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The rapid industrial development has led to the intermittent outbreak of pm2.5 or haze in developing countries, which has brought
about great environmental issues, especially in big cities such as Beijing andNewDelhi.We investigated the factors andmechanisms
of haze change and present a long-termpredictionmodel of Beijing haze episodes using time series analysis.We construct a dynamic
structural measurement model of daily haze increment and reduce the model to a vector autoregressive model. Typical case studies
on 886 continuous days indicate that ourmodel performs verywell on next day’s AirQuality Index (AQI) prediction, and in severely
polluted cases (AQI ≥ 300) the accuracy rate of AQI prediction even reaches up to 87.8%. The experiment of one-week prediction
shows that our model has excellent sensitivity when a sudden haze burst or dissipation happens, which results in good long-term
stability on the accuracy of the next 3–7 days’ AQI prediction.

1. Introduction

Industry of developing countries ismainly centralized around
big cities, accompanied by a large population, consumption,
and pollution. Together with Tianjin city andHebei province,
Northern China has become one of the most prosperous and
polluted areas on Earth. By 2013, the transient population
of Beijing was 37.5 million, and the intermittent outbreak
of air pollution has greatly impacted every citizen’s life:
physiological diseases [1, 2], depression, and poor visibility
in traffic [3, 4]. The main component of haze is pm2.5
(particulate matters less than 2.5𝜇m in aerodynamic diam-
eter), and the concentration of pollution is described with
Air Quality Index (AQI, the concentration of pm2.5). The
Chinese Government began to monitor and record pm2.5
concentrations for major cities since 2013 [5]. According to
the report of Quan et al. [6], the AQI reached 600 in Beijing
during the haze event in January 2013. In recent years, more
and more papers have referred to the haze episodes and the
consequences in Northern China [7–11]. Researchers pointed
out that, over the coming years, haze episodeswould continue
to burst frequently in Northern China [12].

This paper presents an AQI prediction model of Beijing
based on time series analysis. We collected Beijing’s AQI
data of 29 continuous months since 2013 and constructed
a dynamic structural prediction model. Statistical methods
are used to obtain the maximum likelihood estimation
of the prediction model. And both short-term and long-
term experiments are carried out to test the accuracy and
robustness of our model.

The remainder of this paper is organized as follows.
In Section 2, we introduce recent related work. Section 3
presents our prediction model and proves our model to be
a vector autoregressive model. Experiments and evaluations
are reported in Section 4.We conclude the paper in Section 5
with future works.

2. Related Work

Generally, pm2.5, or haze, is born mainly through anthro-
pogenic factors [13–16] and eliminated by natural diffusion.
Several days after emission, secondary pm2.5 is produced
through photochemical reactions among indiffusible pollu-
tants. Secondary pm2.5 is the principal component in most
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severe haze episodes in China [17]. A typical way of haze
prediction is to use pollutant emission data (CO, SO

2
, and

NO
𝑥
) in the simulation [5, 18]. Huang et al. [14] analyzed

the chemical compositions of pm2.5 and used chemical mass
balance to identify the emission sources.Othermore complex
models are proposed to introduce the atmospheric features,
chemistry components, and transport factors [15]. But the
more common case is that pollutant emission data usually
increase or decrease synchronously with AQI. Sun [19] took
population, car ownership, and GDP into consideration
and proposed a statistical index system of average annual
haze episode days. They found that although most factors
contribute to predicting pm2.5, the annual average of NO

𝑥

is negatively correlated with average severely polluted days.
The paper [12] established a cubic exponential smoothing
model by introducing dust emission into haze prediction.
Liang et al. pointed out that there are various distribution
and transmission patterns of pm2.5 [20]. In fact, Wang et
al. mentioned that the government control policy should be
considered in model simulations [9].

Many researches use backpropagation neural network
as the simulation model [19, 21]. Statistical time series
analysis is rarely used in haze prediction, so long-term haze
prediction is difficult for currentmethods to accomplish [22].
Multiple linear regression models also perform well on daily
scale prediction [23, 24]. However, the test data of existing
researches is not ample; for example, [21] tested the prediction
accuracy on only 3 days. Besides, Zhang et al. pointed out
that pm2.5 accumulation in previous days significantly affects
the present daily pm2.5 concentration, which should also be
a concern in the modeling process [22].

