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The cancer metabolic alteration is considered a hallmark and fast becoming a road for
therapeutic intervention. Mitochondria have been regarded as essential cell elements that
fuel the metabolic needs of most cancer cell types. Leukemia stem cells (LSCs) are a
heterogeneous, highly self-renewing, and pluripotent cell population within leukemic cells.
The most important source of ATP and metabolites to fulfill the bioenergetics and
biosynthetic needs of most cancer stem cells is the mitochondria. In addition,
mitochondria have a core role in autophagy and cell death and are the main source of
reactive oxygen species (ROS) generation. Overall, growing evidence now shows that
mitochondrial activities and pathways have changed to adapt with different types of
leukemia, thus mitochondrial metabolism could be targeted for blood malignancy therapy.
This review focuses on the function of mitochondria in LSC of the different leukemia types.
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INTRODUCTION

Leukemia is described as an excessive division of blood-forming cells, resulting from failure of
hematopoietic stem cell (HSC) death and abrogation of its differentiation (1, 2). Although these
events occur in white blood cells, different blood cells are implicated in leukemia. Commonly, this
kind of cancer is divided into two subtypes such as acute (speedy developing) or chronic (slow
developing) leukemia (3). Hematologic disorders are still the most common cancer worldwide (4).
Leukemia is one of the important causes of mortality in both developed and developing countries; as
a result, it burdens high expenses to health scope (5). It has been predicted that deaths of about 50%
younger patients and 90% older patients are because of acute myeloid leukemia (AML) or acute
lymphoid leukemia (ALL), respectively (6, 7).

Leukemic stem cells (LSCs) are a biologically and functionally defined entity. They are not always
named because they arise from an ordinary stem cell but because they fulfill the standards used to
define ordinary stem cells. LSCs are multipotent, incredibly proliferative, and self-renewing (8).
Cancer stem cell (CSC) is called LSC when it exists in leukemia. It shares many characteristics with
normal HSCs, including being CD38+ CD34− stem cells (9). However, LSCs often upregulate the
expression of other membrane markers such as CD123, TIM3, CD25, CD32, and CD96 that are
absent from HSCs and vary among patients. Moreover, like HSCs and unlike leukemia myeloblasts,
LSCs divide slowly (10). During normal progression from stem cell to progenitor cell to mature cell,
mutations may probably arise at any stage, giving upward thrust to malignancy. Self-renewing HSCs
that carry out genetic and epigenetic modifications can downregulate cell death and boost their self-
renewal capability. A mutation in a normal stem cell can lead to the formation of a unit that could be
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considered an LSC. However, there may be experimental
evidence suggesting that mutations in progenitor cells that do
not have the complete characters of a stem cell can also lead to
initiation and maintenance of the leukemic disease (11). A
mutation of some genes (SRSF2, DNMT3A) in normal stem
cells can lead to the formation of pre-leukemic stem cell (pre-
LSC), while such pre-LSCs are capable of giving rise to healthy
blood and immune cells. Additional mutations in CCAAT-
enhancer-binding protein alpha (CEBPA) and nucleophosmin
(NPM1) can cause a complete block in differentiation and
thereby result in malignant expansion of aberrant progenitor
cells that could be considered LSCs (Figure 1) (12). However,
there may be experimental evidence suggesting that mutations in
progenitor cells that do not have the complete characteristics of a
stem cell can also lead to initiation and maintenance of the
leukemic disease. The mutations of genes encoding
mitochondrial enzymes, FMS-like tyrosine kinase-3 internal
tandem duplication (FLT3-ITD) and isocitrate dehydrogenase
(IDH), play a vital role in leukemia cell survival and
chemoresistance. Recently, the IDH mutations offer the
evidence for the relat ion between metabolism and
leukemogenesis. These mutations play a pivotal role in the
reprogramming of energetic metabolism in leukemic cells and
in deregulation of ROS production. IDH mutations also enhance
Frontiers in Oncology | www.frontiersin.org 2
generation of 2-hydroxyglutarate (2-HG) instead of
a-ketoglutarate (a-KG) (13). LSCs are often resistant to
conventional chemotherapy, and their maintenance after
therapy is a common reason for relapse. Therefore, it is vital to
recognize the biological mechanisms that contribute to leukemia
(14, 15). LSCs are characterized by a low rate of metabolism with
a decreased basal reactive oxygen species (ROS) manufacturing
as compared to bulk leukemic cells (16). These ROS-low LSCs
are also unable to upregulate glycolysis after inhibiting oxidative
phosphorylation (OXPHOS), which is in line with other reports
showing that LSCs have unprecedented mitochondrial
characteristics and an expanded sensitivity to strategies that
block oxidative phosphorylation (17). Mitochondria play an
essential role in metabolism, hypoxia, iron–sulfur clusters, cell
differentiation, innate immunity, metabolism of amino acids,
calcium, and heme biosynthesis (18). Furthermore, the redox
balance of cells and the proapoptotic factor expression are
managed by mitochondria to regulate cell death. Thus, there
are critical functions of mitochondria inside the neoplastic
phenotype, which include resistance to apoptosis, out of
control proliferation, and metabolic reprogramming (15, 19).

