: in Section 2,
related works and the proposed solutions are presented.
Section 3 summarizes the mathematical background and the
detailed description of the proposed BCI fuzzy shell. Section
4 presents materials and methods. In Section 5, the results
are exposed and discussed. Finally, conclusions follow.

2. Current Status, Problem Statement, and the
Proposed Solution

2.1. Existing Solutions. EEG signals are subject-specific and
with nonlinear behaviour. )e real-time brain state evalu-
ation during sensory processing, memory, or decision-
making is a challenging task. )e current status of the BCIs,
sensing technologies, and computational intelligence ap-
proaches are surveyed in [10–14]. An overview of recently
used EEG noninvasive devices can be found in [10, 14].

2.1.1. Feature Extraction Approaches. )e most commonly
extracted BCI features from time series signals can be de-
rived from time, frequency, time-frequency, and statistical
and spatial domains. EEG features are described and
compared in detail in [12–14]. Examples frequently
extracted from EEG signals temporal features are maximum,
minimum, zero-crossing rate, linear regression, interquartile
range, absolute integral, and others. Commonly extracted
statistical features are median, mean, standard deviation,
absolute deviation, root mean square, skewness, kurtosis,
histogram, and total energy. Spectral features commonly
extracted are total energy, spectral centroid, spread, slope,
decrease, variation, while the most used spatial features are
Common Spatial Patterns (CSP). Other used BCI features
are nonlinear: Lyapunov exponent, Shannon entropy, cor-
relation dimension, detrended fluctuation analysis, recur-
rence rate, and others.

Most papers focus on the use of temporal and spectral
domain characteristics. BCIs can be based on the evoked
potentials such as Event-Related Potential (ERP) [15] or
based on the power of the EEG rhythms and the spectral
density [16]. ERP components reflect brief bursts of neu-
ronal activity, time locked to the eliciting event. However,
time-domain interpretation neglects spectral characteristics
that may be important to the classifier. In the oscillatory-
based BCI, researchers usually decompose the EEG signal
into five frequency bands using FFT.)ey use a specific band
as a correlate with a cognitive task, sensory or emotion
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responses. For instance, θ (4–7Hz) and α (8–14Hz) band
rhythms correlate with the brain activities during working
memory tasks. Similarly, the use of spectral characteristics
for feature extraction lacks temporal characteristics. To
overcome these deficiencies, the dynamics of the oscilla-
tory rhythms with time resolution in msec is proposed in
the literature. Such frequency-band specific features that
reflect the changes of the ongoing evoked oscillatory
rhythms are Event-Related Desynchronization (ERD) and
Event-Related Synchronization (ERS) [17–22]. Decreases
in power from the reference to the activation interval are
expressed as negative values (i.e., α desynchronization),
whereas task-related increases in power (i.e., β synchro-
nization) are expressed as positive values [18]. For in-
stance, the changes of the ongoing evoked oscillations for
sensory and cognitive processing result in different ERD/
ERS. However, ERS/ERD alone cannot feature the func-
tional connectivity (FC) in the human brain, the temporal
correlation between the times series from different brain
regions [23].

Feature extraction methods also are categorized
according to the domain they are derived from. A typical
time-domain-based feature extraction approach is the
autoregressive modelling. Among frequency-domain-based
techniques are Fast Fourier Transform (FFT), Power
Spectral Density (PSD), band power, and central centroid.
)e most widespread time-frequency-based feature extrac-
tion approaches are Short-time Fourier Transform (STFT),
Continuous Wavelet Transform (CWT), and Discrete
Wavelet Transform (DWT). Another powerful feature ex-
traction approach CSP utilizes localized spatial filters and
each of them converts brain waves into different domain
where the variance of one group is magnified. )e feature
extraction methods depend on the type of brain processes
being captured plus the choice of the BCI system design.
Some feature extraction methods are unsupervised such as
Principle Component Analysis (PCA). )ey do not use raw
EEG data labelled with features to learn from, focusing on
the differences in the data. Other methods like CSP are
supervised and require a set of labelled data to determine the
specific spatial features. Applying spatial domain feature
extraction could reduce significantly the original size of the
electrodes under consideration; however, the computational
cost of the improved performance is high. Although the
effectiveness of the published feature extraction methods has
yet to be reported, studies like [13, 24, 25] illustrated that the
high-dimensional and noisy nature of EEG may limit the
advantage of nonlinear extraction methods over linear ones.
Findings in [24] suggested that multiclass complex BCI task
discrimination could gain more benefit from analyzing
simple and symbolic features such as Time-Domain Pa-
rameters (TDP) rather than more complex features such as
CSP and Power Spectral Density. Moreover, from the
comparison in [24], it was concluded that the complex ones
produced only slightly better classification results. Wen et al.
in [25] proposed genetic algorithm-based frequency-domain
features and proved that they are superior to the nonlinear
features in terms of the ratio of interclass distance and
intraclass distance.

To sum up, the selection of the EEG electrodes for
classification and their features is critical for both the ac-
curacy of the classifiers and the calculation cost. Some
features are not cost effective and suitable for operating in
real time. For example, the evaluation of Independent
Components (ICs) derived by ICA or Common Spatial
Patterns (CSP) more often is performed offline and the
calculation cost is high.)e resulting features are not human
interpretable, while the ML models for their extraction are
not explainable. Since the more intuitive and human-in-
terpretable features that can be used in both passive and
event-related BCIs are ERS/ERD, our starting assumption
originated from [18, 20].

2.1.2. Cross-Subject Training. Cross-subject training is an-
other challenge linked with the BCI system. Sometimes, the
training is for a long time, which causes users to become
fatigued. Motor imagery (MI-)based BCIs need most
training, while the most robust performance across users has
the BCIs based on steady-state (motion) visually evoked
potentials. When the user receives either a motion reversal
frequency or fixed frequency of flashing visual stimuli, the
potential brain activity produces the same frequency as a
response. For instance, user training was not required in the
flicker-free Steady-State Motion Visually Evoked Potential
(SSMVEP-)based BCI system proposed in [26]. )e devel-
oped paradigm used new ring-shaped motion checkerboard
patterns with oscillating expansion and contraction motions
for visual stimuli. )e frequency energy of SSMVEPs was
concentrative and the visual stimuli evoked “single funda-
mental peak” responses after FFT signal processing and
canonical correlation analysis. )is method has shown
highly interactive performance as a paradigm of BCIs with
zero training. However, authors in [27] questioned “to train
or not to train” and although this is a survey on training of
feature extraction methods for Steady-State Visually Evoked
Potentials (SSVEP-)based BCIs, the main challenges of how
to reduce the user training while maintaining good BCI
performance were analyzed. )e criticism here is that
training-less systems are more practical, however with
limiting performance due to intersubject variability.

In general, less training and high performance make the
ERP-based BCI system widely used. Some recent studies
tried to reduce the calibration time with new subject-in-
dependent training methods. In [28], authors introduce the
concept of a generic model set.)ey used ERP data from 116
participants to train the generic model set and trained ten
models by weighted linear discriminant analysis. )e results
from testing the validity of the generic model set demon-
strated that all new participants matched the best generic
model.

PSD- or ERD-based BCIs also need to be trained, either by
session-independent or subject-independent training methods.
Different methods have been surveyed in [10]; however, the
training is either features or application specific. Recently, the
Transfer Learning (TL) in EEG decoding showed great po-
tential in processing signals across sessions and subjects, as can
be seen from [10, 29]. )e principle of TL is to transfer
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knowledge from different but related tasks using existing
knowledge learned from already accomplished tasks to help
with new tasks. In order to train the feature extraction or
classification model, the large-scale and high-quality datasets
are used to obtain strong robustness and high classification
accuracy for the new tasks. A lot of case-studies are surveyed in
[29] showing how TL improves the cross-subject transfer and
the practicality of real-world BCI applications for different
features and tasks.

