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Diversity dynamics in New Caledonia: towards
the end of the museum model?
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Abstract

Background: The high diversity of New Caledonia has traditionally been seen as a result of its Gondwanan origin,
old age and long isolation under stable climatic conditions (the museum model). Under this scenario, we would
expect species diversification to follow a constant rate model. Alternatively, if New Caledonia was completely
submerged after its breakup from Gondwana, as geological evidence indicates, we would expect species
diversification to show a characteristic slowdown over time according to a diversity-dependent model where
species accumulation decreases as space is filled.

Results: We reanalyze available datasets for New Caledonia and reconstruct the phylogenies using standardized
methodologies; we use two ultrametrization alternatives; and we take into account phylogenetic uncertainty as
well as incomplete taxon sampling when conducting diversification rate constancy tests. Our results indicate that
for 8 of the 9 available phylogenies, there is significant evidence for a diversification slowdown. For the youngest
group under investigation, the apparent lack of evidence of a significant slowdown could be because we are still
observing the early phase of a logistic growth (i.e. the clade may be too young to exhibit a change in
diversification rates).

Conclusions: Our results are consistent with a diversity-dependent model of diversification in New Caledonia. In
opposition to the museum model, our results provide additional evidence that original New Caledonian
biodiversity was wiped out during the episode of submersion, providing an open and empty space facilitating
evolutionary radiations.

Background
New Caledonia is one of the 10 original biodiversity hot-
spots [1,2]. Indeed, New Caledonian biodiversity is
exceptional for an archipelago of its size (only 19 000
km2) [3-5] and also very distinct [6] with a level of
endemism of seventy-seven percent at the species level
and fifteen percent at the generic level for plants [7,8].
There has been considerable debate about the origin of
New Caledonia’s tremendous biodiversity [9,10] and
molecular phylogenies of extant taxa have provided a
useful window into the tempo and mode of species
diversification [11,12]. With the growth of phylogenetic
studies in New Caledonia [13], we now have a frame-
work to study temporal diversification patterns in the
area. Rather than focusing solely on molecular dating

techniques, we here investigate how information on
diversity dynamics can be used to test the two funda-
mental models invoked to explain New Caledonian
biodiversity.
Due to its Gondwanan continental origin, its long iso-

lation from neighbouring landmasses (like New Zealand
or Australia, Figure 1) and its supposed climatic stabi-
lity, the museum model [14,15] has classically been
invoked to explain the origin of New Caledonian biodi-
versity [16]. According to this classical view, the slow
and gradual accumulation of species from ancient
Gondwanan stock with low or absent extinction could
explain the high level of species richness on the island
[10]. Under this scenario, we would expect biodiversity
to follow an exponential model of diversification (Figure
1) where per-lineage rates of speciation and extinction
have been constant with no upper limit on clade diver-
sity [17,18]. This model specifically refers to the old age
of the territory to explain the high level of biodiversity.
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It is thus based on the premise that species richness is
coupled with clade age, meaning that old clades on aver-
age have more species than young ones.
As opposed to this classical view, the geology of the

territory indicates a complete submersion of the island
for 20 Ma (from 65 to 45 Ma) following its breakup
from the eastern margin of Gondwana (c. 80 Ma) and
the presence of an island on the New Caledonia Ridge
has only been established since the Late Eocene (around
37 Ma) [19]. All endemic Gondwanan species would
have gone extinct and current diversity would have des-
cended from later colonists, whether from nearby island
refugia or from long-distance dispersal [10]. This sce-
nario implies a novel ecological space that is open and
available, thus facilitating evolutionary radiations [12,20].
Under this ‘ecological opportunity’ model [21], as time
passes and diversification progresses, the geographical
and ecological space becomes increasingly saturated
with fewer opportunities for speciation [22,23] resulting

in a slowdown of diversification rates through time.
Under such a scenario, we would expect species diversi-
fication to follow a typical niche-filling model [24-26]
where the probability of speciation and/or extinction
should vary inversely with the number of species,
according to a diversity-dependent process [27-30]. We
will use the term diversity-dependence [28] rather than
density-dependence [31,32] because this process refers
to the density of species (diversity) rather than the den-
sity of individuals [33].
In this paper, we present the First comparative analy-