CSCs ought to adapt their metabolism, especially by elevating
nutrient uptake, to keep their uninhibited proliferation (20).
Actually, CSC metabolism is not only an indirect by-product of
FIGURE 1 | Role of mitophagy in leukemia stem cell.
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proliferation but also an immediate reprogramming orchestrated
through the use of oncogenic signals (21, 22). Studying the
metabolic phenotype of LSCs would potentially clarify their
mechanism of survival, persistence, and progression through
the development of the disease. Understanding how they differ
metabolically from HSCs can help better characterize any type of
leukemia stem cell.
METABOLIC FLEXIBILITY OF LEUKEMIC
STEM CELLS

There are multiple levels of tumorigenesis process and
mitochondrial biology interactions: tumorigenesis may start by
direct signals from mitochondria (may be by mutations in
mitochondrial DNA) or the alteration of mitochondrial
functions of metabolism and bioenergetics by oncogenic
signaling pathways. So, understanding the mechanisms of
cancer-initiating cell metabolism will effectively aid to develop
novel anticancer drugs targeting these aspects. Table 1
summarizes the metabolic steps potentially implicated in the
survival and therapy resistance of LSCs.
BIOENERGETICS OF LEUKEMIC STEM
CELLS

LSCs are flexible and able to take advantage of more than one
metabolic pathway to continue and survive. LSCs can use fatty
acids and amino acids in addition to glucose to provide
precursors to the tricarboxylic acid (TCA) cycle and to
maintain mitochondrial metabolism (22). Most CSCs are
dependent on and upregulate OXPHOS; hence, CSCs can be a
target to mitochondrial inhibition. A study carried out in
primary lymphocytes and CD34+ progenitors of patients with
ALL suggests that, being an inhibitor of mitochondrial
translation, tigecycline is capable of sensitizing them to
multiplied apoptosis and would improve the levels of oxidative
metabolism (29). Moreover, cytarabine-resistant AML cells are
shown to be enriched in dormant LSCs and have higher
functional mitochondrial mass, which is translated as
increasing in OXPHOS levels with subsequent peak in ROS.
Frontiers in Oncology | www.frontiersin.org 3
Interestingly, although cytarabine was not effective, residual cells
showed an increase in OXPHOS gene expression. In the study by
Kuntz et al. (30), enriched and differentiated CD34- cells were
derived from patients with CML for metabolic analyses on each
CD34+CD38- stem cell, it has been proven that most primitive
LSCs have higher mitochondrial efficacy than differentiated LSCs
and normal CD34+CD38- cells. These studies show that
primitive CML cells are reliant on oxidative metabolism for
their survival (30). We will explain here the central carbon
metabolism in LSC to fulfill their energy desires.
GLUCOSE METABOLISM IN LEUKEMIC
STEM CELLS

The glycolytic pathway is the primary process in the metabolism of
HSCs. Ordinarily, HSCs are energetically dormant with active
glycolysis. In glycolysis, glucose is converted to pyruvate. In
presence of oxygen, pyruvate can be metabolized to acetyl-CoA
that is oxidized in the TCA cycle to drive OXPHOS and generation
of ATP. LSCs often lack the ability to enhance glycolysis and
therefore switch from anaerobic glycolysis to mitochondria-
mediated OXPHOS as their major pathway to generate energy.
LSCs rely upon OXPHOS for ATP generation instead of glycolysis
and lactic acid fermentation, which gives a chance for ROS
production, which can force cells out of quiescence and trigger
programmed cell death pathways. Most ROS are generated in
mitochondria via electron transport. As a result, LSCs respond to
this action by upregulating autophagy, which is critical for the
maintenance of stemness and the eradication of damaged
mitochondria and production of ROS. This also upregulates the
expression of the hypoxic response transcription factor [hypoxia-
inducible factor 1-alpha (HIF-1-a], even in normoxia (23).

On the other hand, Song et al. (24) showed that bone marrow
(BM) cells separated fromAML patients without remission produce
higher levels of HIF-1a and glucose transporter 1 (GLUT1), as well
as hexokinase 2 (HK2) and lactate dehydrogenase (LDH), which are
considered the main controlling stages of glycolytic flux, than those
from patients with full or partial remission and healthy donors (31).
By using metabolomics analysis in the study conducted by Bhanot
et al. (31), UDP-P-glucose, a glycogen precursor to glucose, has been
reported to be upregulated in AML independently of low glycogen
levels. Additionally, adjustments in glucose metabolism have been
TABLE 1 | Summary of the metabolic steps implicated in the survival and therapy resistance of LSCs.