2.1.3. Classification Methods. Regression or classification
algorithms could be utilized to identify various brain activity
patterns by the BCI system and translated into commands.
)e most explored machine learning techniques for classi-
fication of EEG signals are based on supervised learning,
where a model is created from a training set of EEG signal
features to its labels. Example algorithms are k-nearest
neighbor (K-NN) [30–32], support vector machine (SVM)
[32–35], naive Bayes (NB) [32], linear discriminant analysis
(LDA) [36, 37], convolutional neural networks (CNN) [38],
deep belief network (DBN) [39], AdaBoost ensemble
learning [40], lattice computing [31], and fuzzy logic-based
classifiers [32, 41, 43–46]. Examples of unsupervised
learning algorithms are the reinforcement learning (RL), k-
means, affinity propagation, spectral clustering, hierarchical
clustering, and others. Among them, RL is a prominent
unsupervised learning algorithm [47]. RL is flexible and
general in its applicability and efficiency for real time and
personalized learning in a complex stochastic environment
that requires control actions to optimize the system pa-
rameters. )e RL “agent” acts on the digital world through
actions and receives rewards to learn what action to un-
dertake within the current situation. RL is less dependent on
the quality of the label information that results in high ef-
ficiency of data utilization. Q-learning is a model-free RL
and does not require a model of the environment. It handles
problems with stochastic transitions and rewards. )e
Q-learning algorithm has a function “Q” that calculates the
quality of a state-action combination according to the
maximum expected rewards. RL and its variations, such as
deep Q-learning, are applied in different BCI contexts and
analyze dynamically the EEG data captured in an experi-
ment. )e reward in the EEG-based BCI system could be
explicitly based on the EEG signals or implicitly based on
system-response parameters. EEG response from the BCI
system serves as a reward for the RL agent to learn the
features or control actions. Some studies are based on the
reward prediction error theory of dopamine [48]. Other
studies use EEG signal as the error signal underlying
mechanisms of the human error processing [49]. In [50], the
system performance is the indicator for the reward calcu-
lation. In this study, authors introduced deep reinforcement
Q-learning to study the correlation between drowsiness and
driving performance. Authors indirectly measure the mind
states based on indicators measured during the system
performance, such as Response Time (RT). RT measures
how quickly the subject reacts to a stimulus and yields the
reward. RT is used to assess the current action against the

current state, which is the EEG data in the current time
window. An optimal policy was always assumed and
exploited for action selection and the results showed that the
trained model could trace the variations of mind state in a
satisfactory way against the EEG data. Usually RL measures
future reward to assess the current action. )e specific of the
proposed Q-learning in [50] is that the reward (in terms of
RT) is measured in some latency. However, this brings el-
ements of supervised learning, such as the transition weight
beta and history-dependent prediction. )erefore, although
the RL is intuitive and does not need an extra XAI, the
paradigm of RL requires abstraction and instantiation of the
agent, environment, state, action, and reward according to
the specific of the learning problem. Q-learning is capable of
solving problems with limited states and actions; however, in
order to evaluate optimal policies, the value function Q
needs to be defined precisely and is out of scope of the
neuroscientists. More information for deep learning and
unsupervised and semisupervised learning algorithms could
be found in [12, 14].

A fuzzy rule-based classifier (FRBC) is a fuzzy system
specifically configured for performing classification tasks
that consists of a number of classification rules and utilizes
fuzziness only in the reasoning mechanism of the classifier
[51]. FRBC can be built using expert opinion, data, or both.
When the FRBC is created directly from numerical data
simple heuristic procedures, neurofuzzy techniques, clus-
tering methods, fuzzy nearest neighbor methods, and ge-
netic algorithms can be used [52]. Majority vote based on a
single winner rule (the class with the maximum total
strength of the vote) usually classifies the new pattern. BCIs
with fuzzy rule-based inference for brain states pattern
recognition and classification can be found in [41–46, 53].
Almost all reported results proved that fuzzy rule-based
classifiers were not necessarily less accurate than other
classifiers. Gu et al. in [41] extracted power spectral features
that have been labelled for each trial. )e classification
model consisted of four types of fuzzy rules that determined
the finalised predicted label. Five well-known supervised ML
classification methods as SVM, K-NN, NB, ensemble for
boosting, and discriminant analysis classifier (DAC) had
been trained and the comparison results showed out-
performance of a fuzzy rule-based classifier. However, the
proposed fuzzy model is task specific; i.e., it was applied to
classify motor imagery (MI) data in a passive BCI. Nguyen
et al. in [45] introduced a multiclass type-2 fuzzy logic (FL)
classifier, where fuzzy parameters were trained using a
metaheuristic population-based particle swarm optimiza-
tion algorithm. CSP is used to extract significant features
that are then fed as inputs for classification. )e proposed
model was also applied toMI BCI.)e benchmark four-class
MI BCI dataset from the BCI competition IV was used in the
analysis of the study. )e results from experiments showed
the great accuracy of the combination of CSP and type-2 FL
compared to LDA, NB, K-NN, ensemble learning AdaBoost,
and SVM. Bhattacharyya et al. in [44] proposed two types of
multiclass classification algorithm by fusing interval type-2
FL and Adaptive-Network-based Fuzzy Inference Systems
(ANFIS).)e experimental results showed that the proposed
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algorithms performed better than LDA, SVM, and NB when
dealing with uncertain EEG data. Das et al. in [46] also
proposed an interval type-2 fuzzy system using extended
Kalman filter based learning algorithm. )e BCI competi-
tion data of MI type was used in the analysis of the study and
the performance evaluation of the FL model showed higher
accuracy than SVM, as well as several other fuzzy systems
including the evolving fuzzy rule-based classifier, online
sequential ANFIS, metacognitive neurofuzzy inference
system, and metacognitive interval type-2 fuzzy system. Tsai
et al. in [53] proposed a Takagi-Sugeno fuzzy neural net-
work-based algorithm with single-channel EEG signal for
the discrimination between light and deep sleep stages and
reported high accuracy in the classification.

To sum up, the proposed FRBCmodels are brain headset
or application specific. Some of them use black-box machine
learning approaches; however, in a combination with fuzzy
rules, a reasoning can be performed in order to argue the
inner logic of the classifiers. )e combination of antecedents
and consequences persists in the discipline of argumentation
[1]. Although the interpretability and accuracy are consid-
ered to be contradictive requirements, the recent tendency is
to increase the explainability without hurting model per-
formance much. )e authors in [54] proposed a fuzzy
classifier by a combination of rule granulation and rule
consolidation methods. )ey obtained the maximum pos-
sible classification accuracy with as simple classifier as
possible and the method offers the possibility of finding a
good compromise between interpretability and perfor-
mance. To the best of our knowledge, this classifier is not yet
implemented in the BCI research; however, the cross-vali-
dation results in [54] were prominent. )ey did not confirm
the frequent claim that “Naive Bayes often outperforms
more sophisticated classification methods.” On nine
benchmark datasets and four classifiers, the naive Bayes one
appeared to be winner only in three cases, while the pro-
posed method won in four.

2.2. Problem Statement. Summarizing the bibliography
research, both feature extraction and classification of
EEG data are brain headset or application specific and
depend on the custom BCI task. For instance, the highly
interactive performance of the evoked-related BCIs
proposed in [26] cannot be applied for developing
passive BCIs that do not rely on external stimuli, such as
emotion recognition, mental workload assessment, or
driver drowsiness. Features extraction techniques and
models training are not always human interpretable and
often are offline. Studding the temporal correlation be-
tween the EEG time series from different brain regions in
the human brain is not supported online. )e big EEG
data impose large feature dimensions, extensive set of
training data, and machine learning models with a black-
box approach. Some ML models perform better than
others; however, they are harder to explain. Users want to
trust the systems that they are using and to know why a
model comes up with the predictions they output. )is
led to significant growth of XAI over the last few years;

however, XAI is an extra work and sometimes it may be
difficult to find the cause.

