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Serum proteomics reveals disorder of lipoprotein
metabolism in sepsis
Xi Liang1,*, Tianzhou Wu1,*, Qi Chen1,* , Jing Jiang1,2, Yongpo Jiang3, Yanyun Ruan1 , Huaping Zhang4, Sheng Zhang3,
Chao Zhang5, Peng Chen5, Yuhang Lv4, Jiaojiao Xin1,2, Dongyan Shi1,2, Xin Chen1,6, Jun Li1,2 , Yinghe Xu4

Sepsis is defined as an organ dysfunction syndrome and it has
high mortality worldwide. This study analysed the proteome of
serum from patients with sepsis to characterize the patho-
logical mechanism and pathways involved in sepsis. A total of
59 patients with sepsis were enrolled for quantitative pro-
teomic analysis. Weighted gene co-expression network anal-
ysis (WGCNA) was performed to construct a co-expression
network specific to sepsis. Key regulatory modules that were
detected were highly correlated with sepsis patients and re-
lated to multiple functional groups, including plasma lipo-
protein particle remodeling, inflammatory response, and
wound healing. Complement activation was significantly asso-
ciated with sepsis-associated encephalopathy. Triglyceride/
cholesterol homeostasis was found to be related to sepsis-
associated acute kidney injury. Twelve hub proteins were iden-
tified, which might be predictive biomarkers of sepsis. External
validation of the hub proteins showed their significantly differ-
ential expression in sepsis patients. This study identified that
plasma lipoprotein processes played a crucial role in sepsis
patients, that complement activation contributed to sepsis-
associated encephalopathy, and that triglyceride/cholesterol
homeostasis was associated with sepsis-associated acute
kidney injury.
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Introduction

Sepsis is a lethal condition defined as an organ dysfunction syn-
drome caused by an uncontrolled inflammatory response to in-
fection. Sepsis is a leading cause of mortality in the intensive care
unit (ICU), with high mortality rates of 10–50%, depending on age
and disease severity (Abe et al, 2020; Markwart et al, 2020). Despite

the high mortality and burden on the health-care service system,
there are few treatments proven to be effective for this syndrome
(Rhee et al, 2019). Thus, novel biomarkers with high sensitivity and
specificity may be helpful for the diagnosis of sepsis and devel-
opment of new therapies.

Different tools have been used to investigate the molecular
mechanisms of sepsis, including proteomics, genomics, tran-
scriptomics, and metabolomics (Wong et al, 2009; Tang et al,
2010; Siqueira-Batista et al, 2012; Wong, 2012; Skibsted et al, 2013).
In particular, liquid chromatography−tandem mass spectrometry
(LC−MS/MS)–based proteomics, which focuses on the whole
protein complements of organisms, tissues, and cells, could
provide high-throughput analysis of proteins, allowing identi-
fication or quantification in a single analysis. Several studies
have used proteomic analysis to investigate specific biomarkers
regulating the pathogenic mechanism of sepsis (Nguyen & Yaffe,
2003; Middleton et al, 2019; Seymour et al, 2019). These studies
were performed by differential proteomic analysis followed by
enrichment analyses to establish functional pathways and were
based on common laboratory indicators or low-throughput tech-
niques. Sepsis is a heterogeneous syndrome, and its pathogenesis
involves thousands of proteins. Identification of co-expression
patterns might provide in-depth knowledge into sepsis-associated
biological pathways.