Condition Role Ref.

Glucose metabolism ATP production
ROS production
Cell stemness

(23)

Glutamine Metabolism ATP production
Regulate leukemia stem cell programing

(19, 24)

Fatty acid metabolism ATP production
Responsible for leukemia stem cell resistance to chemotherapy

(25)

Hypoxia Maintaining leukemia stem cell stemness and drug resistance (26, 27)
Mitophagy Leukemia stem cell maintenance (28)
October 2021 | Volume 11 | Article
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linked to end-stage medical outcomes and drug resistance. Kreitz
et al. (32) showed that there is excessive glycolytic level in blast AML
reluctant to treatment. Also, it was suggested that myeloblast
glycolytic rate may be an effective and effortless approach to
decide the pretreatment prognosis of AML (25). Unfortunately,
current studies are not sufficient to outline the LSC glycolytic
phenotype, and extra studies are needed.
GLUTAMINE METABOLISM IN LEUKEMIC
STEM CELLS

Metabolism of glutamine (glutaminolysis) is an alternative
source of energy. Glutamine is the most considerable amino
acid in circulation and can be supplied with the aid of adipose
tissue as one of its fundamental sources to the LSCs (33). The
mechanism by which tumor cells adjust the balance between
glycolysis and oxidative metabolism to meet their energy needs is
not fully understood.

It is known that the Warburg shift is an exquisite mark of the
extra-proliferating cancer cells, which have an intact TCA cycle
and gradually more dependent on glutamine metabolism
compared to normal cells for ATP synthesis. Knoechel and Aster
confirmed that a signal from the phosphoinositide 3-kinase
(PI3K)–AKT pathway shifts NOTCH-dependent T-ALL cells
from glutamine metabolism to aerobic glycolysis. Using murine
models and the primary human T-ALL xenograft transplantation
model, they showed that T-ALL cells with activating NOTCH1
mutations use glutamine as the main substrate for anaplerotic
reactions that fuel the TCA cycle (34). In another study, MYC
transcription factor and its “super enhancer” sequence have a
critical function in hematopoietic malignancies by regulating the
LSC programming (33). MYC promotes the uptake of essential
amino acids (i.e., glutamine) through SLC7A5/SLC43A1 in
lymphoma cells, which in turn stimulate the MYC translation
and tumorigenesis (35, 36). Likewise, mutated IDH in AML-LSCs
gains increased enzymatic feature to generate R-2-
hydroxyglutarate (R2HG) from a-KG, rather than unmutated
IDH, which catalyzes the conversion of isocitrate to a-KG. The
subsequent accumulation of the oncometabolite R2HG inhibits the
a-KG-dependent ten-eleven translocation (TET) protein family,
which leads to DNA demethylation and consequently to
tumorigenesis (36). The results of previous studies strongly
recommend the glutamine metabolism key steps as a target for
therapeutic strategies against LSCs.
FATTY ACID METABOLISM IN LEUKEMIC
STEM CELLS

The adipocytes have a central role in offering fatty acids to fulfill
the high energy needs of the LSCs. Adipocytes can preserve
energy as triglycerides, which at some point of lipolysis, it can be
catabolized into glycerol and free fatty acids (FFAs). Therefore,
adipocytes can also deliver FFA to cancer cells to meet their
needs for lipid synthesis and energy.
Frontiers in Oncology | www.frontiersin.org 4
Woolthuis et al. (37) showed that adipocytes offer FFAs as a
source of energy to leukemia cells by a mouse model of blast-
crisis CML. Surprisingly, they found a niche of LSCs in gonadal
adipose tissue (GAT), and by using limiting-dilution
transplantation techniques, it was found that GAT resident
LSCs elevated in leukemia are similar to that derived from
bone marrow. Likewise, the GAT-associated LSCs have
elevated expression of the fatty acid transporter CD36. Gene
expression analysis suggested that LSCs have a pro-inflammatory
phenotype that will increase lipolysis to provide energy to LSCs
with high levels of fatty acid oxidation (FAO) compared to highly
differentiated progeny or normal HSCs. These characteristics
control LSC quiescence and resistance to chemotherapy.
A preceding study on primary human samples of AML
recorded a subpopulation expressing CD36 in the CD34+