Considering the problems above, we define the re-
quirements to be searched for as follows:

(i) A framework that can adaptively support a wide
range of EEG-based BCI applications

(ii) New brain states decoding with more under-
standable interpretation of the spatiotemporal dy-
namics of neuronal activations and neuronal
assembly

(iii) Explainable classification model with interpretable
linguistic features to support the development of
practical BCI applications

(iv) Traceable and comprehensible process of class
prediction

(v) Ubiquitous EEG-based BCI to operate in real time
locally or remotely, on different platforms and EEG
devices

(vi) Daily live use with practical artifacts cleaning
online, less subject-specific, and with minimal
training phase

2.3. Proposed Solution. We first searched for a new brain
states decoding and for more understandable interpretation
of the functional connectivity of the neurons involved in the
brain processing. Our starting assumption from [20] is the
interpretation of ERD as a correlate with the activated
cortical areas with increased excitability. We consider that
the rate of the oscillatory rhythms is a steady-state endog-
enous or exogenous brain process with specific functional
significance for the evoked neuronal activation and as-
sembly. )us, we featured the ERS/ERD within a specific
ongoing EEG band power by the bursts in change over a
certain time window. We denote the rate of increase/de-
crease (burst) as ERS”/ERD”. Endogenous and exogenous
ERS”/ERD” have difference in latency. We define the latency
as the delay between the evoked brain activities. )e ERS”/
ERD” with a peak latency within 250 to 350 msec reflecting
the elicited internal neural processes (endogenous) are
consistently observed in various executive or memory tasks.
)e ERS”/ERD” with a peak latency within 100 to 150 msec
are attributable to external stimuli or emotional reactions
and are typically associated with sensory systems, e.g.,
steady-state visual or auditory responses.

In order to observe and interpret the ERS”/ERD” in a
human readable way, we use linguistic variables and IF-
THEN rules where the second derivatives participate and
feature the changes in brain rhythms at scalp locations over
time. )e ERS”/ERD” are described by linguistic variables
and discriminated by fuzzy membership functions. )e
functional connectivity of all brain regions correlated with
the evoked event or stimuli is described in the IF part of the
rules by a specific combination of linguistic variables. )e
proposed technique for developing a fuzzy BCI system is the
Sugeno fuzzy model (also known as TSK fuzzy model) [55].
It has been chosen because it has a flexibility in the fuzzy
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system design. TSK model can be used to generate fuzzy
rules from a given input-output dataset and thus to train a
fuzzy rule-based classifier. Regarding satisfactory accuracy
proposed in [53], a four-layer Takagi-Sugeno fuzzy neural
network classifier has been reported in the BCI research
field. However, in order to go from the neural network
black-box approaches to interpretable and explainable
model, we studied and implemented an approach proposed
in [54] for simple supervised training of a fuzzy classifier via
a combination of rule granulation and rule consolidation
methods (RGRC). With a slight modification of the criteria
for the rule consolidation, we embedded this method in the
proposed BCI system to train a fuzzy classifier offline.

Although a classification is a basic task in EEG pattern
recognition, sometimes the fuzzy system has to be used in an
operation mode and the brain activity to be characterized by
formulas that participate in the consequent part of the fuzzy
rules. For instance, the EEG_W score (1) known to be related
to cognitive processes like workload, engagement, attention,
and fatigue [56] is computed from Ne electrodes, placed in
the occipital lobe for visual processing evaluation, in frontal
lobe for emotional processing, and in the temporal lobe that
processes auditory information.

EEG W � log


Ne
i�1βi


Ne
i�1θi + αi

 . (1)

Another functional relation (2) that evaluates a current
emotional state based on high/low arousal and positive/
negative valence in [57] is computed from four electrodes,
placed in the prefrontal cortex (AF3, AF4, F3, and F4). )e
associated β/α ratio is a reasonable indicator of the arousal
state of a person, while valence (2) is estimated by computing
and comparing α and β power in the frontal channels F3 and
F4.

Valence � αF4

βF4
− αF4

βF4
. (2)

In both cases, the TSK fuzzy model can be used as a
universal approximator of known functions with specified
error bounds with computationally efficient defuzzification
process. )e crisp output value in TSK model is a mathe-
matical combination of the outputs and the rules strength.
)e fuzzy membership functions can be defined experi-
mentally or statistically. We automatically built trapezoidal
fuzzy membership functions during the baseline phase. )is
shape is chosen because the upper base of a trapezoid takes
care of the small scattering due to the oscillatory nature of
EEG that causes false featuring. )e mean and standard
deviation participate together with several coefficients that
are tuned according to the used brain headset.

In the proposed BCIFS, we exploited the concept behind
the Internet of )ings and the Node-RED approach [58] to
make all sensing, computation, and memory integrated into
a single standalone platform. Node-RED uses a visual
programming for “wiring together” of code blocks and make
up “flows” to carry out tasks by connecting nodes (input,
processing, output, and UI nodes) in a browser-based flow
editor (Figures 1 and 2). )e described below article’s

contributions from 5 to 8 are because BCIFS is built in Node-
RED, which is a cross platform based on Node.js event-
driven model. )e flows are stored using JSON and can be
easily imported and exported for sharing with others. All
these make the device, task, and service independent and
portable to operate locally or remotely. )e Node-RED
standard front-end graphical user interfaces are used for
ERS”/ERD” monitoring. It might be observed by a live data
dashboard (Figure 3) or heard in the background by passing
the result values into a code block for an audio player. )e
bar and gauge graphs in the dashboardmonitor the electrode
levels for the brain oscillatory rhythms and their features.
For instance, the power of α brain oscillation and ERS’ values
for the electrode O2 are being passed to gauge graphs O2 A
and O2 A’ (left and centred gauges on Figure 3), while ERS”
values are passed to the bar graph O2A”. )e colour of the
gauge depends on the value being passed into it and changes
from the green via yellow to the red corresponding to a
change from a reference value to a burst.

)e main contributions of this study are the following:
(1) a general software system shell for developing both
passive and event-related BCIs with quick setup, short
training phase, and for real-time application in different
contexts, such as executive or memory tasks, sensory pro-
cessing, neurofeedback, and BCI control; (2) new brain state
decoding for human-interpretable feature extraction in
terms of burst in change of the neuronal synchronization or
desynchronization at scalp-region level; (3) digital twin-
based optimization for tuning the parameters of the fuzzy
membership functions; (4) practical and real-time artifact
collecting and cleaning; (5) easily adapted different EEG-
based brain headsets; (6) easily adapted variety of digital
devices and services operating in the IoT; (7) real-time
analysis of recording EEG rhythms with options for visual or
audio representations at scalp-region levels in response to
time; (8) remote use of the developed BCI either for op-
erating or for performing experiments; (9) a proof-of-
concept: spatiotemporal dynamics of brain connectivity
during the evoked visuospatial selective attention.

3. Fuzzy Shell forDeveloping aCustomEEGBCI

)e BCIFS is built in the Node-RED platform, taking full
advantages of its low-code programming for event-driven
applications and wiring together hardware devices, APIs,
and online services. )e streaming of EEG time series and
TSK fuzzy model is developed in a browser-based flow and
can run on low-cost hardware such as the Raspberry Pi and
in the cloud and IoT. Integrating data streams from different
EEG-based headset needs to be done via a custom Node-
RED library of input nodes, which allow interfacing the
headset technology with other Node-RED nodes.

3.1. Featuring of the EEG-Time Series. EEG devices for
measuring the ongoing brain activity provide a stream of
constantly changing brain time series. Suppose that we are
given an EEG dataset denoted by S that contains N number
of trials for one subject. Each trial contains EEG records in
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Figure 1: Baseline phase for the frequency bands of interest in a Node-RED flow. Node-RED uses a visual programming for wiring together
with code blocks into flows. )e connecting input nodes on the left panel are a custom library for integration of the EEG data streams from
the EMOTIV EPOC+headset to Node-RED third party software or hardware.

Figure 2: Node-RED flow for EmotivBCI-maze solving task. )e dark blue node is a Python block that handles the mouse events for
identifying whether the mouse is moving or not.

Figure 3: Node-RED front-end graphical user interface, a live data dashboard, where bar and gauge graphs monitor the electrode levels for
the brain oscillatory rhythms and their features.
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respect to time and electrode locations belonging to one or
several classes (patterns) for the brain activity under con-
sideration. )e dataset S is denoted by

S � S1, L1( , . . . , Si, Li( , . . . , SN, LN( , , (3)

where i� 1, ..., N.
Si represents the EEG records in ith trial.N is the number

of trials. L is a column vector that assigns each trial to one of
the associated labels for a single class (C). In case of multiple
classes, the multilabel classification for ith trial is presented as
raw vector and its length corresponds to the number of
classes k.