Considering the above points, this paper presents a
new AQI prediction model integrated with natural factor,
humanity factor, and self-evolution factor.

3. The Prediction Model of Beijing’s Daily AQI

3.1. The Parameters and Architecture of the Prediction Model.
The change of daily pm2.5 concentration depends on two
factors: daily overall production of pm2.5 by human activities
𝑃
𝑡
and daily overall natural diffusion or overall natural accu-

mulation of pm2.5 𝐶
𝑡
. The production of haze depends a lot

on the control policies of the government toward the emission
of industry fuels 𝐼

𝑡
. The diffusion of haze mainly depends

on the airflow𝑊
𝑡
. Besides, complex chemical changes could

occur between pm2.5 and other pollutants; thus, previous
day’s pm2.5 concentration also affects the AQI, which could
be seen as the evolution result of previous day’s pm2.5 and
is represented by 𝑌

𝑡
. Apparently, 𝑃

𝑡
− 𝐶
𝑡
could be directly

observed. 𝑃
𝑡
is generated by a semimanual method. 𝑃

𝑡
is

mainly related to daily human activities, and we calculate 𝑃
𝑡

from AQI sequences of no less than five consecutive sunny
and windless days. Special circumstances are also considered.
In winter, 𝑃

𝑡
will be larger because the heating system is on.

The car usage restrictions and temporary stoppage of factories
during Beijing APEC 2014 are also taken into consideration.
𝐶
𝑡
is then calculated as 𝑃

𝑡
− (𝑃
𝑡
− 𝐶
𝑡
). Sometimes, 𝐶

𝑡
is

greater than zero, which means pm2.5 accumulates because
of nonhuman factors.

Thus, the daily net growth of pm2.5 (𝑃
𝑡
−𝐶
𝑡
) is a function

of the evolution result 𝑌
𝑡
, the industry control index 𝐼

𝑡
, and

the forecast of wind power 𝑊
𝑡
. Consider this problem as a

dynamic structural model, and our model can be described
as

𝑃
𝑡
− 𝐶
𝑡
= 𝛽
0
+ 𝛽
1
𝑌
𝑡
+ 𝛽
2
𝑊
𝑡
+ 𝛽
3
𝐼
𝑡
+ 𝛽
4
(𝑃
𝑡−1

− 𝐶
𝑡−1
)

+ 𝜇
𝐷

𝑡
.

(1)

Parameters 𝛽
1
, 𝛽
2
, and 𝛽

3
, respectively, represent the

effect caused by the pm2.5 of the previous day, the wind
power, and the industry control index. The net growth
of previous day’s pm2.5 partly affects present day’s pm2.5
and partly affects the next day’s pm2.5. The parameter 𝛽

4

represents this “partial adjustment.” The disturbance 𝜇
𝐷

𝑡

represents other factors which affect present day’s pm2.5.

3.2. Complexity Reduction of the PredictionModel. In order to
facilitate the research and modeling process, we have proved
that this model could be reduced to a vector autoregressive
model.

Proposition 1. Formula (1) is a vector autoregressive model.

Proof. Assume that there exists sequence autocorrelation in
formula (1). The autocorrelation is

𝜇
𝐷

𝑡
= 𝜌𝜇
𝐷

𝑡−1
+ 𝜐
𝐷

𝑡
(2)

in which 𝜐
𝐷

𝑡
is white noise. Here, we apply the Cochrane-

Orcutt iteration to rewrite formula (2):

(1 − 𝜌𝐿) 𝜇
𝐷

𝑡
= 𝜐
𝐷

𝑡
, (3)

where 𝐿 is the lag operator (𝐿𝑉
𝑡
≡ 𝑉
𝑡−1

), which can convert
the last phase to current value in a time series.

The next work is to find the most satisfying value
of 𝜌 through successive iteration method. Specifically, this
method uses residual error to estimate the unknown 𝜌.