LSCs. This CD36+ phenotype was used as a poor prognosis
indicator (38). In these cases, the CD36+ LSCs also showed an
increase in FFAs and their subsequent oxidation, assuming that
CD36 can adapt the LSC metabolism in at least one subgroup of
human myeloid leukemia. Moreover, cytarabine-resistant AML
cells located in quiescent LSCs have elevated levels of
mitochondrial mass, which is translated into elevation of
OXPHOS levels with high level in ROS. Surprisingly, although
treatment with cytarabine was ineffective, residual cells exhibited
high expression of OXPHOS genes collectively with increased
FAO and upregulation of CD36 that can predict response to
treatment in patients with AML (39). Tucci et al. (40) clarified
that ALL cells accelerate adipocyte lipolysis and use the produced
FFA to complement lipogenesis and de novo proliferation. In
another study, Chronic Lymphocytic Leukemia (CLL) cells, in
comparison with normal B lymphocytes, are able to catabolize
lipids that allows usage of FFAs for oxidative respiration (41).
FFAs also can interact with the nuclear receptor peroxisome
proliferator-activated receptor a (PPARa). The interaction
between FFAs and PPARa leads to generation of a complex
that, much like a transcription factor, turns on the transcription
of enzymes necessary for OXPHOS (42). Adipose tissue can also
be protective for LSCs throughout stressful conditions, which
includes drug treatment. Orgel et al. (43) showed that glutamine
secreted by adipocytes protects leukemia cells from treatment
with L-asparaginase. This is especially true, considering that
L-asparaginase is used in the treatment of ALL, because
leukemic lymphoblasts are quite sensitive to exogenous
asparagine and glutamine depletion (41, 43).

This can show how LSCs can make the use of the surrounding
microenvironment differential through several routes of
metabolisms in different leukemia types. Furthermore, this
suggests that targeting combined aspects of metabolism can be
a complementary and powerful therapeutic strategy.
HYPOXIA AND HYPOXIA-INDUCIBLE
FACTORS IN LEUKEMIC STEM CELLS

Cells have a balanced antioxidant system to neutralize the extra
ROS consisting of enzymatic antioxidants such as superoxide
October 2021 | Volume 11 | Article 745924
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dismutase (SOD), glutathione peroxidases (GPxs), thioredoxin
(Trx), and catalase (CAT) and non-enzymatic antioxidants to
reduce the oxidative stress state (44). Human SOD can be
classified into cytosolic CuZn-SOD, mitochondrial Mn-SOD,
and extracellular SOD. The SOD seems to be the first line of
defense against oxygen-derived free radicals as it can be rapidly
induced in some conditions when exposed to oxidative stress as it
catalyzes superoxide into oxygen and hydrogen peroxide (26).
CAT can neutralize hydrogen peroxide through decomposing it
into molecular oxygen and water. It is now well established that
the mitochondria are the major producers of ROS and also the
main targets of ROS. Immense accumulation of ROS and free
radicals in mitochondria leads to elevated expression of Mn-SOD
to inhibit oxidative damage in mitochondria. The accumulation
of ROS will lead to mitochondrial permeability transition and
disrupt the mitochondrial membrane stability (27). Disruption of
mitochondrial outer membrane leads to cytochrome c release
and other proapoptotic factors, such as serine protease OMI/
HtrA2, Smac/Diablo, endonuclease G, and apoptosis-inducing
factor (AIF), and consequently caspase activation and cell death
(45). GPx family has antioxidative function at different cellular
components: GPx1 is present ubiquitously in the cytosol and
mitochondria, GPx2 is in the cytosol and nucleus, GPx3 is in the
plasma, and GPx4 is membrane-associated and appears to
protect membranes from oxidative challenge (46).

The Trx antioxidant system, composed of nicotinamide
adenine dinucleotide phosphate (NADPH), thioredoxin
reductase (TrxR), and Trx, is very important against oxidative
stress as an endogenous antioxidant system. Trx antioxidants have
a function in DNA and protein repair by reducing ribonucleotide
reductase and methionine sulfoxide reductases. In addition, Trx
systems have a significant role in the immune response (47).
Homodimeric TrxR is a member of the pyridine nucleotide-
disulfide oxidoreductase family, which includes TrxR,
glutathione reductase (GR), TryR, alkyl hydroperoxide
reductase, lipoamide dehydrogenase, and mercuric reductase.
Trx and TrxR are the dimeric FAD-containing enzyme that
catalyzes the NADPH-dependent reduction of the active-site
disulfide in oxidized Trx (Trx-S2) to give a dithiol in reduced
Trx [Trx-(SH)2] (48). Trx-(SH)2 is a hydrogen donor for
ribonucleotide reductase and a disulfide reductase regulating
thiol redox. Trx systems in cells can use the thiol and selenol
groups to maintain redox level. Trx and its binding proteins
[Apoptosis signal-regulating kinase 1 (ASK1) and TATA-box-
binding protein 2 (TBP2)] appear to control apoptosis or
metabolic states such as carbohydrate and lipid metabolism
(49). Both GSH system and Trx system can defend against
oxidative stress via the efficient removal of various ROS.
Cytosolic Trx1 and mitochondrial Trx2 are the major disulfide
reductases that affect cell proliferation and viability. The reduced/
dithiol form of Trxs binds to ASK1 and inhibits its activity to
induce apoptosis. When Trx is oxidized, it dissociates from ASK1
and apoptosis is induced (50). Non-enzymatic antioxidants like
vitamin A or retinol, vitamin E, and vitamin C (51).