Li � liC1
, . . . , liCk

 . (4)

Each trial has to be present as an input matrix

Si ∈ RT×E, (5)

where E is the number of electrodes and T is the number of
time samples per trial. Since the time resolution of the brain
signals is in the magnitude of msec and the trial is in the
range of sec, time windowing is applied for each trial in order
to be more informative for classification. Let w denote the
size of the window. After referencing the studies in [59–61],
we found that w is usually 128 msec with no overlapping
windows or with overlapping of 5 msec. Experimentally, we
defined similar sizes: w �125 msec for exogenous and
w � 150 msec for endogenous brain processes. )e used
features (F) for categorizing the brain activity reduce the
dataspace dimension in the windows. )us, Si can be rep-
resented as

Si ∈ RFw×E. (6)

F may be any kind of temporal, statistical, spectral, or
nonlinear feature over a certain time window. )e window’s
length defines long-term or short-term interpretation.

)e integrated Node-RED third-party software or
hardware might be robots, programs for neurofeedback
training, serious games, etc. )e featured brain electrical
activity is translating different type of commands such as
robot navigation, touching digital objects on the screen, and
switching home. However, no uniform place exists in the
brain where a command is stored as a set of neurons.
Memory and thinking during the command generation
evoke distributed neuronal activity; we can only use ap-
proximate reasoning over this EEG activity in order to map
them to a digital command. )is imposed us to discriminate
these brain patterns and describe them by linguistic vari-
ables, fuzzy sets, and fuzzy rules according to the location of
scalp electrodes and bandwidth. )e scalar strength in the
premises of the fuzzy rules and the crisp values in the
consequences designate the specific functional significance
for the evoked neuronal activation and connectivity.

3.2. Mathematical Background of the TSK Fuzzy Model.
Fuzzy logic takes decisions and recognizes patterns using
linguistic variables, “degree of membership,” and fuzzy
inference. It maps an input space to an output space using a

series of fuzzy IF-THEN rules. Uncertainties are presented
as fuzzy sets (Ai), which are often expressed by words and
interpreted by their membership functions μA. TSK struc-
ture consists of rules in the form

Ri: IF x isAi THENyi � a
i
0 + 

n

k�1
a

i
kxk, (7)

where x � (x1,x2, . . . , xn) ∈ S is a matrix from the brain
signal responses at scalp level representing the inputs de-
fined in domain (S): S ∈ RERS″/ERDw

″×E; Ai is a fuzzy set de-
fined on (S); yi is a scalar output corresponding to rule i; ai

k

are the consequence parameters associated with rule i. For a
zero-order TSK model, the output level y is a constant.
i ∈ 1, .., p , where p is the number of fuzzy rules.

)e simplest fuzzy rule-based classifier is a fuzzy IF-
THEN system with a class label staying in the consequences.
A fuzzy classifier is constructed by specifying the classifi-
cation rules:

Ri: if x isAi THEN ljC1
, (8)

where ljC1
functions as a label.

An example rule is “IF x1 is A1 AND x2 is A2 THEN class
label is 1.” Such argumentation is easier to be obtained from
the neuroscientists. )e actual numerical value in the
consequences is irrelevant because the class is a nominal
variable. All rules “vote” for the class in the consequent part
and the majority of these votes discriminate the class; i.e., the
maximum aggregation method is applied.

A useful special case for “voting” [51] is the support for
each class as a single constant value, usually within the
interval [0, 1]:

Ri: if x isAi THENy1C1
AND . . . yjC1

AND . . . ylC1
, (9)

where yjC1
are constants within the interval [0, 1] and l is the

number of labels for class 1.
In this model, every rule votes for all the classes and the

rules are aggregated and defuzzified by using the weighted
average:

y(x) �


p

i�1 μAiw
(x)∗yi


p
i�1 μAi

(x)
, (10)

where μAiw
(x) is the degree of fulfillment of i-th rule.

μAi
(x) � μAiw

x1, x2, . . . , xn′
  � T

n′
w�1μAiw

xf , (11)

where n′ is the number of input variables in i-th rule (n′ ≤ n)
and T is a type of t-(co)norm, such as minimum or product.
Since each rule has a crisp output, the overall output is
obtained via weighted average, thus avoiding the time-
consuming process of defuzzification required in the
Mamdani fuzzy model.

First, BCIFS separates the registered EEG data in terms
of band average power according to the location of the scalp
electrodes. After the preprocessing, BCIFS evaluates varia-
tions (derivatives) in ERS/ERD at scalp-source level in re-
sponse to time. )en, fuzzy reasoning is performed
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according to the current fuzzy rule base (FRB) and inference.
)e chosen TSK fuzzy model of zero order uses a set of
simple functions that require low CPU memory resources
and presents a low time response. Another advantage of this
model is that the fuzzy rules can be generated from a given
input-output dataset for training a fuzzy rule-based
classifier.

3.3. Generating the Fuzzy Rule-Based Classifier. During the
design of BCIFS, the premise and consequence parameters
have to be identified. )e electrodes of interest are described
by linguistic variables, whereas the rate of change of the
evoked oscillatory rhythms is described by fuzzy sets. For
instance, following the proposed brain maps of coherence in
[62], there is significantly higher coherence at the frontal and
right parietal sites for the θ band when watching a negative
film compared to the neutral state.

IF “F4_T_ERS”300” is “high” and “O2_T_ERS”300” is
“high” and “P8_T_ERS”300” is “high” THEN valence is
0.1.

Here, the output label (valence on the scale [0, 1]) in-
terprets the valence according to the chosen sliding window.
ERS”300 means that the rate of change peak (burst) comes
with latency of 150 msec over a 300 msec window, shifted
every 150 msec.

)e FRB is set up according to the significance of the
underlying role of each electrode and frequency. Only the
critical changes have to be described in the IF-THEN rules.
Rules with contradiction in assumptions can be separated in
several FRBs working in parallel. We use fuzzy trapezoidal
membership functions that are simple and fast for calcu-
lation.)e upper base of the trapezoid takes care of the small
scattering that causes false ERS”/ERD” and wrong baseline
recordings during the reference phase. )e upper base ig-
nores the wave scattering in the frequency domain, while the
legs of the trapezoid eliminate the spikes due to artifacts.
When the right leg is perpendicular to the base, the right
slope for fuzziness is eliminated and the high bursts pro-
duced from artifacts are not evaluated. If we are interested in
any “smart artifact,” we can add additional fuzzy mem-
bership, so called “artifact,” with appropriate trapezoid
parameters. )us, events related to a facial expression can be
classified according to the evoked artifacts.

4. Materials and Methods

In this section, the feasibility of the proposed BCI fuzzy shell
is illustrated. )is was proven by real experiments for
evaluating the spatiotemporal dynamics of neural oscilla-
tions during the evoked top-down visuospatial selective
attention.

4.1. Scientific Context. Attentional processes are the brain’s
way to cope with the information overload and focus on
some stimuli, while suppressing others. Attention is com-
monly categorized in top-down (or endogenous) attention,
an internally induced mental focus on self-thoughts,

memories, or abstractions, and bottom-up (or exogenous)
attention, an externally induced mechanism that is directed
by stimuli from the surroundings. Top-down attention is
under voluntary control and is also known as “goal-directed”
attention, whereas bottom-up attention is “data-directed.”
Endogenous oscillations are attributable to internal neural
processes and include a well-known set of frequencies [63].
Exogenous oscillations are driven by the external stimuli and
are typically associated with sensory systems, e.g., the au-
ditory steady-state response [64]. Attention in the visual
system is extensively studied over the past decades. Visual
spatial attention can be either exogenously captured by a
salient stimulus that overrides internal goals or can be en-
dogenously allocated by voluntary effort while processing
multiple targets [65]. )e brain regions actively involved are
the prefrontal, parietal, and occipital cortex [59, 60, 66–69].
)e prefrontal lobe is thought to be involved in executive
functions of the brain: problem solving, judgement, atten-
tion, working memory (WM), and motor programming.
Many studies have indicated that frontal θ activity is closely
related to enhanced attention and that sustained neuronal
activity is necessary to maintain the WM of representations
[22, 70, 71]. Other studies report that θ increase is observed
in the occipital, parietal, and temporal lobes during a short-
term memory task [72, 73]. )e ongoing EEG oscillatory
rhythm in the higher frequency is considered in [69] as a
correlate of high-speed WM comparison during the recall
(see Figure 4).