sis of species diversification in New Caledonia. Our goal
is to estimate diversification dynamic parameters in
order to test the two models classically invoked to
explain New Caledonia’s exceptional biodiversity. We
used various groups of angiosperms, lizards, harvestmen,
caddisflies and diving beetles, and tested diversification
models using the gamma statistic [34] and likelihood
models [35].
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Figure 1 Expectation under different models. Location of New Caledonia in the South Pacific (panel B). Different models of diversification
expected under different models of the origin of the biodiversity in New Caledonia (panel A). A Pure Birth model where speciation (l) is
constant and extinction (μ) equals zero is expected under the museum model, corresponding to a Lineage Through Time (LTT) plot closely
resembling a straight line. A Birth-Death diversity dependent model is expected under the recolonization model corresponding to a LTT plot
showing a slowdown of diversification. Several diversity-dependent models exist and we depict here a model where extinction rate is constant
and speciation rate decreases as a function of the number of species.
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Results
Our statistics-based results (Table 1; Figure 1) show that
only three groups out of nine did not have a signifi-
cantly negative g: Gracilipsodes, Helicopha and Xantho-
chorema, suggesting that for most of the studies, a
constant rate could be rejected. All the groups with sig-
nificantly negative g also passed the MCCR test. A
recent study showed that the g test does not necessarily
detect early bursts of diversification [36] and that model
based approaches might be more appropriate for investi-
gating diversity dynamics. Our model-based results show
that only the diversification of one group is best
explained by a constant rate model: Helicopha. For all
the remaining groups, the model-based approach shows
a significant positive ΔAIC indicating a better fit to
rate-variable models, each time with an inferred slow-
down in diversification rates through time. In one case,
Agmina, a Yule 2-rate process model was inferred as the
best-fit model. In all the remaining cases (7 out of 9),
the best fitted model was a linear variant of the diver-
sity-dependent model (DDL), though with p = 0.08 for
the bayesian analysis of Papuadytes and p = 0.06 for the
bayesian analysis of Gracilipsodes. More complex mod-
els (SPVAR, EXVAR and BOTHVAR) allowing a non-
zero probability of extinction did not provide a better
fit. For our studies, there is also a clear decoupling
between clade age and clade size (Pearson’s r = 0.22).

Discussion
Biases towards an apparent slowdown
Diversification analyses are sensitive to biases in the
phylogenetic reconstruction method [37]. For example,
multiple substitutions could lead to saturation of genetic
distances producing incorrectly short branch lengths
deeper in the tree [38]. We chose the GTR model
because it is the most common and general model for
real world DNA. While many authors have used the
GTR + I + Γ to incorporate rate heterogeneity [39], it is
well established [40] that adding a proportion of invari-
able sites creates a strong correlation between p0 (para-
meter of I) and a (parameter of Γ), making it impossible
to estimate both parameters reliably [41,42]. Following
RAxML’s manual recommendations, we used a GTR +
Γ model [40] applied to each partition. This should
ensure that our results are not biased by under-parame-
terization of our phylogenetic reconstruction.
The method of phylogenetic ultrametrization could

also influence the estimate of g [43-45]. In this study we
used two different methods: First, maximum likelihood
(with RAxML for phylogenetic inference and R8S for
ultrametrization) and secondly, bayesian inference (with
BEAST). R8S uses an autocorrelated relaxed molecular
clock while BEAST uses a non-correlated clock. This
should ensure that our results (which were consistent

whichever method was used) are not biased by ultrame-
trization techniques. Incomplete taxon sampling can
also introduce some bias in favor of a pattern of slow-
down of diversification rates and towards a more nega-
tive g [34,46]. If the sampling is incomplete, the critical
value must be adjusted. Our results were not biased by
taxon sampling as indicated by the result of the MCCR
test. It is worth noticing that we were very conservative
when conducting the MCCR test by adding an extra
10% to the known unsampled diversity.
If the diversification of a group follows a Yule process

and the sampling is apparently complete, a bias towards
slowdown can still exist if recent lineage splits are unli-
kely to be considered as distinct species. Indeed, recent
lineage splits are likely to be recognized as speciation
event only if both lineages persist long enough to evolve
differences that attract taxonomic attention [47]. Popu-
lation-level studies are still scarce in New Caledonia
[48-51] but a growing trend has been to include several
specimens of the putative same species in phylogenetic
reconstruction [11]. In particular, several phylogenies
included in the present study have used multiple speci-
mens from the same species that we here considered as
separate entities [12,52,53] The previous situation is
close to the case of non-random sampling where sys-
tematists tend to oversample deep nodes to get a better
coverage of the taxon’s morphological diversity [54],
later referred to as ‘diversified sampling’ [55]. Studies in
New Caledonia are usually performed with the aim of
inferring biogeographic evolutionary history rather than
simply reconstructing the systematics of the group. In
addition, most of our datasets have a relatively low
number of missing taxa and in all cases, the proportion
of sampled species is more than the 80% level recently
proposed as a threshold [54,56].
A pattern of slowdown in large clades is expected