The role of hypoxia within the generation of LSCs remains
debatable perhaps because of addressing hypoxia as a stemness
Frontiers in Oncology | www.frontiersin.org 5
factor in conflicting studies and the difference in duration and
degree of hypoxia (52, 53). In any case, further investigations are
required so as to clarify its impact on LSC maintenance and
survival. Hypoxia by means of HIFs may drive powerful support
and advancement through different pathways, for example,
energy metabolism, cell cycle, and immune response. These
physiological procedures can be upregulated or downregulated
in malignancy. In AML, the presence of different oxygen levels in
the BM permits upkeep of essential AML cells (28). The
downregulation of HIF-2a or HIF-1a to a lesser degree was
recorded by Rouault-Pierre et al. (54). Hypoxia promotes
apoptosis and inhibits leukemic engraftment in human AML
transplantation cells into mice. There are ongoing studies
proving that keeping on the redox stability is fundamental for
maintaining the stemness and drug resistance characteristics in
most cancer cells (55, 56). The function of the PI3K/Akt/
mammalian target of rapamycin (mTOR) signaling pathway in
developing CSC traits of low apoptotic potential is reported to be
partially through enhancement of the ROS elimination via CAT
production downstream of nuclear localization of FoxOs and
stimulation of the HIF-1a (57). In addition, Osellame et al. (58)
validated that loss of mitochondrial outer membrane
permeability is an indication for intrinsic apoptosis. These
observations propose that HIF-2a or HIF-1a is important for
development of LSCs and may possibly work as therapeutic
targets for AML. Furthermore, the research by Velasco-
Hernandez et al. (59) showed that the HIF-1a deletion does
not influence the maintenance of AML in mice, which presents
the inconsistencies in the role of HIF in AML. In any case, these
variations may depend on the specific hereditary change that
initiates the malignancy, again revealing the enormous
heterogeneity of this disease. In addition, Vukovic et al. (60)
developed a genetic model to investigate the effects of the
deficiency in HIF-1a and HIF-2a during leukemogenesis. The
model indicated that while HIF-2a had no effect on AML cell
expansion in a murine model, it is significant in obstructing the
development of LSC in malignancy. HIF-2a deletion enhances
LSC differentiation, yet does not influence LSC maintenance of
AML (60). In CML, Zhang et al. (61) recorded that deletion of
HIF-1a prevents CML progression by inhibiting cell cycle and
inducing LSC apoptosis. breakpoint cluster region-Abelson
fusion gene (BCR-ABL) oncogene in CML-LSCs regulates HIF-
1a to induce cell expansion. Regardless of whether HIF-1a has a
function in the LSC survival in CLL is as yet obscure. In CLL,
HIF-1a is regulated even under normoxia via downregulation of
von Hippel–Lindau (VHL) protein, whose articulation is
controlled by microRNAs (62). This system enables the
formation of a complex (HIF-1a/p300/p-STAT3), which is
responsible for the expression of the vascular endothelial
growth factor (VEGF) (62). It was shown that upregulation
of VEGF by HIF-1a assumes a significant role in the
microenvironment controlling leukemic cell progression.
In T-ALL, HIF-1a control promotes Wnt pathway through
enhancing translation of b-catenin (63). Loss of HIF-1a
diminishes the LSC recurrence without influencing the
development and viability of leukemic cell mass.
October 2021 | Volume 11 | Article 745924
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MITOPHAGY IN LEUKEMIC STEM CELLS