Following the above neuroscience findings, our main
hypothesis is that the ongoing EEG oscillatory rhythms
during top-down visuospatial selective attention show
specific evoked bursts in higher frequency bands and
electrode positions and are functionally connected in dif-
ferent ways during attentional states compared with passive
view.

4.2. Participants. Data were collected from 11 healthy
participants (3 females) with normal vision, all right handed,
and with mean age 33.09. )e EEG session lasted for half an
hour in total. All participants signed informed consent
before the experiments.

4.3. Stimulus Presentation. Participants were seated in front
of Dell laptop with a 14-inch flat screen monitor with a
resolution of 1366× 768 pixels. So called Porteus mazes
(https://www.mazes.ws/mazes-hard-puzzle-one.htm) were
displayed on it, although any other website for playing hard
mazes online can be used. An identical cable mouse had been
used from all participants. A Python script is used for
detecting whether the mouse is moving or not.

4.4.Method of Registration. In Section 3, the proposed fuzzy
shell for developing a custom EEG BCI was implemented for
studding the neuronal activity during the top-down
visuospatial selective attention and the information pro-
cessing during navigation. We tested different hypotheses
during solving a Virtual Maze Navigation Task (VMNT) and
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proved the concept in [74] that VMNTis well suited to evoke
brain c responses. We examined the brain activity during
spatial exploration, path planning, and navigation, which rely
on forming cognitive maps (CMs). According to Tolman [75],
CMs enable one to get, encode, store, recall, and decode
information about the relative locations in their everyday or
symbolic spatial environment. )erefore, many top-down
attentional systems participate during the spatial navigation
in order to gather information and evaluate the options:
attention to sensory observations over multiple spatial lo-
cations, attention to mental representation of paths with their
temporal order, and attention to encode and retrieve infor-
mation from WM or visual short-term memory.

4.5. Experimental Task and Trial Setup. In the present ex-
periment, participants had to solve virtual hard mazes # 14th
and #15th. A maze #13th was used as an exercise to make
them use the laptop, mouse, and software.

)e experimental VMNT task responses in three con-
ditions are as follows:

(i) Condition 1: forming of cognitive maps, top-down
visuospatial selective attention underlying spatial
exploration, path planning, mental navigation, and
evaluation of options, as well as encoding and
storing the cognitive map in WM

(ii) Condition 2: memory-guided visuospatial travers-
ing, high-speed WM comparison during recall and
decode routes for traversing

(iii) Condition 3: instant visuospatial traversing, instant
spatial exploration when the path is not bottleneck
in the neighborhood or trial and error guided the
route traversing

)e mouse events (handled by a Python script in Node-
RED) are used for identifying the current condition and
depend on whether the mouse is moving or not. We assume

A V AV

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

α band
(8–13 Hz)

β band
(13–30 Hz)

Y band
(30–50 Hz)

Power change in %

Figure 4: Grand-averaged power change during the attention task compared with the passive view task in α band, β band, and c band for
auditory (A) cues and visual (V) and audiovisual (AV) cues (adapted from [69]).
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that holding the mouse button presumes forming of CMs,
while if the mouse coordinates are changing, the second or
third condition occurred. We set two top-down visuospatial
attentional conditions: forming of cognitive maps (FCMs)
and visuospatial traversing (VST). We distinguish them
according to the mouse events and saved the ongoing EEG
oscillatory activity in terms of RERS″/ERDw

″×E in different CSV
files.

4.6. EEG Acquisition. EEG data was continuously recorded
from neuroheadset “EPOC+” by EMOTIV Bioinformatics
Company [76]. )e recording sites from AF3, AF4, F3, F4,
F7, F8, T7, T8, P7, P8, O1, and O2 were collected. )e EEG
signals then were preprocessed in frequencies from 4 to
50Hz. EMOTIV EPOC+ categorizes brainwaves by fre-
quency into four main types: beta, alpha, theta, and delta
using FFT. )e FFToutput is converted to power density (μ
V2/Hz).

4.7. Experimental Protocol. At the beginning of the exper-
iment, two baseline phases for the anterior and posterior
cortex were performed. Electrode positions were topo-
graphically aggregated as frontotemporal cortex and pari-
etooccipital cortex. In a passive view condition, the average
power of frequency bands was recorded and after calculating
the ERS” for the electrodes of interests the passive view
baseline for each participant was set up.

Each trial starts with audio tones for 10 seconds and
prompts the subject to listen to his/her brain and alerts that
the upcoming maze solving task is starting. He/she is en-
couraged to click the left button of the mouse, which sets up
the start of the trial and ERS” recordings for the two con-
ditions, depending on the current mouse event. Time locked
at the start of the trial auditory stimulation evokes bottom-
up audio attention. )is additional condition, bottom-up
audio attention with passive view (AVA), is used as a
neurophysiological indicator for bottom-up audio attention
during amplitude-modulated tone in a range of 290 to
790Hz. Mapping the corresponding frequency bands of
interest to a specific Hz in the human hearing range of
frequencies is evaluated whether the participant is stressed/
excited or relaxed. )e corresponding frequency in Hz,
played by a PC player, correlates with the active brain
rhythms: lower frequencies indicate ERS” in lower bands
and higher frequencies indicate ERS” in high-speed bands,
while the middle indicates modulation of bands power.
Windows with length of 250 or 300 msec and a step of 125 or
150 msec with resolution 256Hz are used. Depending on the
length of the step, the latency is changed; e.g., the oscillatory
rhythms in high β and c bands are accessed each 125 msec,
while the oscillatory rhythms in in θ and α bands are
accessed each 150 msec.

)e integration of the data streaming from the
EPOC+headset to Node-RED is via a custom library of
input nodes, EmotivBCI Node-RED toolbox [77]. )e in-
stallation and the node descriptions are presented in [58].
Node-RED flows of how to design an example of the pro-
posed BCIFS are uploaded in the Node-RED flow library to

be shared with the community [78]. )e first flow consec-
utively registers the EEG data from the headset for the
electrodes and frequency bands of interest. )e second flow
initializes the linguistic variables, fuzzy sets, and performs
the reference phase for the parietooccipital cortex in order to
generate the membership functions. )e third flow opti-
mizes the parameters in the fuzzy membership functions by
DT. )e fourth flow initializes the fuzzy rules and performs
fuzzy inference based on the chosen type of Sugeno-style
aggregation. )e last flow illustrates how to create a front-
end graphical user interface.

4.8. Data Analysis. Event-related bursts in the average
power of oscillatory rhythms relative to a preevent baseline
period at the four frequencies and in EEG epochs are an-
alyzed. )e evoked ERS” were averaged across participants
to produce a grand average in order to discriminate the
bursts, important electrodes, and/or training the fuzzy
membership function and FIS. First, we concatenate all
experiments for the user electrode arrays (column vectors)
into one big matrix and label them for the three conditions.
)en, data is ready to use for post hoc interpretation of the
results by statistical and ML models in MATLAB.

4.8.1. EEG Data Analysis. )e proposed BCIFS was used for
the analysis of bursts in the average power of frequency
bands of interest in each single epoch. EEG power has been
labelled for each trial and in each epoch from the status of
the mouse event. )us, each training sample has a label
associating the current condition of one single class C-
visuospatial attention (liC). )e 1st label associates the AVA
condition; the 2nd associates FCMs condition, while the 3rd
associates VST condition. )e ERS” (bursts) over scalp site
and bandwidth were evaluated in windows with a length of
250 (300) msec and a step of 125 (150) msec. )ese overall
latencies are suggested for developers and are in line with
[79] that reported short narrowband bursts (<150 msec) and
the authors in [80] stated that a duration of “c bursts” is
100–200 msec with similar duration of θ cycle. Only critical
changes at source and scalp level are described in the fuzzy
rules. )e output is used to differentiate the condition. For
instance, the next rule expresses the functional connectivity
at temporoparietal level:

IF “P8_T_ERS”300”, “high”, “T8_G_ERS”250”, “high”,
THEN l1C,

where P8_T_ERS is a linguistics variable with fuzzy set
“high.” Other options are “desync,” “low,” “ref,” and “ar-
tifact.” Artifacts that arise from either low device connec-
tivity or blink/ocular/muscle movements showed ERS” with
values over 150 units for low frequencies and 10 for higher.
Artifacts were removed at reference phase and corrected
during the test. P8_T_ERS”300 means that a positive-going θ
power over a right-parietal electrode site displays maximum
rate for the power increase with a peak latency of 300 msec.