under constant speciation-extinction models, whenever
the extinction rate is low [57]. Due to stochasticity,
large clades (produced if, by chance, multiple speciation
events happened early in the diversification) and small
clades (produced if, by chance, few speciation events
happened early in the diversification) will both tend to
go back to the average speciation rate following a
regression effect. Under this situation, we expect to see
an apparent slow down in large clades and acceleration
in small clades. Our results are not consistent with this
situation as the largest diversification (Agmina) shows a
relatively low g while Troglosironidae, with only 11 spe-
cies, shows one of the highest negative g.
As explained recently [58], negative g can also be

achieved if a clade is in significant decline. There are
numerous examples from the fossil record showing
clades in decline [59] and recent taxa that have become
extinct can only be assessed using the fossil record.
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Table 1 Age and parameter estimates of the diversification analyses

Parameter estimates

Pure birth
model

DDl/Yule 2-
rate

Dataset Age
estimate

Method g gC LH AIC r1 LH AIC r1 r2 k st ΔAIC (DDL-pb)

Niemeyera 32.4 Ma Penalized
likelihood

-2.219 (p = 0.013) -1.631 (p = 0.013) 104.013 -206.026 2.312 107.184 -210.368 4.479 N/A 52.716 N/A 4.342 (p = 0.039)

Bayesian
inference

-2.348 (p = 0.009) -1.638 (p = 0.009) 132.285 -262.569 2.678 135.736 -267.472 5.080 N/A 61.432 N/A 5.278 (p = 0.035)

Scincidae 35.4-40.7
Ma

Penalized
likelihood

-4.311 (p = 8.12e-06) -1.793 (p = 2.00e-04) 83.371 -164.742 1.745 94.684 -185.368 5.808 N/A 39.262 N/A 20.626 (p = 0)

Bayesian
inference

-3.752 (p = 8.79e-05) -1.811 (p = 2.00e-04) 93.171 -184.342 1.907 101.696 -199.392 5.375 N/A 42.899 N/A 15.050 (p = 0.001)

Troglosironidae 49 Ma Penalized
likelihood

-2.951 (p = 0.002) -1.299 (p = 4.00e-04) 12.658 -23.317 1.396 19.896 -35.792 8.555 N/A 12.339 N/A 12.476 (p = 0)

Bayesian
inference

-2.173 (p = 0.015) -1.324 (p = 0.006) 17.666 -33.332 2.201 21.667 -39.334 8.796 N/A 12.778 N/A 6.003 (p = 0.011)

Papuadytes 9 Ma Penalized
likelihood

-1.943 (p = 0.026) -1.518289 (p = 0.019) 18.348 -34.697 1.606 21.468 -38.936 5.018 N/A 15.474 N/A 4.239 (p = 0.04)

Bayesian
inference

-1.648 (p = 0.050) -1.554558 (p = 0.041) 19.569 -37.137 1.764 21.294 -39.882 4.865 N/A 16.024 N/A 2.745 (p = 0.086)

Gracilipsodes 14.4 Ma* Penalized
likelihood

-1.082 (p = 0.140) -1.325 (p = 0.081) 7.671 -13.342 1.431 9.201 -14.403 4.307 N/A 10.309 N/A 1.061 (p = 0.045)

Bayesian
inference

-1.596 (p = 0.108) -1.309 (p = 0.059) 7.535 -13.070 1.407 9.357 -14.714 4.600 N/A 10.088 N/A 1.644 (p = 0.062)

Helicopha 8.2 Ma* Penalized
likelihood

-0.491 (p = 0.312) -1.345 (p = 0.229) 32.733 -63.466 2.191 33.152 -62.303 3.301 N/A 32.985 N/A -1.162 (p = 0.563)

Bayesian
inference

-0.016 (p = 0.404) -1.399 (p = 0.400) 24.042 -66.083 2.367 34.137 -64.274 2.906 N/A 56.686 N/A -1.809 (p = 0.828)

Xanthochorema 11.9 Ma* Penalized
likelihood

-1.598 (p = 0.055) -1.309 (p = 0.028) 7.726 -13.453 1.441 10.446 -16.891 5.858 N/A 9.688 N/A 3.437 (p = 0.026)