Weighted gene co-expression network analysis (WGCNA) is a systems
biology approach used for finding gene clusters with highly correlated
expression levels and for relating them to phenotypic traits (Langfelder
& Horvath, 2008). Rather than relating thousands of genes to a clinical
trait, WGCNA focuses on the relationship between a few modules and
the trait (Zhang & Horvath, 2005; Horvath et al, 2006). Recently, WGCNA
has been used to explore co-expression patterns in cancer, ischaemic
stroke and sepsis (Dong et al, 2019; Niemira et al, 2019; Wang et al, 2020;
Zhang et al, 2020). Thus, in this study, we characterized the proteomic
profile in patients with sepsis and identified protein co-expression
modules by using WGCNA that could be used in the diagnosis of sepsis.
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Results

Patients and clinical characteristics

A total of 114 patients with sepsis and 62 healthy normal controls
(NCs) were enrolled in this study, 90 of whom were placed in the
derivation group (59 patients with sepsis and 31 NC), and the
remaining subjects were included in the validation group (Fig 1).
The clinical characteristics of patients with sepsis at admission and
NC subjects who were in the derivation group are summarized in
Table S1. Age and sex did not differ between the patients with sepsis
and NC (P > 0.05). The SOFA score was 6.0 (4.0, 9.0), and the APACHE II
score was 18.5 (11.0, 22.0). Among these patients, one patient had a
gram-positive bacterial infection, more than 37.5% had a gram-
negative bacterial infection, and one patient had a viral infection.
The short-term (28/90 d) mortality of the patients with sepsis was
11.9%/11.9%. The levels of laboratory indices, including white blood
cell count, haemoglobin level, haematocrit, platelet count, albumin
level, aspartate aminotransferase level, and creatinine level, were
significantly worse in the sepsis patients compared to the NC group.

Proteomic characteristics of serum from patients with sepsis

A total of 879 proteins were identified (Table S2). And 396 proteins
with 40% or fewer missing values by label-free quantification were
used in subsequent analysis. A principal component analysis plot
based on the abundance profile of the 396 proteins showed clear
separation between sepsis group and NC group (Fig 2A). To de-
termine whether there were distinct patterns of protein expression
in patients with sepsis, differential expression analysis of pro-
teomic profiles of sepsis and NC groups was performed using a
Benjamini-Hochberg adjusted filter of <0.05 and an expression

difference of 1.5-fold or more (Fig 2B). Subsequently, 62 differen-
tially expressed proteins (DEPs) were identified. Of these proteins,
49 (79.0%) were up-regulated, and 13 (21.0%) were down-regulated
(Fig S1 and Table S3). As shown in Fig 2C–E, the significantly altered
biological process gene ontology (GO) terms acute-phase response,
extracellular matrix organization, and negative regulation of en-
dothelial cell apoptotic process were highly enriched with DEPs.
The cellular component GO terms extracellular exosome/space/
region/matrix were highly enriched with DEPs. The molecular function
GO terms cell adhesion molecule binding, antioxidant activity and
receptor binding were significantly enriched with DEPs.

Construction of a sepsis protein co-expression network

A protein co-expression network was constructed using WGCNA
based on pairwise protein expression correlations extracted from
the matrix of protein expression values. A total of 18 protein high
co-expression modules with common expression patterns across
the cases analysed were identified, which are shown in different
colours (Fig 3A). The size of these modules ranged from 89 proteins
(MEgrey) to 5 proteins (MElightcyan). Two methods were imple-
mented to test the relevance between eachmodule and the disease
status. Greater module significance was considered to correspond to
a greater connection between modules and the disease status, and
the result showed that the significance of the MEturquoise module
was the highest among themodules (Fig 3B). The correlation between
module membership and the disease phenotypes was calculated.
The MEturquoise module was highly correlated with disease status,
with a correlation coefficient of 0.93 (Fig 3C). Based on these two
results, the MEturquoise module was considered the most relevant
module to sepsis.

Functional enrichment analysis of the module most relevant
to sepsis

The MEturquoise module was the key module in this study and was
most relevant to sepsis. To elucidate the pathogenesis of sepsis,
functional enrichment analysis was performed to enrich the bio-
logical processes of eigenproteins of MEturquoise. As a result, 202
GO terms were identified and clustered into 32 groups (Fig 4). We
found that eigenproteins of MEturquoise were enriched in plasma
lipoprotein particle remodeling, regulation of lipid transport, choles-
terol biosynthetic processes, acute inflammatory responses, regulation
of wound healing, cellular detoxification and regulation of the apo-
ptotic signaling pathway. These results indicated that regulation
of plasma lipoprotein particle levels and lipid metabolism might
be central to the pathophysiology of sepsis.