Assume that we use previous 𝑝 days’ AQI to predict
present day’s AQI. Multiply (1 − 𝜌𝐿) on both sides of formula
(1); the expansion formula will be as follows:

𝑃
𝑡
= 𝑘
1
+ 𝛽
0

12
𝐶
𝑡
+ 𝛽
0

13
𝐼
𝑡
+ 𝛽
0

14
𝑌
𝑡
+ 𝛽
0

15
𝑊
𝑡
+ 𝛽
1

11
𝑃
𝑡−1

+ 𝛽
1

12
𝐶
𝑡−1

+ 𝛽
1

13
𝐼
𝑡−1

+ 𝛽
1

14
𝑌
𝑡−1

+ 𝛽
1

15
𝑊
𝑡−1

+ 𝛽
2

11
𝑃
𝑡−2

+ 𝛽
2

12
𝐶
𝑡−2

+ 𝛽
2

13
𝐼
𝑡−2

+ 𝛽
2

14
𝑌
𝑡−2

+ 𝛽
2

15
𝑊
𝑡−2

+ ⋅ ⋅ ⋅ + 𝛽
𝑝

11
𝑃
𝑡−𝑝

+ 𝛽
𝑝

11
𝐶
𝑡−𝑝

+ 𝛽
𝑝

11
𝐼
𝑡−𝑝

+ 𝛽
𝑝

11
𝑌
𝑡−𝑝

+ 𝛽
𝑝

11
𝑊
𝑡−𝑝

+ 𝜐
𝐷

𝑡
.

(4)

In the substitution process, many assumptions are
neglected. But the ordinary least square method (OLS esti-
mation) should not be used in the estimation of formula
(4), because OLS can only illustrate the relationship between
daily pm2.5 production and the policy control index, the
accumulation of history pm2.5, and the wind power. The net
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growth of previous day’s pm2.5 is only one reason of the
correlation of these variables.

The government could make policies to control pm2.5
production of industry to obtain “satisfying” daily production
of pm2.5; that is, 𝐼

𝑡
is an endogenous variable. And the policy

control index depends on present day’s and previous 𝑝 days’
accumulation of history pm2.5, the wind power, the daily
production of pm2.5, and daily diffusion of pm2.5:

𝐼
𝑡
= 𝑘
3
+ 𝛽
0

31
𝑃
𝑡
+ 𝛽
0

32
𝐶
𝑡
+ 𝛽
0

33
𝑌
𝑡
+ 𝛽
0

34
𝑊
𝑡
+ 𝛽
1

31
𝑃
𝑡−1

+ 𝛽
1

32
𝐶
𝑡−1

+ 𝛽
1

33
𝑌
𝑡−1

+ 𝛽
1

34
𝑊
𝑡−1

+ 𝛽
1

35
𝐼
𝑡−1

+ 𝛽
2

31
𝑃
𝑡−2

+ 𝛽
2

32
𝐶
𝑡−2

+ 𝛽
2

33
𝑌
𝑡−2

+ 𝛽
2

34
𝑊
𝑡−2

+ 𝛽
2

35
𝐼
𝑡−2

+ ⋅ ⋅ ⋅ + 𝛽
𝑝

31
𝑃
𝑡−𝑝

+ 𝛽
𝑃

32
𝐶
𝑡−𝑝

+ 𝛽
𝑃

33
𝑌
𝑡−𝑝

+ 𝛽
𝑃

34
𝑊
𝑡−𝑝

+ 𝛽
𝑃

35
𝐼
𝑡−𝑝

+ 𝜐
𝐶

𝑡
,

(5)

where 𝜐𝐶
𝑡
represents the influence brought about by other

policies.
The net growths of previous days’ pm2.5 and policy

control index also have an effect on daily accumulation of
pm2.5:

𝑌
𝑡
= 𝑘
4
+ 𝛽
0

41
𝑃
𝑡
+ 𝛽
0

42
𝐶
𝑡
+ 𝛽
0

43
𝐼
𝑡
+ 𝛽
0

44
𝑊
𝑡
+ 𝛽
1

41
𝑃
𝑡−1

+ 𝛽
1

42
𝐶
𝑡−1

+ 𝛽
1

43
𝐼
𝑡−1

+ 𝛽
1

44
𝑊
𝑡−1

+ 𝛽
1

45
𝑌
𝑡−1

+ 𝛽
2

41
𝑃
𝑡−2

+ 𝛽
2

42
𝐶
𝑡−2

+ 𝛽
2

43
𝐼
𝑡−2

+ 𝛽
2

44
𝑊
𝑡−2

+ 𝛽
2

45
𝑌
𝑡−2

+ ⋅ ⋅ ⋅ + 𝛽
𝑝

41
𝑃
𝑡−𝑝

+ 𝛽
𝑝

42
𝐶
𝑡−𝑝

+ 𝛽
𝑝

43
𝐼
𝑡−𝑝

+ 𝛽
𝑝

44
𝑊
𝑡−𝑝

+ 𝛽
𝑝

45
𝑌
𝑡−𝑝

+ 𝜐
𝐴

𝑡
,

(6)