Bayesian
inference

-1.613 (p = 0.053) -1.305 (p = 0.023) 7.718 -13.436 1.440 10.479 -16.958 5.906 N/A 9.676 N/A 3.522 (p = 0.016)

Hydropsychinae 28.2 Ma Penalized
likelihood

-2.850 (p = 0.002) -1.516 (p = 0.002) 57.944 -113.888 2.108 64.609 -123.219 3.185 0.417 N/A 0.176 9.33118 (p = 0)

Bayesian
inference

-2.582 (p = 0.005) -1.519 (p = 0.004) 58.046 -114.091 2.116 62.474 -120.949 5.387 N/A 30.960 N/A 7.933 (p = 0.007)

Agmina 21.9 Ma Penalized
likelihood

-2.647 (p = 004) -1.804 (p = 0.007) 242.743 -483.486 2.544 250.947 -495.894 7.539 2.118 N/A 0.639 12.40858 (p = 0.001)

Bayesian
inference

-1.969 (p = 0.024) -1.885 (p = 0.043) 249.704 -497.407 2.799 255.126 -504.252 6.755 2.404 N/A 0.596 6.845 (p = 0.153)

Age estimates followed by an asterisk indicate those calculated in this publication, other estimates are taken from the literature (see text). In the DDL/Yule 2-rate column parameters are for the DDL model for all
groups except the Agmina where Yule 2-rate parameters are shown. g is the diversification statistic by [34], gc is the threshold required for the g still to be significant after accounting for missing taxa (MCCR test), LH
is the maximum likelihood of the model, AIC is the Akaike information criterion, r1 and r2 are diversification rates, k is the carrying capacity, st is the rate shift point, ΔAIC is the difference in AIC between the pure
birth (Yule model) and the rate variant model.
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Unfortunately, in many cases (especially in New Caledo-
nia), there is no good fossil record and molecular phylo-
genies cannot infer declines. The average rate of
diversification needed to account for the living diversity
may have nothing to do with the actual diversity trajec-
tory that led to the living diversity. As for all the studies
on diversity dynamics, the absence of information from
the extinct species is a severe limitation [58].

Towards a rejection of the museum model?
The museum model makes the assumption that there is
a strong correlation between clade age and species rich-
ness. Our results show evidence for diversification slow-
down suggesting that diversification might be diversity-
dependent. In addition, seven of the nine datasets pre-
sent are better explained by a diversity-dependent model
than alternative models of diversification. This pattern
of evolution has long been observed in the fossil record
[60-62]. This general model also explains why many stu-
dies have shown that clade age and clade size are not
related [63-65]. For our studies, there is also an evident
decoupling between clade age and clade size (Pearson
correlation factor r = 0.22).
Constant birth and extinction rates produce an appar-

ent increase in diversification rates on the reconstructed
phylogenies. Under this scenario, we would expect a
positive g [34]. This indicates that our results broadly
reject a constant rate diversification process, whether
diversifications followed a Pure Birth or a Birth-Death
model. However, if clades are too young, we could
observe an apparent absence of diversity regulation that
results from insufficient time to reach carrying capacity
[66]. Recent simulation studies have indeed demon-
strated that during the early phase of a logistic growth,
the g statistic is unable to identify a diversity-dependent
process [67].
Our results based on the diversity dynamics of the

phylogenies reject the museum model. They also agree
with molecular dating results, rejecting the hypothesis
that the distribution of New Caledonian groups could
be explained by vicariance from Gondwana around 80
Ma [13]. Perhaps the most unusual case is the New
Caledonian endemic harvestman family Troglosironidae,
sister to the Tropical Gondwanan family Neogovidae
[68]. The start of the diversification of the group was
estimated at 28-49 MYA in [68]. The age of the same
group is currently estimated to be around 77 Ma (’much
pre-dating the total submersion episode that would have
ended by 37 Ma’) but this study only included two spe-
cies [69]. This group has consistently been presented as
a Gondwanan relict whose presence in New Caledonia
had to be explained by vicariance [70] even though con-
fidence intervals [68,69] are also consistent with a more
recent dispersal scenario. Our results indicate that the

diversification of Troglosironidae in New Caledonia
show the same characteristics as other diversifications
(e.g. Niemeyera), suggesting a diversity-dependent pro-
cess of diversification after recolonization.