)e membership functions for the fuzzy sets are built
during the baseline phase:
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μAref m − std∗c1( , (m − std), (m + std), m + std∗c1(  ,

(12)

μAlow (m + std), m + std∗c1( , m + std∗c2( , m + std∗c3(  ,

(13)

μAlow m + std∗c2( , m + std∗c3( , m + std∗3c3( , m + std∗3c3(  ,

(14)

where ci are tuning parameters,m is the mean, and std is the
standard deviation for 100 samples. )e values of ci can be
predefined based on experience or obtained by an optimi-
zation procedure, such as genetic algorithm (GA) and
particle swarm optimization.We first defined the parameters
experimentally as c1 � 1.2, c2 �1.4, and c3 � 2. )en, a digital
twin-based optimization was designed and implemented
based on the concept described in [81]. GA was used as a
heuristics and is linked to the digital twin (DT). )e pop-
ulation evaluation is performed in the DTwith real EEG data
in consecutive time windows. We constructed individual
cost functions that define the individual error for each
electrode and frequency band of interest. Figure 5 illustrates
the flow diagram of the digital twin-based optimization
procedure, where GA f

iw and DT f

iw tune the fuzzy mem-
bership functions for the electrode i, window with a size
w, and band f of interest, i.e., GA BH

P8 and DT BH
P8 .

For each solution in the population f
iw , the fuzzy

membership functions (12) and (13) in the fuzzy rules (15)
and (16) are updated according to the new genes (tuning
parameters) and each chromosome in the population is
evaluated by the DT f

iw . GA f
iw minimizes the error by (17),

which measures the difference between the simulated and
real ERS”. )e idea of the cost function is to compute the
error for noncompliance with the already measured EEG
oscillatory rhythms during the baseline phase. )e fuzzy
membership functions for the fuzzy sets “reference” and
“low” (μ Aref and μ Alow) should map adequately the dynamic
of the BCI system in a passive view condition; i.e., μ Aref
should be 1 and μ Alow should be 0. )us, the temporal
behaviour of the error within the several consecutive time
windows serves as a cost function and after the last gen-
eration it should be minimum and close to zero.

R1: IFx
f
iw is Aref THENy1 � 1 − μAref

, (15)

R2: IFx
f
iw isAlow THENy2 � μAlow

, (16)

E x
f
iw  �

μA1
x

f
iw ∗y1 + μA2

x
f
iw ∗y2

μA1
x

f
iw  + μA2

x
f
iw 

, (17)

where, i ∈ 1, . . . , e′ , e′ is the number of electrodes of
interest (e′ < e) and f is the frequency of interest for i-th
electrode.

)e cost function is described by TSK fuzzy rules of zero
order (15) and (16), and the rules are aggregated and
defuzzified by using the weighted average (10). )en, the GA
receives the costs of the current population. E (xf

iw) is 0 when

the ERS” f

iw is in the baseline interval that results in a
membership function close to 1 and by tuning the pa-
rameters c1, c2, and c3 in (12) and (13) the GA tries to
minimize the cost function by selecting the best offspring
after parents’ mating and mutation. )e optimization iter-
ates to some ending condition; however, we found out that
decent results could be obtained after only 10 generations
with setting parameters: population size (the number of
chromosomes in each generation) 40, parents mating 20,
and 3 genes (the tuning parameters: c1, c2, and c3). )e
duration was about 2.5minutes that did not cause users to
become fatigued during the training stage. By analogy, the
DT-based optimization was used to refine the coefficient c3
for the condition FCMs (forming of cognitive maps). During
this training, the fuzzy rules R3 (18) and R4 (19) were used. In
order to minimize the error by (17), μ Ahigh (14) should be 1
and μ Aref should be 0.

R3: IFx
f

iw isAref THENy1 � μAref
, (18)

R4: IFx
f

iw isAhigh THENy2 � 1 − μAhigh
. (19)

Since the coefficients slightly fluctuate for the different
electrodes and bands, and across users, the coefficients
typically were in the following ranges: c1 � [0.9÷1.3],
c2 � [1.4÷1.6], and c3 � [1.9÷ 2.2]. )e implementation in
Node-RED is illustrated in Figure 6. )e flow in JSON
format is available in the Node-RED library [78].

After tuning the parameters of the fuzzy sets, the FRB
was set up to test the three conditions. )e following FRB is
an example of how to test the EEG oscillatory rhythms
correlating with label 1 with contradictions in assumptions:

Run the streaming 
of EEG time series 

Begin

End

Last
generation?

1

0

Mutationiw
f

Create a new
populationiw

f

Digital twiniw
f

Initializing TSK FISiw
f

for the electrodei 
and band of interestf

Change parameters 
of the FMFsiw

f 
fuzzify evoked ERS’’iw

f

Compute the erroriw
f

for non-compliance 
with the baseline 
(or condition2)

Update FMFs
in TSKi system

iw
f

Parents mating
crossoveriw

f

Evaluate the
populationiw

f

Genetic algorithmiw
f

Figure 5: Flow diagram of the digital twin-based optimization
procedure.
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FR1: IF “T7_A_ ERS”300” is “high” THEN l1C

FR14: IF “T7_T_ ERS”300” is “high” and “P7_T_
ERS”300” is “high” THEN l1C

FR15: IF “T7_BH_ ERS”250” is “high” and “T8_BH_
ERS”250” is “high” THEN l1C

We analyzed more rules that mirror the different bursts
in ERS/ERD during processing external audio inputs be-
cause the underlying band during audio stimulation is still
strongly debated in the literature. Such rules that run si-
multaneously are FR11(T8BH); FR19(P6G); FR21(F7G);
FR34(F8T); FR35(T7T); FR36(T8T); and FR39(R-T).

4.8.2. Statistical Data Analysis. For statistical analysis of
EEG data, the statistic package of MATLAB was used. An
ANOVA compared ERS” for the band of interest on EEG
scalp level between AVA, FCMs, and VST conditions. )e
statistical p value is commonly used to express the signif-
icance of research findings; however, according to the
criticism in [82] that a single p value cannot meaningfully
determine which pairs of means (groups) are significantly
different for a given hypothesis, we use statistics and ma-
chine learning methods in MATLAB for multiple com-
parison based on Bonferroni approach to perform multiple t
tests with statistically highly significant p< 0.01.

From the post hoc scientific hypothesis testing, the
electrodes and frequency bands of interest are discriminated
and irrelevant features discarded.)us, the system designers
reduce the high multidimensional input space (resulting
from multichannel and frequency bands) in the antecedents
of the fuzzy rules.

4.8.3. Machine Learning Data Analysis. Since EEG power
has been labelled for each trial and stimulus, we used su-
pervised machine learning-based classification approaches.
In order to classify the three conditions during the spatial
navigation, we trained a fuzzy classifier proposed in [54]

from the input-output data for ERS”. We slightly modify the
criteria for the rule consolidation in order to keep all sparse
data that are important when the bursts in the oscillatory
rhythms are evaluated. During the consolidation stage, the
rules are ranked not only by their strength (the number of
samples they govern) but also by the global classification
error of the rule. )e number of iterations was 15, defined
based on the consolidation stabilization (i.e., there are no
more accepted transfers). )e fuzzy classifier by RGRC was
implemented by the single winner approach [51].

5. Results and Discussion

5.1. EEG Data. )e bursts in cut-off frequencies statistically
were obtained by ANOVA and post hoc multiple com-
parison tests. ANOVA yielded a significant effect on the
three conditions, showing an increase of ERS” in relation to
baseline. VMST activated functional connectivity from
frontal to parietal and occipital regions, as can be seen in
Figures 7 and 8, reflecting the visual information processing
and path finding processing with significant differences
between the left and right hemispheres. )e sites exhibiting
high positive ERS” far exceeded the baseline at each fre-
quency showing that the dominant is high-frequency β band
(18–25Hz) in the right parietal site (Figures 9 and 10). We
explain this with the type of mazes that are “hard” and with
discrimination difficulties. )is is in line with the results in
[83] claiming that the increased parietal β activity in the right
temporoparietal region correlates with improving the per-
ception of crowded stimuli. Similar results that a short
narrowband burst of β waves correlated with memory and
movement were reported in [79].