where 𝜐𝐴
𝑡
represents other factors that influence daily accu-

mulation of pm2.5.
Analogized from formulas (4), (5), and (6),𝐶

𝑡
and𝑊

𝑡
can

both be written in a similar form. Join formulas (4), (5), and
(6) together, and rewrite them into vector form:

𝐵
0
𝑥
𝑡
= 𝐾 + 𝐵

1
𝑥
𝑡−1

+ 𝐵
2
𝑥
𝑡−2

+ ⋅ ⋅ ⋅ + 𝐵
𝑝
𝑥
𝑡−𝑝

+ 𝜐
𝑡 (7)

in which

𝑥 (𝑡) = (𝑃
𝑡
, 𝐶
𝑡
, 𝐼
𝑡
, 𝑌
𝑡
,𝑊
𝑡
)
𝑇

,

𝜐
𝑡
= (𝜐
𝐷

𝑡
, 𝜐
𝑆

𝑡
, 𝜐
𝐶

𝑡
, 𝜐
𝐴

𝑡
, 𝜐
𝐻

𝑡
)
𝑇

,

𝐾 = (𝑘
1
, 𝑘
2
, 𝑘
3
, 𝑘
4
, 𝑘
5
) ,

𝐵
0
=

[
[
[
[
[
[
[
[
[

[

1 −𝛽
0

12
−𝛽
0

13
−𝛽
0

14
−𝛽
0

15

−𝛽
0

21
1 −𝛽

0

23
−𝛽
0

24
−𝛽
0

25

−𝛽
0

31
−𝛽
0

32
1 −𝛽

0

34
−𝛽
0

35

−𝛽
0

41
−𝛽
0

42
−𝛽
0

43
1 −𝛽

0

45

−𝛽
0

51
−𝛽
0

52
−𝛽
0

53
−𝛽
0

54
1

]
]
]
]
]
]
]
]
]

]

.

(8)

In𝐵
0
, the parameters in the 1st, 2nd, 3rd, 4th, and 5th row,

respectively, relate 𝑃
𝑡
, 𝐶
𝑡
, 𝐼
𝑡
, 𝑌
𝑡
, and𝑊

𝑡
to the other variables.

Every 𝐵
𝑠
is a 5∗5matrix. Premultiply formula (7) by 𝐵−1

0
(the

inverse matrix of 𝐵
0
):

𝑥
𝑡
= 𝑐 + Ψ

1
𝑥
𝑡−1

+ Ψ
2
𝑥
𝑡−2

+ ⋅ ⋅ ⋅ + Ψ
𝑝
𝑥
𝑡−𝑝

+ 𝜀
𝑡 (9)

in which

𝑐 = 𝐵
−1

0
𝐾,

Ψ
𝑠
= 𝐵
−1

0
𝐵
𝑠
,

𝜀
𝑡
= 𝐵
−1

0
𝜐
𝑡
.

(10)

This is the standard form of vector autoregressive model.
So it is proved that our prediction model (formula (1)) is in
fact a vector autoregressive model.

The regression parameters of our haze prediction model
can be obtained as follows.

Let

−Γ = [𝐾 𝐵
1
𝐵
2
⋅ ⋅ ⋅ 𝐵
𝑝] ,

𝑦
𝑡
= [1 𝑥

𝑡−1
𝑥
𝑡−2

⋅ ⋅ ⋅ 𝑥
𝑡−𝑝]
𝑇

.