Alternative Gondwanan models?
In this paper, we specifically tested a model of biodiver-
sity (the museum model) where species with a Gondwa-
nan origin in New Caledonia would have evolved
following an exponential model (implying constant rates
of speciation and extinction (if any) in a stable environ-
ment). Alternatively, we could imagine additional mod-
els where the New Caledonian clades still take their
origin from a vicariant event due to the fragmentation
of Gondwana.
Under a hypothesis of a constant speciation/extinc-

tion rate process (as in the museum model), we could
also imagine that an event of mass extinction occurred.
This model results in LTT plots showing antisigmoid
curves with a distinct signature (a ‘broom and handle’
shape) [71]. They rise steeply at first, curve to a pla-
teau and rise steeply again to the present. Even though
those LTT plots were shown to be indistinguishable
from those produced by a model where rates are con-
stant but interrupted by a phase of stasis [72], they are
still very different from those produced by typical
diversity-dependent models such as in our results (Fig-
ure 2).
Another alternative is where the New Caledonian origi-

nal stock from Gondwana would have evolved following
a diversity-dependent model. What are the expectations
of such a model? It was originally suggested that a signa-
ture of diversity-dependence could only be observed if
extinction was zero [73]. However, further simulation
studies demonstrated that substantial extinction can
occur without erasing the signal of an underlying
decreasing diversification rate provided the initial specia-
tion rate is high enough [74]. It is in fact the ratio
between the initial speciation rate and the rate of extinc-
tion at equilibrium (the so-called ‘LiMe ratio’) that is cri-
tical in determining the shape of the phylogeny. For low
values of LiMe, diversity-dependent diversification pro-
duces phylogenies that are indistinguishable from those
expected under sustained and constant rates of diversifi-
cation [67].
There is strong evidence for an initially high specia-

tion rate in association with ecological opportunity, both
in the case of mass extinction [75] and colonization of
recent islands [20,76]. In the case of an already filled
geographical and ecological space, as it is hypothesised
in our alternative Gondwanan model, we would expect
speciation rates to be relatively low. In this case, the low
LiMe value would erase the diversity-dependent signal
and we would expect g values to be non-significant.
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Even if we imagine that the LiMe ratio was sufficiently
high to produce a pattern of diversity-dependence,
another issue remains. Considering that New Caledonia
broke off from the Eastern margin of Gondwana a long
time ago (around 80 Ma), under a model of diversity-
dependence, we would expect most of the clades to have
reached their equilibrium and entered a state of species

turnover at constant diversity. Recent simulation studies
have demonstrated that in the case of a diversity-depen-
dence process with high LiMe ratio, there is only a short
temporal window where the g statistics can detect a
diversification slowdown. Shortly after the equilibrium is
attained, the average g becomes indistinguishable from
the null model of a constant diversification rate [67].
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Under our alternative Gondwanan scenario, we would
expect to observe constant rates of diversification and
no apparent slowdown. This is either related to the low
LiMe ratio or the fact that clades have long reached
their equilibrium. Considering that our results show evi-
dence of slowdown in New Caledonian diversifications,
we also reject this alternative model.

Impact of biotic interactions
It was recently argued that ‘ancient radiations’ or
‘repeated dispersals’ were two opposing explanations for
New Caledonian biodiversity [13,77]. This simplistic
view is however confusing since ‘repeated dispersal’
represents a pattern while ‘ancient radiation’ implies a
process of diversification. The two elements are thus
not necessarily in opposition. Our results indicate that
in several cases, evidence of an early burst of diversifica-
tion (consistent with a radiation process) is observed,
even though multiple dispersal events have been
inferred.
In the case of Niemeyera [78], based on pairwise

genetic divergence and the slowest rate available, the
authors previously concluded [78] that the oldest diver-
gence between sister Australian and New Caledonian
taxa might have taken place approximately 32.4 MA.
They also showed that two other groups of Sapotaceae
are present on the island. Here, we studied the oldest
diversification which diversified substantially. In the case
of caddisflies, it seems that the diversification of a young
clade (Caledomina) with few species has been impeded
by competition with the closely related older Agmina
extremely diverse radiation [79].
An alternative example is given by the case of the

diving beetles, Papuadytes. The group is absent from
Fiji where the genus Copelatus diversified extensively
[80], partly occupying the same habitats as Papuadytes
in New Caledonia. Conversely, Copelatus is absent in
New Caledonia suggesting that competition between
groups is an important factor in explaining their distri-
bution. In contrast to the Niemeyera example, the
older New Caledonian Papuadytes group (c. 14 Ma)
has only two species representing relictual species
pushed to marginal habitats (high altitudes) by subse-
quent arrivals (c. 9 Ma) [81].
These examples clearly highlight the role of interspeci-

fic competition, providing further evidence for the find-
ing that diversification processes in New Caledonia
follow a diversity-dependent model.