Alteration of the protein network module in sepsis patients with
organ dysfunction

To explore the specificity of the network changes for patients with
sepsis-associated encephalopathy (SAE), the correlation between
module membership and different encephalopathy phenotypes
was calculated (Fig 5A [left]). The results showed that the MEyellow
module was highly associated with SAE patients. The eigenprotein
value of the MEyellow module was significantly changed across

Figure 1. Overview of the study design and patient group allocation.
Proteomic analysis was used to identify sepsis-related marker candidates,
which were validated on an external group using ELISA.
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patients with SAE, patients without SAE and NC (Fig 5A [right upper]).
Functional enrichment analysis of the MEyellow module was per-
formed to reveal the pathophysiological changes of patients with SAE.
The results illustrated that GO terms related to complement activation
were the main enriched biological processes (Fig 5A [right bottom]).
The immune response and cell adhesion-related biological processes
were also among the proteins enriched in the MEyellow module.

The results of the correlation analysis showed that the MEred
module was highly correlated with sepsis-associated acute kidney
injury (AKI), in contrast to MEturquoise (Fig 5B [left]). The eigen-
protein value of the MEred module was significantly altered across
the different phenotypes of AKI (Fig 5B [right upper]). Functional

enrichment analysis showed that lipoprotein metabolic process,
triglyceride homeostasis, and negative regulation of endopeptidase
activity were enriched with proteins of the MEred module (Fig 5B
[right bottom]).

Identification and validation of sepsis-associated proteins

A total of 81 proteins were connected to the MEturquoise module. A
scatterplot showed the correlation of module memberships of
these proteins in the MEturquoise module versus the significance
of these proteins for sepsis status (correlation coefficient = 0.79,
P = 9.9 × 10−86) (Fig 6A). To further investigate the key regulatory

Figure 2. Proteomic landscape of serum from patients with sepsis and healthy controls.
(A) Principal component analysis showing clear separation between patients with sepsis and healthy controls. (B) Volcano plot of differentially expressed proteins, with
up- and down-regulated expression coloured red and blue respectively. (C, D, E) Summary of functional annotation for sepsis by gene ontology biological processes (C),
cellular components (D), and molecular functions (E) related to the differentially expressed proteins.
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proteins of the MEturquoise module, a weighted sub-network of
proteins in the module was constructed. The results showed that
12 proteins were identified as hub proteins of the network (Fig 6B), and
they were specifically expressed in the patients with sepsis (Fig 6C).

To further increase the reliability of the results, four proteins
(CRP, LBP, A2GL, and SAA1) were randomly selected for validation
using ELISA. The clinical characteristics of the patients with sepsis
in the external validation group were similar to those of the

Figure 3. Module detection and protein co-expression network construction using weighted gene co-expression network analysis.
(A) Cluster dendrogram and 18 distinct protein co-expression modules defined by dendrogram branch cutting of all proteins of patients with sepsis and healthy
controls. (B) Bar plot of the significance of each module associated with sepsis. (C) Heat map representation of Pearson’s correlation between module eigenproteins and
different phenotypes.
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patients in the derivation group (Table 1). The results showed that
the expression pattern of the four proteins was consistent with that
in the initial screening analysis (Fig 6D and E). These observations
confirmed that the expression levels of hub proteins are highly
specific and can be used as sensitive biomarkers for diagnosing
patients with sepsis.