Autophagy is defined as a self-digestion of the cell, wherein
cytoplasmic materials, proteins (macroautophagy), damaged
organelles like mitochondria (mitophagy), and lipids are
segregated into vesicles, termed autophagosomes, for
degradation and reusing. The quality and integrity of the
mitochondria are basic to the typical elements of the
mitochondria. Damaged mitochondria can be eliminated by
mitophagy, which acts as a basic factor in the maintenance of
stem cells. Various studies showed that stem cell self-renewal
depends on mitophagy (64), illustrated in Figure 1. Decreasing
Fis1 (mitochondrial division 1) in human LSCs weakens
mitophagy, prompts cell cycle arrest, and disables self-renewal.
It has been indicated that adenosine monophosphate-activated
protein kinase (AMPK) enhances Fis1-dependent mitophagy,
and AMPK inactivation mimics the mitophagy defect as a result
of lack of Fis1 (14, 15). Mitochondrial dynamics likewise has a
significant role in controlling mitophagy (65). LSCs indicated a
constitutive activation of AMPK, a key player of controlling
energy and mitochondrial homeostasis that arranges the
initiation of autophagy and mitophagy through ULK1
activation (66). AMPK is a heterotrimeric serine/threonine
kinase that phosphorylates plenty of cell substrates involved in
various metabolic pathways through quick versatile reactions
to various metabolites (66). AMPK mediates the crosstalk
between various key cell signaling pathways regulating energy
status, cell expansion, and autophagy through its negative
control of the PI3K/AKT/mTOR pathway and its stimulatory
impact on phosphorylation of ULK1 (67, 68). In addition, AMPK
is a fundamental controller and sensor of cell energy status in
mammalian cells. This kinase coordinates changes in the AMP/
ATP and ADP/ATP ratios, adjusting the balance between ATP
utilization and synthesis (69, 70)and acts to raise the catabolic
processes and to diminish the anabolic processes to support
intracellular energy homeostasis (71). It is stimulated by many
conditions, such as nutrient deprivation (72), cell stresses (73),
fasting or caloric limitation (74, 75), and nucleoside analogs like
5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside
(AICAR) (76). In clinical trials, AMPK has been assessed for
metabolic illness treatment and malignancies, including both
hematopoietic cancers and solid tumors (77, 78), which showed
that AMPK has a significant role in tumor regression.
Notwithstanding, AMPK has a central role in controlling
energy homeostasis and broadly associated with autophagy
initiation (64, 79), life span, and tumor suppression (80, 81).
MITOCHONDRIA AND LEUKEMIC STEM
CELL MICROENVIRONMENT

The connection between tumor cells and the tumor
microenvironment (TME) impacts the phenotype of tumor
cells (82). The TME involved different cell types including
fibroblasts; immune, endothelial, and perivascular cells; and
extracellular matrix (ECM) compartments, such as cytokines,
Frontiers in Oncology | www.frontiersin.org 6
growth factors, and extracellular vesicles. CSCs are thought to be
inside or surrounded by the tumor environment maintaining the
CSC “niche” and controlling its properties (83). CSC niche is
thought to promote the formation of CSCs, keep the CSCs in
stem-like state, shield them to resist the immune system, and
induce the epithelial-to-mesenchymal transition (EMT), which
improves tumor metastasis. Although the CSC niche has a major
role in cancer growth, survival, and recurrence, it is still an
obscure point needing more studies to solve its unique role in
cancer dilemma.
BONE MARROW MICROENVIRONMENT
CROSSTALK WITH LEUKEMIC STEM
CELLS

In light of the mentioned behavior of the LSC, the BM metabolic
microenvironment supports the development of the leukemia
cell stemness and pre-metastatic niche. Interestingly, Marlein
et al. (15) showed that NADPH oxidase 2 (NOX2) generates
superoxide, which causes BM stromal cells to move
mitochondria through AML-derived tunnel nanotubes to AML
blasts. Indeed, the quiescent CLL cells cultured in the presence of
three distinctive stromal cell lines exhibit higher OXPHOS when
compared to CLL cells cultured alone. A group of 28 CLL
patient-derived cells cocultured with BM could stimulate
natural killer (NK) cells, M2-10B4 fibroblasts, or HS-5 stromal
cells to feature the significance of considering cell–cell
communications (84). Cai et al. (85) revealed that culturing the
T-ALL cells with mesenchymal stem cells (MSCs) decreases their
mitochondrial ROS levels and initiate a Warburg-like shift that is
portrayed by an expansion in glucose uptake and generation of
lactate with decrease in ATP synthesis and mitochondrial
membrane potential. Moreover, T-ALL cells cocultured with
MSCs have adjusted mitochondrial morphology because of the
extracellular signals involved in the phosphorylation of the
factor, the protein related to dynamin 1 (Drp1) at residue
S616. Consistently, phosphorylated Drp1 expression in S616
retained mitochondrial ROS levels, mitochondrial dynamics,
metabolic exchange, and chemoresistance in T-ALL cells
cocultured with MSCs (85). In addition, the BM mesenchymal
stromal cells increase the metabolism and proliferation of their
CML cell neighbors by secreting placental growth factor (86, 87).
Moreover, the BM stroma uses multiple metabolic regulatory
strategies to enhance the stemness traits of the leukemic cells,
such as the induction of resistance of ALL cells to asparaginase
treatment by secreting high concentrations of asparagine from
MSCs (88). Conversion of cystine to cysteine by the BM stroma
also protects CLL cells from the oxidative damage (89). The
activated p53 pathway and secretion of inflammatory mediators
from BM stromal cells activate the initiation of leukemia via
activation of TLR4, which induces the mitochondria
hyperpolarization, ROS production, and DNA double-strand
breaks in hematopoietic stem and progenitor cells (HSPCs)
(90). On the other hand, the BM stromal cells protect the LSCs
from chemotherapy by upregulation of mitochondrial proteins
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[i.e., B-cell lymphoma 2 (BCL2) and Uncoupling Protein 2
(UCP2)] to uncouple the leukemic mitochondria and support
the glycolytic pathways (91, 92). Another regulator for the
metabolic niche of the LSC is the microRNA; LIN28B has been
proven to enhance the stemness of the LSC by repression of Let-
7, which regulates the insulin-like growth factor 2 mRNA-
binding protein 1 (IGF2BP1) (93). Leukemia cells need
metabolic adaptation not only for its survival and growth but
also to educate the BM milieu to support the LSC
reprogramming. Leukemic cells induce a state of insulin
resistance in the surrounding cells by increasing the IGFBP1
production from the adipose tissue to save sufficient glucose level
for LSC usage (94). After depletion of glucose in the BM
microenvironment, the AML cells are encouraged to consume
fructose as a source of energy by upregulation of GLUT5 on
leukemic cells (95). Moreover, leukemic cells in contact with
adipocytes enhance lipolysis by increasing the Fatty Acid-
Binding Protein 4 (FABP4) to provide the fatty acids, which
are essential for LSC survival (96).
IMMUNOMETABOLIC REGULATION IN
LEUKEMIC STEM CELLS

