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H6PD overexpression promotes ex vivo expansion of human cord 
blood hematopoietic stem cells
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To the Editor:

Ex vivo expansion is one of the potential approaches to over-
come the rarity of of hematopoietic stem cells (HSCs) for 
clinical application. Exploring the mechanism and regula-
tion of ex vivo expansion of cord blood (CB) HSCs may 
facilitate the establishment of efficient ex vivo expansion 
system. Long-term HSCs with high repopulating capacity 
usually stay quiescent and mostly use glycolysis as the major 
metabolic approach[1, 2]. Due to the low mitochondrial met-
abolic activity, ROS level is kept lower in LT-HSCs com-
pared with short-term (ST) HSCs or multipotent progenitors 
(MPPs)[1]. Ectopic accumulation of ROS impairs the quies-
cence and engrafting capacity of LT-HSCs by inducing cell 
differentiation, senescence and apoptosis[3]. NAPDH is a 
major intracellular reducing power, and protects intracellular 

components from ROS induced damage. The pentose phos-
phate pathway is an alternative glucose oxidizing pathway 
for the generation of NADPH, which is essential for reduc-
tive biosynthetic reactions[4]. Pentose phosphate pathway 
is a branch of glycolysis, and the role of key components of 
this pathway in HSC expansion has not been determined.

In order to check the role of pentose phosphate pathway 
in CB HSC expansion, we focused on the two types of rate 
limiting enzymes including H-form glucose-6-phosphate 
dehydrogenase (H6PD), and G-form glucose-6-phosphate 
dehydrogenase (G6PD). We found that G6PD was diffusely 
expressed in the cytoplasma, while H6PD was specifically 
expressed at ER (Supplementary Fig. 1A). Interestingly, 
H6PD OE significantly promoted ex vivo expansion of 
CD34+CD133+ADGRG1+ HSCs and CD34+CD133+ 
HPCs (Supplementary Fig. 1B-D). However, G6PD OE 
had no notable effect on ex  vivo expansion of neither 
CD34+CD133+ADGRG1+ HSCs nor CD34+CD133+ 
HPCs (Supplementary Fig. 1B-D). To further examine the 
role of H6PD in CB HSC expansion, we performed knock-
down experiments using CD34+ cells. Control shRNA or 
H6PD shRNA were transfected into CB CD34+ cells, and 
H6PD was efficiently knocked down by H6PD shRNA (Sup-
plementary Fig. 2A). H6PD KD remarkably suppressed 
ex vivo expansion of CD34+CD133+ADGRG1+ HSCs and 
CD34+CD133+ HPCs(Supplementary Fig. 2B-D).

Next, to determine if H6PD OE expanded CB HSCs are 
functional in vivo, we did limiting dilution analysis (LDA) 
to calculate the number of SCID repopulating cells (SRCs) 
in control vector and H6PD OE CD34+ cells. Poisson dis-
tribution analysis revealed an SRC frequency of 1:2,929 in 
control vector transfected CB CD34+ cells and 1:1009 in 
H6PD OE CB CD34+ cells, suggesting the presence of 341 
SRCs and 991 SRCs (2.9-fold increase) in 1 × 106 ex-vivo 
cultured CD34+ cells (Fig. 1A-C). These data suggests that 
H6PD OE promotes ex vivo expansion of functional HSCs.

In order to investigate the mechanism by which H6PD 
regulates CB HSC expansion, we performed RNA-seq 
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analysis with control shRNA vector -transfected CD34+ 
cells and H6PD shRNA -transfected CD34+ cells. Gene 
Ontology (GO) analysis shew that pathways involved in 
superoxide metabolic process, response to reactive oxy-
gen species (ROS) and hydrogen peroxide are significantly 
activated by loss function of H6PD (Fig. 1D). Besides, 
mutiple apoptotic signaling pathways are also enriched 
by H6PD KD (Fig. 1D). To confirm the above changes, 
we analyzed the level of ROS and the percentage of apop-
totic cells by both performing H6PD OE and KD. H6PD 
KD significantly causes increased apoptosis of CB CD34+ 
cells, while H6PD OE largely suppresses apoptosis in 
ex vivo cultured CB CD34+ cells (Fig. 1E-F). We also 
examined the cell cycle status of control or H6PD OE 
CD34+ cells.The percentage of G0-stage quiescent cells 

in H6PD OE group are significantly higher than that of 
control group (Fig. 1G). H6PD OE markedly suppresses 
accumulation of both mitochondrial ROS and total ROS 
(Fig. 1H-I). These results demonstrate that H6PD pro-
tects CB HSCs from oxidative stress and apoptosis during 
ex vivo culturing.

The functional HSCs in certain numbers of CD34+ cells 
significantly decrease after ex vivo expansion [5]. Mito-
chondrial oxidative stress is highly activated upon ex vivo 
culturing of CB CD34+ HSCs and HPC. Under ex vivo 
expansion induced oxidative stress, functional HSCs were 
enriched in CD34+CD133+ADGRG1+ population [5]. We 
found that OE of H6PD significantly promoted ex vivo 
expansion of CD34+CD133+ADGRG1+ HSCs, which was 
further proved by in vivo transplantation. Mechanistically, 

Fig. 1   H6PD facilitates 
expansion of CB HSCs by 
suppressing ROS generation 
and cell apoptosis (A-C) The 
frequency of human SRCs in 
Ctrl or H6PD transfected CB 
CD34+ cells, as determined by 
LDA. HSC frequencies (line in 
the box) and 95% confidence 
intervals (box) presented as 
the number of SRCs in 1 × 106 
CD34+ cells. (n = 5–10 mice 
per group), *p < 0.05. Poisson 
statistical analysis. (D) Dot 
plot from GO analysis showing 
ROS and apoptosis related 
pathways upregulated in H6PD 
knockdown CD34+ cells. (E-F) 
Dot plots showing the relative 
fold change of Annexin V 
positive CD34+ cells by H6PD 
KD and OE. Data are shown 
as mean ± s.d.. **p < 0.01. 
***p < 0.001. Two-tailed Stu-
dent’s t-test. (G) Statistical data 
showing the percentage of G0, 
G1 and G2/S/M cells in Ctrl 
and H6PD OE CB CD34+ cells. 
Data are shown as mean ± s.d.. 
***p < 0.001. Two-tailed 
Student’s t-test. (H-I) Relative 
mitochondrial (mito) ROS or 
total ROS level in Ctrl or H6PD 
transfected CB CD34+ cells. 
Data are shown as mean ± s.d.. 
***p < 0.001. Two-tailed Stu-
dent’s t-test
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ER localized H6PD negatively regulates ROS generation 
and apoptosis of CB CD34+ HSCs and HPCs. G6PD OE 
has no notable effect on ex vivo expansion of CB HSCs and 
HPCs. It is likely that H6PD governed redox homeostasis 
may be involved in regulation of CB HSC expansion. Our 
study suggests that H6PD protects cells from oxidative 
stress and apoptosis during CB HSC ex vivo expansion, 
thus providing novel insights into the regulation of cell 
fitness under ex vivo culture stress.
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