Discussion

Sepsis is a clinical emergency due to multiorgan dysfunction, which
carries a high risk of mortality (Rhodes et al, 2017). Elucidating the
pathological processes and identifying the diagnostic biomarkers
of sepsis could help to reduce mortality in the clinic. In this study,
we analysed 90 serum samples from patients with sepsis and NC
subjects by LC−MS/MS-based proteomics. Differential expression
analysis and co-expression network analysis were used to view the
proteomic changes that occurred during progression from the

normal to sepsis state. According to ELISA-based validation, our
proteomic analysis results had high reliability and quality.

Based on differential expression analysis, 62 DEPs were iden-
tified between patients with sepsis and NC subjects. Functional
enrichment analysis of these DEPs showed that the biological
process GO terms inflammatory response, extracellular matrix-
related processes, and reactive oxygen species-related processes
were significantly enriched. The extracellular matrix plays an im-
portant role in the migration of leukocytes from the bloodstream to
sites of inflammation (Lorente et al, 2009). Reactive oxygen species
induce renal tubular injury or renal vascular injury during sepsis
(Schrier & Wang, 2004). The results aligned with the characteristic
pathogenesis of sepsis.

In this study, WGCNA was used to construct a protein co-
expression network. WGCNA is a useful algorithm that can iden-
tify similar expression patternmodules and investigate the complex
relationship between these modules and clinical traits (Barabási et
al, 2011). Pathway changes across the different disease status can

Figure 4. The pathway network of significantly enriched gene ontology terms in the MEturquoise module.
Each node represents a gene ontology term. The size of the node represents the significance of the node. Different functional groups are marked with different colours.
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Figure 5. Protein network module changes in patients with sepsis-associated encephalopathy (SAE) and sepsis-associated acute kidney injury (AKI).
(A) (Left) Heatmap representation of the relationship betweenmodule eigenproteins and different phenotypes of SAE. (Right upper) Synthetic eigenprotein analysis for
the pink module, which is highly correlated with SAE patients, except the turquoise module. (Right bottom) Gene Ontology terms enriched in pink modules. (A, B) Similar
to (A), association of network modules in sepsis-associated AKI. (Left) Heat map representation of the relationship between module eigenproteins and different
phenotypes of AKI. (Right upper) Synthetic eigenprotein analysis for the black module, which is highly correlated with sepsis-associated AKI patients, except the
turquoise module. (Right bottom) Gene ontology terms enriched in the black module. Data information: In (A, B), data are presented as median with IQR. ****P-value <
0.0001; ***P-value < 0.001; **P-value < 0.01; *P-value < 0.05 (Kruskal–Wallis test).
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be recognized, providing new insight into biological networks
related to clinical traits of interest. Proteins in the same module
are considered to be functionally associated with each other. The
other notable advantage of WGCNA is that it can identify the
interactions among proteins in different co-expression modules.
WGCNA has been used to explore co-expression patterns in dif-
ferent fields, such as cancer (Thorsson et al, 2018) and Alzheimer’s
disease (Johnson et al, 2020), and is useful in identifying potential
signature clusters or biomarkers of targeted phenotypic traits
(Chou et al, 2014).

The turquoise module was found to be strongly correlated with
patients with sepsis by WGCNA. Notably, processes related to
plasma lipoprotein and lipid metabolism were the most changed
functional categories of the turquoise module, illustrating that
lipoprotein and lipid metabolism might play a significant role in
patients with sepsis. Lipoprotein particles protect the endothelium
(Rubin et al, 1991), and they could play crucial antiapoptosis and
antioxidation roles. In addition, lipoproteins are reportedly in-
volved in innate immunity (Remmerie & Scott, 2018). Changes in
lipoproteins are also related to a variety of inflammatory disorders

Figure 6. Sepsis-related potential biomarkers from the module highly correlated to sepsis.
(A) Scatter plot of module eigenproteins in the turquoisemodule. (B)Heatmap representation depicting the topological overlapmatrix among the 12 hub proteins. Light
colours represent low overlap, and progressively darker red represents higher overlap. (C) Unsupervised hierarchical cluster analysis of the abundance profile of the 12 hub
proteins in patients with sepsis and healthy controls. Label-free quantification protein intensities were log2-transformed and normalized into Z-scores by rows. (D) The
abundance of the 12 hub proteins in thederivation group. (E) ELISA-based validation of four randomly selectedbiomarkers of sepsis development. (D, E)Data information: In
(D, E), data are presented as the mean ± SD or median with IQR ****P-value < 0.0001; ***P-value < 0.001; **P-value < 0.01; *P-value < 0.05 (Mann–Whitney U test).