(11)

The dynamic structural system (formula (7)) isss

𝐵
0
𝑥
𝑡
= −Γ𝑥

𝑡
+ 𝜐
𝑡
. (12)

Assume that the disturbance terms are not sequence
correlated or correlated to each other, which means

𝐸 (𝜐
𝑡
𝜐
𝑇

𝜏
) =

{

{

{

𝐷, 𝑡 = 𝜏,

0, 𝑡 ̸= 𝜏.

(13)

𝐷 is a main diagonal matrix. Formula (12) could be
written as

𝑥
𝑡
= Φ
𝑇
𝑦
𝑡
+ 𝜀
𝑡

(14)

in which

Φ
𝑇
= 𝐵
−1

0
− Γ,

𝜀
𝑡
= 𝐵
−1

0
𝜐
𝑡
.

(15)

LetΩ be the variance-covariance matrix of 𝜀
𝑡
:

Ω = 𝐸 (𝜀
𝑡
𝜀
𝑇

𝑡
) = 𝐵
−1

0
𝐸 (𝜐
𝑡
𝜐
𝑇

𝑡
) (𝐵
−1

0
)
𝑇

= 𝐵
−1

0
𝐷(𝐵
−1

0
)
𝑇

. (16)

Suppose 𝐵
0
is a lower triangularmatrix, in which all main

diagonal elements are assigned 1, and 𝐷 is a main diagonal
matrix. The parameters (𝐵

0
, Γ, 𝐷) can be obtained through

themaximum likelihood estimation of complete information.
Themaximum likelihood estimation ofΩ can be obtained by
the variance-covariance matrix of regression residual.
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Figure 1: (a, b, c) Next day’s AQI prediction on 886 continuous days.

Finally, 𝐵
−1

0
and 𝐷 are calculated through triangular

decomposition of Ω; thus, Γ can be evaluated.
Above all, the prediction model of Beijing AQI has

considered factors including industry emission and policy
control, together with the chemical changes of previous days’
pollution accumulation and the diffusion conditions. This
model also takes the correlations between these factors into
consideration and introduces time series haze features into
the dynamic structural model. The policy control index is
simulated by the record of 4 severe haze episodes during this
period. The diffusion is evaluated by weather record of daily
wind power.

4. Model Evaluations

We collected the daily AQI and daily weather information
from 28 Oct. 2013 to 31 Mar. 2016. This complete sequence
is used to test the accuracy of the prediction model. The next
day’s AQI prediction experiment (Section 4.1) and long-term
AQI prediction experiment (Section 4.2) are both imple-
mented. The next day’s AQI prediction is evaluated from
two perspectives: the accuracy of daily prediction and the
accuracy of statistical analysis.

4.1. Next Day’s AQI Prediction. The next day’s weather fore-
cast information is applied in next day’s AQI prediction.
The observed and predicted daily mean AQI in Beijing are
illustrated in Figure 1. The simulation result shows that the
predicted value matched the observed value very well on
the whole sequence of 886 days. Sometimes, there is severe
deviation from the observed value; for example, on 19 Feb.
2014, the observed AQI was 89, while our model gives a
prediction of 209, with an offset of 135%. But the fact is,

in the afternoon of 19 Feb., the wind of Beijing suddenly
changed from northeasterly to southwesterly, and by 19:00
the AQI has reached already up to 170, which could be
interpreted as our model successfully forecasted a severe
haze outbreak several hours in advance; in the coming 7
days, the average daily AQI of Beijing is 305. The occasional
occurrence of this “foreseeing” phenomenon is caused by
coarse time granularity (daily), and this phenomenon is
marked with red ellipse in Figure 1.These marks indicate that
ourmodel could “foresee” the sharp change of both outbreaks
and diffusions. Most haze outbreaks and diffusions could be
accurately simulated; some could be foreseen but could never
be delayed.

Figure 2(a) is a scatter diagram of daily AQI, including
both observed value and predicted value.Most points lie close
to 𝑦 = 𝑥 (the red line). But some points lie in a queue at
the bottom part, whichmeans the observed AQI exceeds 200,
while the predicted value is less than 50. There are altogether
15 such outliers, 7 of which “foresee” haze diffusion, while
the other 8 bug points could not be well interpreted. All
the 15 points are checked and listed in Table 1. “✓” means
a “foreseeing” phenomenon, and “?” represents bug points.
Figure 2(b) is a scatter diagram of annual AQI (sum of daily
AQI in a certain year). Our data covers only 2 months of 2013
and 3 months of 2016, so, in this diagram, these 2 points lie in
the lower left corner.