CSCs exhibit metabolic flexibility not only to promote the
biosynthetic and bioenergetic needs of tumor malignancy but
also to evade the antitumor immunity. The increased
consumption of nutrients for the high metabolic competitive
CSC deteriorates the metabolic resources of the immune cells in
the TME (97, 98). The tumor infiltrated immune cells can act as
protumor or antitumor, but both mechanisms are influenced by
the metabolic activities of leukemic cells of AML (99). In support
of that, the high consumption of glucose and amino acids in
cancer cells downregulates the cytotoxic T and NK cell energy
metabolism and subsequently their activation and effector
functions (100). Also, lactate production suppresses monocyte
activation (101) while increasing the tumor-promoting cytokine
expression [i.e., interleukin (IL) -23] (102). Also, oxidative stress
metabolic products can alter the functions of regulatory T cells (T
regs) and myeloid dendritic cells (103, 104). In line with the
mentioned immune-metabolic adaptation and to feed the
gluttonous needs of the CSCs, leukemia cells secrete several
inflammatory mediators such as IL-6, IL-1b, tumor necrosis
factor (TNF)a, and granulocyte colony-stimulating factor (G-
CSF), along with the endothelial granulocyte-macrophage
colony-stimulating factor (GM-CSF), to enhance vasculogenesis
for supplying the AML LSC with the essential metabolites for its
growth and proliferation (85). Also, the AML blasts suppress T-
cell proliferation and enhance the polarization into the M2
suppressive monocyte by secreting high levels of arginase II (88).

Although ROS is a direct effector for killing pathogens via
innate immune cells, ROS has a crucial role as an
immunosuppressive agent helping CSCs/LSCs to evade the
immune system and to enhance cancer stemness and
anti-leukemic lymphocyte resistance (105, 106). One suggested
mechanism for its role in immune evasion, ROS released from
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these malignant cells is able to induce apoptosis and to reduce the
cytokine production of the anti-leukemic lymphocytes. The
CSCs maintain their redox balance to keep their stemness
traits, survival, and immune evasion. Hence, AML cells with
low ROS level represent more CSC and quiescent characteristics
(56, 57). Therefore, antioxidants are considered double-edged
weapons. They can act as tumor suppressors by decreasing the
ROS apoptotic effect on NK and T cells against leukemic cells.
On the other hand, antioxidants act as cancer stemness inducers
through targeting of ROS-mediated signaling. For example, the
GSH precursor N-acetylcysteine can reduce the effect of ROS in
Acute myeloid leukemia stem cells (AMLSCs), which resists the
niclosamide antineoplastic and apoptotic effect through
inhibition of TNFa-induced nuclear factor (NF)-kB activation
and increase of the intracellular ROS levels (107).