Role of ecology and geography
Early bursts followed by a slowdown in diversification
are usually interpreted within a framework of adaptive
radiation [79]. However, the notion of adaptive radiation
[60,82] specifically refers to the evolution of ecological

and phenotypic diversity within a rapidly multiplying
lineage [20], and thus not just to a pattern of temporal
variation in diversification rates. Coarse-grained niche
modeling studies have shown that climate variables are
broadly similar among related species [83,84]. However,
few examples show that differences in fine-scale micro-
habitat exist in groups that are otherwise similar in their
climatic requirements [11,80]. There are very few studies
investigating the rate of trait evolution through time
[33,85-88] and none of the New Caledonian studies
have addressed this critical issue. It is thus apparent that
the adaptive nature of the New Caledonian radiation is
far from being established. In a neutral setting, allopatric
speciation related to vicariance will result in a split of
the ancestral geographical space [89-91]. The newly cre-
ated restricted ranges will likely influence further diver-
sification rates because speciation and extinction rates
are related to the species range [92]. A recent simulation
study has shown that slowdown in diversification rates
can be related to a purely geographical process [93].
The reduction of range size related to speciation will,

in turn, lower the probability of speciation, leading to a
temporal slowdown in diversification rate. Under this
scenario, it is the reduced geographical opportunity
(rather than the ecological opportunity) that is responsi-
ble for the slowdown. It is also worth noting that the
elongated shape of the main island of New Caledonia
(with a high ratio of the long to the short axis) is likely
to influence speciation probabilities because linear dis-
tributions are more likely to be bisected by geographic
barriers. In this context, radiations would be non-adap-
tative [94-96] and deciphering the adaptive nature of
New Caledonian radiation becomes, once again, a criti-
cal issue.

Conclusions
In this paper, we reanalyzed all the molecular datasets
for New Caledonia that were suitable for our purposes.
We reconstructed the phylogenies using standardized
methodology, used two ultrametrization alternatives,
and took into account phylogenetic uncertainty as well
as incomplete taxon sampling when conducting diversi-
fication rate constancy tests. Our results provide evi-
dence that the New Caledonian diversifications follow a
process of diversity-dependence. This model is consis-
tent with the geological history that indicates a complete
submersion of the territory after its breakup from Gond-
wana [19]. The island was established around 37 Ma,
providing an empty geographical and ecological space
facilitating evolutionary radiations.
Despite a growing number of phylogenetic studies

investigating patterns and timings of diversifications in
New Caledonia, the adaptive or non-adaptive nature of
those radiations, including their related phenotypic
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divergences, remains largely unknown. In addition, the
influence of phylogenetic niche conservatism/evolution,
both at a large (climatic) and fine (habitat) scale needs
to be further evaluated [83,84]. Our approach could be
applied to other continental islands such as New Zeal-
and and Madagascar where similar debates about the
origin of their biodiversity have emerged [97,98].

Methods
Datasets
Our selection of datasets was based on clear criteria.
Phylogeography studies were not included as branching
patterns do not correspond to speciation events [50].
Phylogenetic analyses had to be based (at least partly)
on molecular data. We thus discarded all the published
phylogenies only based on morphological data [84]. Spe-
cies diversification in New Caledonia had to be substan-
tial to be incorporated (at least ten species). We thus
discarded all the published phylogenies presenting small
diversifications [77,99], including only few species from
New Caledonia [100,101] or only performed at the
genus level [102]. The original dataset had to show phy-
logenetic resolution among the New Caledonian species.
We thus discarded all the published phylogenies with
little to no resolution [103-105]. Finally, the dataset had
to include all the species (or at least most of the species)
of a monophyletic New Caledonian group. We discarded
studies [11,106] that included only part (one genus) of
monophyletic groups in New Caledonia [107] or para-
phyletic New Caledonian groups [108,109]. All the
included members could be interpreted as classical
Gondwanan groups based solely on their distribution.
The Niemeyera dataset [52] consists of a monophy-

letic group (the “Niemeyera complex” of the Sapotaceae
subfamily Chrysophylloideae) of 47 species (36 known
species with several undescribed species) sister to a
group of Australian species. Eight species for which
material was unavailable were not included in the study.
Three accessions of Pycnandra fastuosa were included
in the study. The results were not conclusive regarding
the monophyly of the species and the branch lengths
were also longer than between member of different spe-
cies. For these reasons, we kept in our analyses those
three accession as separate entities.
The Scincidae dataset [53] includes 42 species repre-

senting all the recognized species of Scincid lizards of
New Caledonia except five. The Tasmantis (Zealandia)
clade was found monophyletic but not the New Caledo-
nian species. We used in the present study the larger
monophyletic diversification in New Caledonia. The two
specimens of Nannoscincus gracilis, Caledoniscincus
austrocaledonicus and Nannoscincus mariei were kept as
separate entities as they do not form a monophyletic
group.