)e detected high parietal c activity is thought to reflect
the visuospatial processing and ERS” increase with the
difficulty of the task; thus, higher c is associated with the
FCMs condition (compare the values for c bursts in
Figures 7(b) and 7(c)). Other bursts in c activity were ob-
served in the temporal and occipital regions that were in line

Figure 6: Digital twin-based optimization by GA implemented in Node-RED.
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with studies reporting oscillatory activity during spatial
navigation [68, 69, 84, 85]. Riddle et al. in [68] reported high
β and c in frontal and parietal cortex during visual search
tasks. Herrmann et al. [84] proved that early evoked c ac-
tivity (50–150 msec) reflected allocating attention to a se-
lected object and comparison with the templates in WM.
Hong et al. in [69] proved that functional brain networks in
β and c bands were integrated in different ways during
attentional state comparing to passive view state. Howard
et al. in [85] showed that c band power in the PFC increased
directly and approximately linearly withWM load and this is
in line with the decreased c burst in Figure 7(c).

In consistence with White [86], we localized functional
connectivity of θ and c bursts in right temporal and parietal
regions during spatial navigation in both conditions. We
gained this by designing fuzzy rules that consist of more than

one linguistic variable to evaluate the coherence among the
different electrodes and bands in one IF-THEN rule. )is
functional connectivity between θ and c can be observed
from FR4 (T8TG) in Figures 9–11. FR4 combines the lin-
guistic variables for T8_T_ERS”250 and T8_G_ERS”250
with fuzzy sets “high.” )us, this fuzzy rule has specific
functional significance for the evoked neuronal assembly.
ERS” shows high positive increase that far exceeded the AVA
condition (p< 0.001). )e ERS” for temporal θ and c is
higher in FCMs than in VST. )is also can be seen in Ta-
bles 1 and 2 where p values of for T8TG are statistically
significant (in bold). We explain this with increased task
difficulties and corresponding working memory load that is
in line withMeltzer et al. [87] who associated the increases in
θ with α power as most prevalent in frontal midline cortex.
Our post hoc multiple comparison with type of critical value

(a)

(b)

(c)

Figure 7: Multiple comparisons of ERS” means in frequency bands of interest.)e blue points denote the statistically significance of c band.
(a) AVA. (b) FCMs. (c) VST.
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“Bonferroni” (that rejects the null hypothesis at the 1%
significance level) showed an increase ERS” in c and in-
creased frontal θ with increasing cognitive demand. p values
(Table 2) that proved this were for the rules AF3T, AF4T,
F4T, FT (frontal θ), O2G, and P8G. )is is in line with
Lisman et al. [88], who mirrored the effects of working
memory load with c power increases. He determined θ/c
coupling as a neural coding system beyond the hippocampus
and most common in the occipital lobe.

We did not discover main frontal θ bursts that are not in
contradiction with Caplan et al. [89], who reported that the
dominant frequency they found during virtual maze learning
occurred within θ band. We explained this with the findings in
[72] that θ increased at the start of the encoding inWMand did
not decrease until the end of a trial. In order to detect this
activity, we need to evaluate also the first derivative, not only

the second one. Meanwhile, we found θ bursts in the occipital
and temporoparietal regions (see p values for TPRT, T7T, and
O2T). )e parietal θ showed significant differences in the left
and right lobe between conditions. Also, ERS” for the parietal θ
was higher in FCMs condition than in VST (Table 2: p values
for P8T). Figure 10 illustrates that almost all θ burst increased
in ERS” and that the electrode AF3 shows the highest θ burst.
)is was in line with the results in [63, 72] associating θ
rhythms with maintenance of stored information during the
“retention” process.

α increased in the temporoparietal sites and had a clear
lateralization with higher ERS” in parietal regions of the
right hemisphere. )is can be seen in Table 1 and Table 2 (p
values for P8A) and is in line with results in [90] reporting
the functional significance of EEG α power increases that are
observed in various memory tasks and conflicting thinking.
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Figure 8: Multiple comparisons of ERS” means at scalp level. )e blue points denote the statistically significance of the parietal site. (a)
AVA. (b) FCMs. (c) VST.
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After analyzing whether the audio stimuli evoked
high ERS”, we confirmed the neuroscience findings in
[91] that the low c responses (40 Hz) were evident 80–120
msec after amplitude-modulated tone and were localized
on the lateral right temporal region. We also observed

high ERS” for θ and c, as well as synchronization in the
temporal regions. According to our results, the elec-
trodes contributing to hearing are distributed along
posterior right (T8, P8, and O2) and posterior left (T7
and P7) scalp sites.
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Figure 9: Multiple comparisons of ERS” means at source and site level for AVA.)e blue points denote statistically equal ERS”. c bursts of
electrodes T8, P8, O1, and T7 are significantly different and important, as well as β burst of P8.
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Figure 10: Multiple comparisons of ERS” means at source and site level for FCMs. )e blue points denote statistically equal ERS” for θ
bursts and electrode AF3 shows the highest θ burst.
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5.2. System Performance. We designed a BCI system and
translated the published neuroexpertise that correlates with
sensory-evoked and event-related cognitive tasks in visuo-
spatial navigation into 44 interpretable fuzzy rules. After
averaging the data from the experimental sessions across all

participants, the data was ready to use for post hoc inter-
pretation of the results by different statistical or ML models
developed in MATLAB.

)e MATLAB scripts of how to average the data across
all participants and how to perform the multiple comparison
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Figure 11:Multiple comparisons of ERS”means at source and site level for VST.)e blue point denotes that only one c burst of electrode P8
is significantly different and important.

Table 1: Statistically high significant results (p<0.01) from the paired-sample t test of ERS” for each rule between condition 1 and condition 2.

T7A p � 0.16 AFT p< 0.01 P8T p< 0.01 T8TG p � 0.99 FT p< 0.01
FRT p< 0.01 AF4B p < 0.01 F8B p < 0.01 FB p < 0.01 F7B p � 0.16
T8B p< 0.01 FRRT p � 0.15 P8A p< 0.01 TPLT p< 0.01 TB p � 0.27
F3B p < 0.01 F4B p < 0.01 P7B p � 0.95 T8G p< 0.01 P8G p< 0.05
TPRT p< 0.01 F7G p � 0.56 F8G p � 0.68 O1G p � 0.20 O2G p< 0.05
OT p � 0.24 O2T p< 0.05 P8B p � 0.37 AF3T p< 0.01 AF4T p < 0.01
F3T p < 0.01 F4T p < 0.01 F8T p � 0.11 T7T p< 0.01 T8T p � 0.57
T8A p � 0.06 TOGT p � 0.20 RT p � 0.054 T7G p � 0.94 AF4G p< 0.01
F3G p< 0.01 P7A p< 0.01 O1A p< 0.01 O2A p � 0.16

Table 2: Statistically high significant results (p<0.01) from the paired-sample t test of ERS” for each rule between condition 2 and condition 3.

T7A p � 0.55 AFT p< 0.01 P8T p< 0.01 T8TG p � 0.43 FT p< 0.01
FRT p< 0.01 AF4B p < 0.01 F8B p < 0.01 FB p < 0.01 F7B p < 0.01
T8B p � 0.15 FRRT p � 0.30 P8A p< 0.01 TPLT p � 0.50 TB p< 0.01
F3B p < 0.01 F4B p< 0.01 P7B p < 0.01 T8G p � 0.265 P8G p< 0.01
TPRT p � 0.77 F7G p< 0.05 F8G p � 0.69 O1G p � 0.33 O2G p< 0.01
OT p � 0.42 O2T p � 0.33 P8B p< 0.01 AF3T p< 0.01 AF4T p < 0.01
F3T p � 0.34 F4T p < 0.01 F8T p � 0.22 T7T p � 0.86 T8T p � 0.75
T8A p< 0.01 TOGT p � 0.46 RT p< 0.01 T7G p � 0.52 AF4G p< 0.01
F3G p � 0.38 P7A p � 0.92 O1A p � 0.61 O2A p � 0.95
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statistics can be seen in [92]. Based on the post hoc statistical
analysis in MATLAB, we determined the candidate ante-
cedents of significance.