Signal transducer and activator of transcription (STAT3) can
modulate the immune TME to maintain CSC characteristics and
renewal. This can be by promoting the functions of MDSC via
increased ROS and NOX2 expression. Some anticancer candidates
such as fluorinated b-amino-ketone and AZD9159, antisense
oligonucleotides, are used to inhibit the T regs, MDSC, and
tumor growth via suppression of STAT3 expression and
cascade. One other way is by increasing the expression of HIF-
1a, as STAT3 is an upstream transcription factor for HIF-1a, in
cancer cells and myeloid cells in the TME, which is critical for
immunosuppression and tumor immune evasion (107). HIF-1a,
STAT3, and CBP/p300 are known as transcriptional complex
components that regulate the response to hypoxia in cancer. HIF-
1a/p300/p-STAT3 axis enhances the immune evasion
mechanisms of CSC by inhibition of T-cell proliferation,
activation, and induction of T regs via VEGF upregulation
(108). In line with this, HIF-1a/p300/p-STAT3 axis is
considered a therapeutic target to eradicate cancer progression.
Triptolidenol-1 (LB-1) was used to inhibit the HIF-1a activity,
increase its degradation, and suppress the connection between
HIF-1a, p-STAT3, and p300. Also, TEL03 is used as a
phosphorylation inhibitor for STAT3, which suppresses HIF-1a
expression (109). On the other hand, HIF-1a regulates the
expression of natural killer group 2 member D (NKG2D)
ligands to enhance tumor immunosurveillance by NK and gd T
cells. HIF-1a downregulation increases the shedding of soluble
NKG2D ligands (sNKG2D) such as soluble Major
Histocompatibility class I polypeptide–related sequence A
(sMICA) to enhance the tumor immune evasion (110).
Furthermore, it was reported that STAT3 can work as a tumor
suppressor by inhibiting aerobic glycolysis of tumor cells, which
decreases glucose consumption, lactate production, and
expression of HIF-1a target genes in the tumor cells. In such a
way, STAT3 and HIF-1a can mediate tumor immunity and
immune evasion (111). So, finding the balance between the pros
and cons of targeting HIF-1a and STAT3 can be a direction to
solve the problems associated with tumor therapy through
modulating the immune response.

The hematopoietic stem cell transplantation (HSCT) therapy
of leukemia has been greatly improved due to the accurate typing
and selection of the donors. However, there is a high level of
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relapse and low rates of survival. This challenge is supported by
BM microenvironment, which can be reprogrammed by LSC to
enhance the stemness characteristics of both HSCs and LSCs and
promote leukemia initiation (112). Although the metabolic
immunoregula t ion of LSCs is not complete ly and
directly addressed so far, Du et al. (113) have investigated
the metabolic axis of the hematopoietic progenitor
microenvironment to suppress the anti-leukemic immunity.
They connected inflammation, metabolism, and cancer
immunity through cyclooxygenase (COX)2/prostaglandin
(PG)/The nuclear orphan receptor 4A (NR4A)/Wingless/int1
(WNT) immunometabolism-regulatory axis. The role of
pro-inflammatory (COX2) upregulation and its products, PGs,
has been reported in hematological malignancies (114). The
elevated COX2 and PGs in AML-MSCs in the BM niche
increased the expression of NR4A transcription factors and the
WNT signaling pathways, which has been known to be
associated with many CSC traits (115). Inhibition of this axis
could ameliorate anti-leukemic reactive T effector cells (113). All
the previous links suggest the possibility of immunotherapeutic
targeting through metabolic routes.
CONCLUSION AND FUTURE
PROSPECTIVE

LSC is a mutated stem cell with normal stemness characteristics
and also can differentiate to give rise to a cancerous
hematopoietic lineage that accumulates the immature blast
cells. Mitochondria not only is a main player in the LSC
survival and malignancy development but also change the
TME to keep the LSC alive. It regulates the redox status,
bioenergetics, nutritional dependence, and metabolic products
according to the available substrates, as well as modifies the
surrounding immune milieu of the tumor. In this review, we
highlighted the role of mitochondria in the adaptation of the
Frontiers in Oncology | www.frontiersin.org 8
demanding LSCs to the microenvironment and the development
of their stemness traits. LSCs are resilient to use a range of
sources such as glucose, amino acids, and fatty acids as
precursors for TCA cycle. These leukemia seeds might easily
switch between OXPHOS and glycolysis to provide their needs of
energy, biogenesis, and drug resistance. Regulation of essential
amino acid transporter expression and glutamine metabolism is
not only a source of ATP but also considered an immune evasion
strategy of LSCs. The crosstalk between adipocytes and LSCs by
delivering fatty acids resulting from lipolysis is an unescapable
factor for LSC survival. Also, keeping the ROS and oxygen
gradient allows the maintenance of the LSCs. Here, we shed
light on LSC flexibility to gain their needs of energy, which offers
a new therapeutic strategy to target the metabolic
reprogramming of LSCs, maybe specifically, in the different
types of leukemia. We also focused on mitophagy and AMPK
as an initiator of autophagy and mitophagy. AMPK is considered
a potential therapeutic target to control the progression of LSCs
in different types of leukemia. Moreover, the disruption of the
interaction between the BM stroma and LSC may be of great
importance to eliminate LSCs and improve HSCT outcomes in
different types of leukemia.
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