The Troglosironidae dataset [70] consists of a mono-
phyletic group of 11 species of harvestmen (among the
13 species known from New Caledonia) representing the
full geographical range of the group. All of the species
are endemic and comprised in one endemic genus in
one endemic family. The Troglosironidae study [70] was
based on direct optimization [110] and it was thus
necessary to reanalyze the dataset.
For the Papuadytes dataset [81], the authors con-

cluded that lineages of those diving beetles colonized
New Caledonia twice, around 14 and 9 Ma (for the lar-
ger diversification), and both lineages are derived from
an Australian ancestor. We included 15 species of the
larger diversification which is currently estimated at 18
species.
The Gracilipsodes dataset [111] is a New Caledonian

endemic genus of caddisflies (Trichoptera) in the family
Leptoceridae. The genus at present consists of 10 spe-
cies and is sister group to the eastern Australian mono-
typic genus Triplexa. No dating is available for this
dataset.
The Helicopha dataset [112] is a monophyletic genus

of caddisflies in the family Helicophidae with currently
18 described species, of which 17 are included in the
dataset in addition to two still undescribed species. Four
members of the genus are also found in Australia. No
dating is available for this dataset.
The Xanthochorema dataset [113] is a monophyletic

New Caledonian endemic genus (9 described and one
undescribed species) of caddisflies with free-living pre-
datory larvae in the family Hydrobiosidae [114]. The sis-
ter group Psilochorema is found in New Zealand.
The Hydropsychinae dataset [12] showed that there

was only a single diversification of Hydropsychinae cad-
disflies in New Caledonia and not three as previously
thought. This radiation consists of 27 described species
of which 26 are included in the dataset. Additionally
three specimens of the species Caledopsyche atalanta
and two specimens of Orthopsyche nadauna are
included since the branch lengths between these speci-
mens are longer than between different species. The
total dataset therefore includes 28 species in total. An
age of approximately 28.2 Ma has been estimated for
this group [12].
The Agmina dataset consists of a monophyletic ende-

mic diversification of caddisflies with at least 80 species
(only 27 are presently described), of which 75 are
included in the phylogeny [79]. This is the largest ani-
mal diversification known from New Caledonia. Agmina
split off from its Australian ancestor around 36,6 Ma
(CI: 29.7-48.3 Ma) ago and the New Caledonian radia-
tion started approximately 21.86 Ma (CI 16.8-24.6 Ma).
In the same family (Ecnomidae) there is a second New
Caledonian endemic genus (Caledomina) with only 4
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known species, which split from its Australian ancestor
25,9 Ma (CI: 21.4-38.2 Ma) and started diversification
around 9.5 Ma (CI: 6.4-13.2 Ma). The latter is not
included in our analyses.

Diversity dynamics
Phylogenetic inference and dating
Most of the studies previously presented used a variety
of alignment and analyses strategies rendering the
results difficult to compare or impossible to further ana-
lyze. When alignments were not provided by the authors
or when Direct Optimization [115] was previously used,
sequences were downloaded from GenBank. All the
source phylogenies were reanalyzed for this study.
Alignment was performed with MUSCLE 3.6 [116] most
accurate algorithm and variable regions were removed
using GBLOCK 0.91b [117] with options -t = d -b5 =
h. Concatenation of the genes fragments was performed
with PHYUTILITY[118]. When clade ages were not
available from the original dataset, we estimated the
diversification age (the age of the most common recent
ancestor of the group) based on the COI gene with a
2.3% pairwise divergence per million years [119] calcu-
lated with PAUP[120]. It has been shown that this stan-
dard Arthropod molecular clock is not always correct
[121], but since age determination was not the main
goal of this paper, we included this approach in order to
get a rough estimate of the timing of diversification.
Pearson’s r was calculated to estimate the degree of cor-
relation between clade ages and sizes.
For the maximum likelihood analyses, phylograms were