We tested in MATLAB different fuzzy membership
functions and the feasibility of several fuzzy, neurofuzzy, and
fuzzy clustering approaches for post hoc evaluation of the
neuronal activity and connectivity during top-down
visuospatial selective attention. We developed in MATLAB
the fuzzy rule-based classifier by RGRC (described in
Subsection 4.8.3) and used membership functions in [54].
)ey are built upon two Gaussian curves defined by the
positions of the peaks and standard deviations. )e em-
bedded Adaptive Neurofuzzy Inference System of Sugeno-
type (ANFIS) in MATLAB [93] has been tested for training
the membership function parameters. ANFIS combines the
least-squares and backpropagation gradient descent
methods. We considered the embedded fuzzy C-means
(FCM) clustering in MATLAB [94], as well.

We trained these three fuzzy classifiers with the averaged
numerical data from the experiments. )e observations are

as follows: (1) interval type-2 fuzzy membership function
cannot be applied; (2) the ANFIS data did not match the
training data even with an increase of the number of
membership functions to 5 and the training epochs to 40
(Figure 12); (3) the RGRC showed better accuracy and was
the most suitable for discriminating the burst in the oscil-
latory rhythms. )e obtained results in Figure 13 can be
compared with the FCM clustering in Figure 13(a). Prob-
ably, the classification accuracy of the used models depends
on the properties of the dataset. ANFIS (Figure 12) and FCM
clustering (Figure 13(a)) interpreted the sparse data like
outliers, while the metaheuristic approach by RGRC
(Figure 13(b)) evaluated and weighted the sparse data as
specific information for functional connectivity.

In the future, the principles of transductive reasoning
[95] will be tested in MATLAB by analogy to the proposed
algorithm in [96]. It generates a local model at a single point
of the workspace and for each new data to be processed the
closest examples are selected from the known data.)emain
idea is to assign more importance (weight) to the specific
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information related to the data to be processed than to the
general information provided by the entire training set [96].

By the experimental results, we confirmed the published
neuroscience findings and provided causal evidence that the
top-down visuospatial attention was mirrored in the oscil-
latory rhythms and β and c rhythms had distinct functional
roles. )e found time locked presence of the ERS” at source
and scalp level can be used as a general metric for inter-
pretation of the spatiotemporal dynamics of the passive or
evoked oscillatory rhythms. )ese results can be used for
real-time attentional state classification in navigational tasks
or for neurofeedback training of the top-down visuospatial
attention.

6. Conclusion

A new brain state decoding is proposed that can be used as a
feasible metric for interpretation of the spatiotemporal
dynamics of the evoked neurooscillations.)is newmetric is
exploited in the proposed BCI fuzzy shell for developing
either passive or event-related BCIs, which can be used for
control, monitoring, or research. )e designed BCI works in
IoT, in real time, and is device and service independent. )e
feasibility of the proposed BCI fuzzy shell was proven by real
experiments. From them, we observed that β and c bursts
can be detected in real time and strongly believe in the
reproducibility and ubiquity of the new proposed features
that rate the increase of the evoked synchronization and
desynchronization of brain rhythms at scalp level in re-
sponse to time. )e proposed BCIFS intends to support a
wide range of EEG-based BCI applications and not a lot of
skills in MATLAB programming and other software lan-
guages are required to support brain computations of the
neuroscientists. Furthermore, the proposed software can be
used for performing EEG experiments remotely, which is
rather valuable nowadays.
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[73] P. Fries, J.-H. Schröder, P. R. Roelfsema, W. Singer, and
A. K. Engel, “Oscillatory neuronal synchronization in primary
visual cortex as a correlate of stimulus selection,” De Journal
of Neuroscience, vol. 22, no. 9, pp. 3739–3754, 2002.

[74] S. Sandkühler and J. Bhattacharya, “Deconstructing insight:
EEG correlates of insightful problem solving,” PLoS ONE,
vol. 3, no. 1, e1459.

[75] E. C. Tolman, “Cognitive maps in rats andmen,” Psychological
Review, vol. 55, no. 4, pp. 189–208, 1948.

[76] E. P. O. C. Emotiv, “)e most credible and cost-effective
mobile EEG Brainwear device,” 2020.

[77] EmotivBCI Node-RED Toolbox.
[78] Fuzzy shell for developing a custom EEG BCI, https://flows.

nodered.org/collection/-bU3rdvsYIpL.
[79] G. Karvat, A. Schneider, M. Alyahyay et al., “Real-time

detection of neural oscillation bursts allows behaviourally
relevant neurofeedback,” Communication in Biology, vol. 3,
2020.

[80] M. F. Carr, M. P. Karlsson, and L. M. Frank, “Transient slow
gamma synchrony underlies hippocampal memory replay,”
Neuron, vol. 75, no. 4, pp. 700–713, 2012.

[81] R. H. Guerra, R. Quiza, A. Villalonga, J. Arenas, and
F. Castano, “Digital twin-based optimization for ultrapreci-
sion motion systems with backlash and friction,” IEEE Access,
vol. 7, pp. 93462–93472, 2019.

[82] B. Alger, “Scientific hypothesis-testing strengthens neuro-
science research,” Eneuro, vol. 8, no. 7, 2020.

[83] L. Battaglini, A. Ghiani, C. Casco, and L. Ronconi, “Parietal
tACS at beta frequency improves vision in a crowding re-
gime,” Neuroimage, vol. 208, 2020.

[84] C. S. Herrmann and A. Mecklinger, “Gamma activity in
human EEG is related to highspeed memory comparisons
during object selective attention,” Visual Cognition, vol. 8,
no. 3–5, pp. 593–608, 2001.

[85] M. W. Howard, “Gamma oscillations correlate with working
memory load in humans,” Cerebral Cortex, vol. 13, no. 12,
pp. 1369–1374, 2003.

[86] D. J. White, M. Congedo, J. Ciorciari, and R. B. Silberstein,
“Brain oscillatory activity during spatial navigation: theta and
gamma activity link medial temporal and parietal regions,”
Journal of Cognitive Neuroscience, vol. 24, no. 3, pp. 686–697,
2012.

[87] J. A. Meltzer, H. P. Zaveri, I. I. Goncharova et al., “Effects of
working memory load on oscillatory power in human in-
tracranial EEG,” Cerebral Cortex, vol. 18, no. 8, pp. 1843–1855,
2008.

[88] J. E. Lisman and O. Jensen, “)e theta-gamma neural code,”
Neuron, vol. 77, no. 6, pp. 1002–1016, 2013.

[89] J. B. Caplan, J. R. Madsen, and S. Raghavachari, “Distinct
patterns of brain oscillations underlie two basic parameters of
human maze learning,” Journal of Neurophysiology, vol. 86,
no. 1, pp. 368–380, 2001.

[90] M. Kahana, R. J. Schickel, E. Jauk, A. Fink, and
A. C. Neubauer, “Alpha power increases in right parietal
cortex reflects focused internal attention,” Neuropsychologia,
vol. 56, no. 100, pp. 393–400, 2014.

[91] M. C. Cervenka, S. Nagle, and D. Boatman-Reich, “Cortical
high-gamma responses in auditory processing,” American
Journal of Audiology, vol. 20, no. 2, pp. 171–180, 2011.

[92] ANOVA MATLAB script for BCIFS, http://alekova.aabg.eu/
index.php?option=com_content&view=article&id=8.

[93] J. Jang, “ANFIS: adaptive-network-based fuzzy inference
systems,” IEEE Transactions on Systems, Man, and Cyber-
netics, vol. 23, no. No. 3, pp. 665–685, 1993.

[94] J. Bezdec, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, NY, USA, 1981.

[95] Q. Song and N. Kasabov, “A neuro-fuzzy inference method
for transductive reasoning,” IEEE, vol. 13, no. 6, pp. 799–808,
2005.

[96] A. Gajate, R. E. Haber, P. I. Vega, and J. R. Alique, “A
transductive neuro-fuzzy controller: application to a drilling
process,” IEEE Transactions on Neural Networks, vol. 21, no. 7,
pp. 1158–1167, 2010.

Computational Intelligence and Neuroscience 21

https://flows.nodered.org/collection/-bU3rdvsYIpL
https://flows.nodered.org/collection/-bU3rdvsYIpL
http://alekova.aabg.eu/index.php?option=com_content&view=article&id=8
http://alekova.aabg.eu/index.php?option=com_content&view=article&id=8