Lipoprotein metabolism disorder in sepsis Liang et al. https://doi.org/10.26508/lsa.202101091 vol 4 | no 10 | e202101091 7 of 13

https://doi.org/10.26508/lsa.202101091


(van Leeuwen et al, 2003). A recent study revealed that oxidized low-
density lipoprotein along with lipopolysaccharide could induce
monocytes to promote inflammasome-mediated adaptive immu-
nity (Christ et al, 2018). Overall, lipoprotein and lipid metabolism
might be central to the pathophysiology of patients with sepsis. In
addition, the inflammatory response, wound healing, blood co-
agulation and the apoptotic signaling pathway were also identified.

These results suggested that co-expression network analysis could
identify a set of proteins with similarly altered expression not
restricted by the significance of the changes.

The expression level of the yellow module increased in the pa-
tients with SAE. The yellow module was mainly enriched in com-
plement activation, suggesting that complement-related immunity
may drive themain pathophysiology of patients with SAE. This finding

Table 1. Characteristics of enrolled patients with sepsis included in the derivation group and validation group.

Derivation group Validation group P-value

N 59 55

Male (%) 33 (55.9%) 31 (56.4%) 0.696

Age (yr) 71.0 (61.0, 78.0) 75.0 (64.0, 84.7) 0.067

Laboratory data

Mean arterial pressure (mm Hg) 79.3 (71.5, 90.2) 77.6 (68.7, 90.0) 0.610

White blood cell count (109/L) 12.8 (7.6, 18.4) 12.4 (7.4, 18.4) 0.933

Haemoglobin (g/l) 114.5 (92.7, 127.0) 107.0 (83.0, 129.5) 0.432

Haematocrit (%) 33.9 (28.3, 38.3) 32.3 (26.3, 39.3) 0.570

Platelet count (109/L) 136.0 (68.3, 198.7) 133.0 (73.5, 174.0) 0.917

Albumin (g/dl) 27.2 (25.0, 29.95) 27.0 (24.4, 30.8) 0.041

Aspartate aminotransferase (U/l) 46.0 (26.5, 127.5) 40.0 (24.0, 82.0) 0.614

Alanine aminotransferase (U/l) 30.0 (18.0, 68.0) 21.0 (14.0, 42.0) 0.144

Total bilirubin (μmol/l) 15.8 (8.0, 26.1) 15.9 (10.9, 44.2) 0.414

Creatinine (μmol/l) 135.0 (95.0, 218.0) 103.0 (73.5, 199.5) 0.078

INR 1.2 (1.1, 1.3) 1.3 (1.1, 1.4) 0.818

Infection 0.832

Gram-positive bacteria (%) 7 (11.9%) 3 (5.5%)

Gram-negative bacteria (%) 24 (40.7%) 23 (41.8%)

Viral (%) 1 (1.7%) 1 (1.8%)

Other (%) 27 (45.7%) 28 (50.9%)

CRRT 8 (13.6%) 7 (12.7%) 0.246

Vasopressors 0.250

No (%) 32 (54.2%) 33 (60.0%)

Yes (%) 25 (42.4%) 22 (40.0%)

Unknown (%) 2 (3.4%) 0 (0.0%)

Mechanical ventilation 0.555

No (%) 34 (57.6%) 29 (52.7%)

Yes (%) 22 (37.3%) 25 (45.5%)

Unknown (%) 3 (5.1%) 1 (1.8%)