computed using RAxML 7.0.4 [122] with a GTR + Γ
model [123] applied to each partition. Chronograms (i.e.
phylogenies with branch length proportional to time)
were estimated using standard likelihood methods as
implemented in the program R8S 1.71 [124,125]. We
used a cross-validation procedure [126] to select the best
method among those offered by the program. We tested
one clock-like method, the Langley and Fitch method
[127], and two relaxed-clock methods, nonparametric
rate smoothing [128] and penalized likelihood [126]. For
the penalized likelihood method, the degree of autocorre-
lation within lineages was estimated using cross-valida-
tion, and the smoothing parameter l defined accordingly.
We also tested the performance of two penalty functions,
the additive penalty function, which penalizes squared
differences in rates across neighboring branches in the
tree, and the log penalty function, which penalizes the
squared difference in the log of the rates on neighboring
branches. A search was then performed using the com-
mands num_time_guesses = 3 (3 initial starting con-
ditions) and check-Gradient in order to validate the
results. After pruning the outgroups, all trees were cali-
brated to a total depth from root to tip of 1.

Bayesian analyses were performed using BEAST 1.5.2
[129] as run on the BIOHPC cluster at Cornell Univer-
sity. We performed two separate runs of 20 million gen-
erations with sampling every 1000 generations. For all
datasets, the analyses were run under a GTR + Γ model
for each partition, using a lognormal relaxed clock. All
priors were kept as default except the tree prior which
was set to a Yule model and the age of the root of the
New Caledonian radiation of interest which we con-
strained to one using a normal distributed prior with
mean 1 and standard deviation of 1× 10-7 (thus roughly
corresponding to the calibration used in R8S). Conver-
gence was assessed in TRACER 1.5 [130] and the two
runs were thereafter combined in LOGCOMBINER 1.5
in the BEAST package, after removing the First 8000
samples of each run as burn-in. For the Agmina dataset
two runs of 40 million generations were performed to
ensure convergence.
Diversification analyses
The linearity for the relationship of log(number of
lineages) against time can be visually inspected with a
Lineage Through Time plot [131,132]. If diversification
has been constant through time, then a straight line is
expected. In addition, the g test [34] reduces the infor-
mation available in a molecular phylogeny to a single
number, which provides insight into whether the net
rate of diversification decreased over time. The g statis-
tic describes the center of mass for the nodes in a
chronogram. Under a pure birth model, this statistic fol-
lows a normal distribution with mean = 0 and standard
deviation = 1. For a given phylogeny with no missing
taxa, a constant rate of diversification is rejected if g <
−1.645 (type I error probability a = 0.05, one tailed) and
nodes are more concentrated towards the base of the
clade.
The Lineage Through Time (LTT) plots [131,132] and

g statistic [34] were computed with APE[133]. For the
chronogram obtained under bayesian analysis, we calcu-
lated the g statistic for the maximum clade probability
tree with mean node heights. The g statistic was calcu-
lated for 1000 trees drawn randomly from the posterior
distribution to get a measure of uncertainty in our esti-
mates. The g statistic assumes complete taxon sampling,
which is not true (or probably not true) for our phyloge-
nies. Because incomplete taxon sampling could bias the
estimates of g [34,134], we conducted a Monte Carlo
constant rates test as implemented in LASER with 5000
replicates. Phylogenies were simulated to the hypotheti-
cal full clade size (known missing taxa + 10% unknown
missing taxa) under a constant rate pure birth diversifi-
cation process and taxa were randomly pruned from the
tree to mimic incomplete sampling.
Finally, probabilistic models [135] were evaluated by

maximum likelihood in order to investigate more
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complex temporal patterns of diversification. Diversifi-
cation parameters were computed using the best-fitting
model among two rate-constant (Yule 1-rate and birth-
death model) [131,136] and three rate-variable diversi-
fication models (Yule 2-rate, diversity dependent linear,
diversity dependent exponential) [35]. P values were
calculated by generating 1000 trees under a Yule
model assuming 10% missing taxa in addition to the
known non-sampled taxa as indicated in the original
article. When decreases in diversification rates are
observed, new models can be used for explicitly par-
sing out the relative importance of changes in specia-
tion and extinction rates [73,74,137,138]. The first
model of diversification (SPVAR) is characterized by
an exponential diversity-dependent speciation rate and
a constant extinction rate [139,140]. The second model
(EXVAR) uses a constant speciation rate and linear
diversity-dependent extinction. The third model
(BOTHVAR) uses linear diversity-dependence for both
speciation and extinction rates [24]. Model fitting was
conducted with LASER[141]. Model selection was per-
formed by calculating the difference in the Akaike
Information Criterion [142] score (ΔAIC) between the
best rate-constant and the best rate-variable models
[35].
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