The pie chart in Figure 3 shows the distribution of
prediction accuracy.The deviation of predicted and observed
AQI is obtained through the following formula:

Dev
𝑡
=
|PredictedValue −ObservedValue|

ObservedValue
× 100%. (17)
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Figure 2: (a) Daily AQI of the 886 days. (b) Annual AQI from 2013 to 2016.

Table 1: All the 15 outliers in Figure 2(a).

Date of outlier Label
Nov. 2, 2013 ✓

Dec. 7, 2013 ?
Dec. 25, 2013 ✓

Feb. 14, 2014 ?
Feb. 25, 2014 ?
Mar. 26, 2014 ?
Oct. 10, 2014 ✓

Oct. 11, 2014 ✓

Nov. 19, 2014 ?
Nov. 20, 2014 ?
Nov. 30, 2014 ✓

Dec. 9, 2014 ?
Jan. 4, 2015 ?
Jan. 15, 2015 ✓

Mar. 7, 2015 ✓

Figure 3 shows that 55% predictions match the observed
values very well (<20% deviation). The purple part is mainly
caused by the “foreseeing” phenomenon.Most samples of the
red part come from less-polluted days. For example, on 12
Jan. 2016, the AQI prediction is 40 while the observed AQI
is 29, which makes a deviation of 37.9%. In fact, statistics
also indicate that our model performs better in worse air
conditions (Figure 4). A sample is correctly predicted if the
deviation of a sample is less than 20% or the predicted air
quality level matches the observed level.

4.2. Long-Term AQI Prediction. In the long-term prediction,
we use history haze data sequence and weather forecast
information to predict the next 7 days’ AQI. A sample is

34.60%

20.40%

31.10%

12.90%

<5%
<20%

Others
>70%

Figure 3: The deviation of predicted and observed AQI.

correctly predicted if the deviation of a sample is less than
20% or the predicted air quality level matches the observed
level. From 26Dec. 2015 to 31Mar. 2016, we predict theAQI in
the next 7 days and check the accuracy of 𝑛-day predictions.
Figure 5 shows the accuracy of long-term prediction in the
91 days’ experiment. Figure 5 shows that the accuracy stays
stable on the next 3, 4, 5, 6, and 7 days’ AQI prediction,
which indicates that our model has excellent robustness on
the task of long-term prediction. The next day’s prediction
accuracy surprisingly reaches 79.1%, which is far better than
the experiment in Section 4.1.The reason is that, during the 91
days, 6 haze episodes attacked Beijing.These frequent attacks
did contribute a lot to the overall performance because our
model is very sensitive to sudden changes of AQI, including
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Figure 5: The accuracy of long-term AQI prediction.

outbreaks and diffusions (Section 4.1; Figure 4). Figures 6 and
7 show several haze episodes during the 91 days. Both figures
show a pm2.5 change process of more than 2 weeks. Figure 6
also shows a “foreseeing” phenomenon caused by coarse time
granularity, marked by a red ellipse.

5. Conclusion and Future Work

This paper presented a dynamic structural model to predict
Beijing’s daily AQI. This model integrated natural factor,
humanity factor, and self-evolution factor into the time series
model. This dynamic structural measurement model of daily
haze increment is proven to be a vector autoregressive model.
Experiments reflected two highlights of this model. First,
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Figure 6: Three haze episodes in Jan. 2016.
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Figure 7: Three haze episodes in Feb. 2016.

our model is very sensitive to and performs very well on
predicting sudden changes of AQI, including both outbreaks
and diffusions. Second, themodel has great robustness on the
task of long-termAQI prediction. Lastly, limited by the coarse
time granularity, our model sometimes “foresees” but never
delays or misses any sudden changes of haze.

Many researchers use simple backpropagation neural
network to accomplish nonlinear prediction models. But
since methods based on time series are proven to be effective
in haze predictionmodeling, we believe that recurrent neural
networks give better performances in such a prediction task.
Although the related factors are limited in existing models,
the overfitting problem should still be concerned, because,
in long-term prediction, a deviation could spread and be
exaggerated in the following days’ predictions.
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