Severity at time of intensive care unit admission

SOFA 6.0 (4.0, 8.7) 6.0 (4.0, 8.0) 0.972

APACHE II 18.0 (11.0, 22.0) 18.0 (13.0, 23.0) 0.293

Mortality

28-d 8 (13.6%) 10 (18.2%) 0.7

90-d 8 (13.6%) 11 (20.0%) 0.39

Data are expressed as the mean ± SD, median (IQR) or number of patients (percentages). Continuous variables were compared by using t test and the Mann-
Whitney U test, and categorical variables were compared by using the χ2 or Fisher’s exact test between the discovery and validation groups. SOFA, Sequential
Organ Failure Assessment on day of sampling. APACHE II, Acute Physiology and Chronic Health Evaluation II. CRRT, Continuous Renal Replacement Therapy.
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is consistent with previous research, which reported that comple-
ment system activation contributes to blood–brain barrier function
in experimental sepsis (Flierl et al, 2009). High-density lipoprotein
cholesterol has been linked to the risk of sepsis-associated AKI
(Roveran Genga et al, 2017). Secreted zinc-dependent endopepti-
dases were correlated to the severity of kidney insufficiency (Zuo et
al, 2021). Further information on patients with SAE and sepsis-
associated AKI should be clarified in future studies.

The hubproteinswithin co-expressionmodulesmost associatedwith
diseasebiologymight be keydrivers of diseasepathogenesis (Huanet al,
2013, 2015). A total of 12 hubproteinswere identifiedas candidateswithin
the turquoise module, which were tightly associated with the prognosis
of sepsis. CRP has been widely used in clinical practice for sepsis, and it
is associatedwith an increased risk of organ failure anddeath (Pierrakos
& Vincent, 2010). Studies have reported that SAA1 and SAA2 are involved
in the biological process of lipoprotein/cholesterol metabolism during
the acute-phase response (Annema et al, 2010). And SAA is correlated
with CRP in patients with septic shock (Orro et al, 2004; Cicarelli et al,
2008). LBP is involved in theproinflammatory response to gram-negative
bacterial infections (Stasi et al, 2017). SAA and LBP serve as traditional
biomarkers for sepsis (Mussap et al, 2013). NUCB1 plays an important
function in the transport of matrix metalloproteinases (Pacheco-
Fernandez et al, 2020), which are regulators of inflammatory pro-
cesses. Fibrinogen plays a critical role in the coagulation cascade and
inflammation (Davalos & Akassoglou, 2012; Feng et al, 2013). Fibrinogen
alpha chain FIBA and fibrinogen beta chain FIBB encode the α and β
subunits of thefibrinogen. A previous study has reported FIBBhaplotype
association with mortality and organ dysfunction in sepsis (Manocha et
al, 2007). Interestingly, a lack of SEPP1 induced neurological dysfunction
in the mice, and SEPP1 can deliver Se to neurons (Solovyev et al, 2018),
illustrating that it might have importance in patients with SAE. S10A9 is
plentiful cytoplasmic proteins of phagocytes, which has been reported
to amplify phagocyte activation during sepsis (Vogl et al, 2007). A2GL had
specific expression in sepsis, which could be as a new biomarker for
sepsis (Gong et al, 2020; Lu et al, 2020). AACT as an inflammation-related
marker (Saetre et al, 2007; Fillman et al, 2013), has been found to sig-
nificantly over-expressed expression in sepsis mediated by glucocor-
ticoids (Gueugneau et al, 2018). These hub proteins may contribute to
improvement of diagnosis and therapeutic decision-making for patients
with sepsis. Our external validation with four randomized proteins
confirmed the same expression trends of proteomic analysis.

In summary, based on a proteomic co-expression network, our
study revealed that lipoprotein-related pathways were the major
altered biological processes in sepsis. The central role of the
complement system in patients with SAE was confirmed. The hub
proteins highly correlated with biological processes were identified,
providing a useful tool for diagnosing sepsis and new insights for
understanding the pathophysiology of sepsis.

Materials and Methods

Study design

Patients with sepsis were prospectively enrolled from three par-
ticipating ICUs between 1 April 2019 and 16 August 2020. The last

follow-up was completed on 20 November 2020. Adult patients
(aged > 18 yr) who were admitted to the ICU with sepsis were
enrolled in the study. The blood samples from patients who di-
agnosed with sepsis were collected at admission of ICU. Detailed
clinical and follow-up data for all enrolled patients were collected
from the electronic data capture system and case report forms.
Sepsis was defined as the presence of an infection combined with
an acute change in SOFA score of 2 or more points (Singer et al,
2016). NC subjects (with a SOFA score of 0 and without infection)
were recruited as the control group from the Physical Examination
Center during the same time. The patients and controls were
randomly allocated into a derivation group and a validation group
(Fig 1). Differential expression analysis and co-expression network
analysis were performed to identify variations in protein levels.
Potential biomarkers were validated by ELISA in serum from 55
subjects with sepsis. The study protocol was approved by the
Clinical Research Ethics Committee of Taizhou Central Hospital
(Taizhou University Hospital) (registration number: 2019-016, prin-
cipal investigator: Yinghe Xu, date of registration: 26 February 2019).
Written informed consent was obtained from all participants or their
legal representative.

Sample preparation for proteomic analysis and ELISA

Blood samples of patients and NC subjects were collected and
allowed to clot at room temperature for 60min. Serumwas separated
by centrifugation at 1,600g for 10 min within 30 min to remove in-
soluble solids and stored at −80°C until proteomic analysis and ELISA
(Tammen, 2008). Removal of high-abundance proteins in serum, such
as albumin and IgG, was performedusing ProteoPrep Blue Albumin&
IgG Depletion Kit (PROTBA; Sigma-Aldrich) according to the manu-
facturer’s instructions. Removal of impurities from the protein extraction
was performed using a 2-D clean kit (GE Healthcare) before the de-
termination of the sample concentration.

LC2MS/MS analysis

The proteins in serumwere digestedwith sequencing-grade trypsin. The
resulting peptidemixtures were subjected to an SMA1000 ultramicro UV
spectrophotometer tomeasure thesupernatant concentration. AWaters
UPLC system was used to separate peptides with a BEH C18 nano-
ACQUITY column (75 μm × 25 cm, 1.7 μm). Proteomic analysis was
performed using nanoflow liquid chromatography (ACQUITY UPLC
system; Waters Co.) coupled with mass spectrometry (Q Exactive
mass spectrometer; Thermo Fisher Scientific). The profile mode of
an Orbitrap at a resolution of 70,000 was used to acquire a full-
mass scan (300––140 m/z). Peptide segments with charges
ranging from +2 to +6 were chosen for further LC−MS/MS analysis.
Fragmentation was performed based on high-energy collisional
dissociation at 27% normalized collision energy and with a res-
olution of 35,000, and the 20 most intense peaks were selected. An
exclusion duration of 20 s was used for dynamic exclusion.

Protein identification and database searching

The spectra generated by LC–MS/MS were searched against Homo
sapiens proteins in the SwissProt database using the MaxQuant
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search engine (version 1.6.1.0). The precursor mass was set to 20
ppm, and the fragment ion mass tolerance was set to 20 ppm.
Methionine oxidation and protein N-terminal acetylation were set
as variable modifications, and carbamidomethyl was set as a fixed
modification. Two missed cleavages for trypsin were allowed. A
false discovery rate of 1% was set at both the peptide and protein
levels to filter the results. MaxQuant with label-free quantification
was used for protein quantification. A minimum peptide ratio
count of two was required, and only unmodified peptides were
used for relative quantification. A total of 879 proteins were
identified from serum samples. The expression matrix was nor-
malized by normalizeBetweenArrays function of the R package
limma, which is an optimal normalization method commonly used
in proteomics data analysis (Zhang et al, 2014). Normalized protein
abundance was log2-transformed and used in all quantitative
analysis. The missing values were imputed with the minimum of
the proteomic data.

Protein co-expression network analysis

Network analysis was performed to identify modules of co-
expressed proteins. The WGCNA package in R was used to
normalize protein abundance to define protein co-expression
networks. The function WGCNA:blockwiseModules() was used with
the following settings: soft threshold power β = 2, deepSplit = 4,
minModuleSize = 10, mergeCutHeight = 0.05, threshPercent = 50,
and mergePercent = 25, and all other parameters were set to the
default. Soft threshold power β defined strong correlations be-
tween proteins and penalized weak correlations. Module eigen-
protein correlation value kME is defined as a module membership
measure, which was calculated by Pearson correlations between
each protein and each module eigenprotein. The percentage of
module members checked for kME overlap of 50% (threshPercent
= 50) and the threshold for merging modules with a high common
kME.intramodule of 25% (mergePercent = 25) were used to reduce
the number of modules. The topological overlap matrix mea-
sured the network connectivity of a protein, which is defined as
the sum of its adjacency with all other proteins for network
generation. Hierarchical clustering analysis was conducted based
on 1-topological overlap matrix, with a merge cutoff height of 0.05,
to classify proteins with similar expression patterns.

Identification of clinically significant modules and candidate
proteins

Module eigenproteins were used as the first principal component
of modules in a given protein expression dataset. To identify
modules highly associated with clinical information, Pearson
correlation was performed between module eigenproteins and
clinical traits. In addition, gene significance was calculated by the
log10 transformation of the P-value in the linear regression be-
tween each gene expression and clinical information value.
Module significance was calculated by the average gene signifi-
cance of all proteins in a module. The module with first-ranked
module significance was considered the one most related to the
clinical information. Hub proteins of the clinically significant
modules were considered candidate proteins that may play an

important role in the pathophysiology of the disease. Hub pro-
teins in this study were defined by a membership value >0.8 and
correlation with clinical traits >0.2.

Functional enrichment analysis

Functional enrichment analysis was performed on altered proteins
and co-expressedmodules highly associated with disease status by
using DAVID 6.8 (Dennis et al, 2003) and ClueGO (Bindea et al, 2009)
to glean a deeper biological understanding of these co-expressed
modules. The significance of functional enrichment analysis was
defined with a false discovery rate <0.05.

Validation by ELISA

To further confirm the results of the proteomic analysis, hub
proteins of modules that were significantly correlated with
clinical traits were randomly validated by ELISAs using external
samples in accordance with the manufacturer’s instructions.
The information of ELISA kits used in this study was provided in
Table S4.

Statistical analysis

The results of the measurements 1 are presented as the mean ±
standard deviation (SD) or median with interquartile range (IQR),
unless otherwise noted. No statistical method was used to pre-
determine sample sizes. Comparisons between patients with
sepsis and subjects of NC were performed using Welch’s t test to
ensure sensitivity, assuming two-tailed distributions. The nor-
mality assumption of Welch’s t test was validated using the
Shapiro–Wilk test when the P-value >0.05 in each compared
group. The non-parametric Mann–Whitney U test was used for the
non-normally distributed data. The Benjamini–Hochberg proce-
dure was used to correct the false discovery rate to control type I
error in multiple tests. Proteins quantified in at least fewer than
40% missing value were included in further analysis. The protein
abundance was normalized by normalizeBetweenArrays function
of the R limma. Log2 transformation of the normalized protein
abundance was performed. The criterion “log2FC > 1.5, adjusted P-
value < 0.05” was used to detect significant changes in protein
levels. Comparisons of categorical variables were performed
using the χ2 test.

All statistical analyses were performed using the R software
package. Principal component analysis was performed by using the
“sva” function. The hub proteins validated via ELISA were identified
using the Mann-Whitney U test. The P-value < 0.05 was considered
significant.
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