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Adenovirus-mediated expression of the C-terminal domain of SARS-CoV
spike protein is sufficient to induce apoptosis in Vero E6 cells
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Abstract The pro-apoptotic properties of severe acute respira-
tory syndrome coronavirus (SARS-CoV) structural proteins
were studied in vitro. By monitoring apoptosis indicators includ-
ing chromatin condensation, cellular DNA fragmentation and
cell membrane asymmetry, we demonstrated that the adenovi-
rus-mediated over-expression of SARS-CoV spike (S) protein
and its C-terminal domain (S2) induce apoptosis in Vero E6 cells
in a time- and dosage-dependent manner, whereas the expression
of its N-terminal domain (S1) and other structural proteins,
including envelope (E), membrane (M) and nucleocapsid (N) pro-
tein do not. These findings suggest a possible role of S and S2
protein in SARS-CoV induced apoptosis and the molecular path-
ogenesis of SARS.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Severe acute respiratory syndrome-coronavirus (SARS-

CoV) was identified as the causative agent of SARS early in

2003 [1]. Fever, dyspnea [1], lymphopenia, neutropenia [2,3]

and lower tract respiratory infection [1] were commonly found

in infected individuals. Comparative genomic analysis revealed

that SARS-CoV is a novel member of the viral family corona-

viradae, with an RNA genome of 29.7 kbp [4–6]. At least five

viral structural proteins (VSPs), namely the spike (S), envelope

(E), membrane (M) and nucleocapsid (N) protein, together

with the newly identified ORF3a [7,33], were encoded from

the genome [9,10]. Among these proteins, expression of S, M

and N are necessary and sufficient for pseudovirus assembly

mimicking those found in SARS-CoV infected cells [11,12].

Accumulated evidences have demonstrated that survival of

viruses depends on the successful modulation of apoptosis ini-

tiated either by the hosts or the viruses themselves [13–16]. Sev-

eral studies have associated apoptosis with the pathogenesis of

coronaviruses [17–21]. Previous reports suggested that over-
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expression of certain coronaviral proteins could induce apop-

tosis in vitro [22,23]. For SARS-CoV, clinical symptoms, such

as depletion of hepatocytes and T lymphocytes, i.e., lymphope-

nia, were suggested to be related to apoptosis [24–26]. It was

also demonstrated that in vitro replication of SARS-CoV in-

duces apoptosis [27–31]. Recently, the ORF3a and the acces-

sory protein 7a, but not the N, M and E protein of SARS-

CoV, was demonstrated to induce apoptosis in Vero E6 cells

[8,32]. In contrast, it is reported that the E and N protein of

SARS-CoV induces apoptosis in Jurkat T and COS-1 cells,

respectively, under serum depletion conditions [34,35]. It was

also reported that baculovirus-mediated expression of the

N-terminal (S1) but not the C-terminal (S2) domain of the S

protein of SARS-CoV triggers the cell survival-related AP-1

signaling pathway in lung cells [36]. Nevertheless, the possible

role(s) of the SARS-CoV VSPs in the virus-induced apoptosis

is largely unknown. In this study, we demonstrated a possible

role of SARS-CoV S protein in virus-induced apoptosis using

recombinant adenovirus (rAd)-mediated expression system.

The apoptotic properties of S, S1 and S2 protein, as well as

other VSPs, including E, M and N protein, were investigated

in Vero E6 cells.
2. Materials and methods

2.1. Cell culture
HEK293-derived AD-293 cells (Stratagene) were maintained in Dul-

becco�s modified eagle medium (DMEM; Gibco-BRL), supplemented
with 10% heat-inactivated fetal bovine serum (FBS; Gibco-BRL) and
1% antibiotics–antimycotic (Gibco-BRL) at 37 �C and 5% CO2. Vero
E6 cells were maintained in minimum essential medium with eagle�s
salts (EMEM; Gibco-BRL) supplemented with 10% FBS and 1% anti-
biotics–antimycotic.

2.2. Generation of recombinant adenoviral virus
Cloning of the SARS-CoV VSPs from viral cDNA, including S, S1

and S2, as well as three other structural genes – E, M and N gene
(Fig. 1A), was described elsewhere [6,37]. The cloned cDNA fragments
were tagged at the carboxy-terminal with a V5 epitope. The signal pep-
tide of pig growth hormone (SPpGH) [38] was placed upstream of the
coding sequences of S (18–1255), S1 (18–683) and also S2 (684–1255),
so as to ensure a comparable post-translational modifications for all
the spike protein fragments used in the study. The transgenes were then
subcloned into a modified bicistronic shuttle vector designated as
pShuttle-CMV-GOI-IRES-eGFP, which is derived from the pShuttle
vector of the AdEasy� XL Adenoviral Vector System (Stratagene)
and the plasmid pBMN-I-GFP (Dr. G.P. Nolan, Stanford University
School of Medicine). The bicistronic expression cassette contains the
gene of interest (GOI) and the enhanced green fluorescent protein
(eGFP), which are driven by a CMV promotor and an internal
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Construction of the rAd-VSPs and the evaluation of rAd-mediated transduction and expression. (A) A schematic diagram showing the
organization of the bicistronic expression cassette of the modified shuttle vector (pShuttle-CMV-GOI-IRES-eGFP) (upper panel) used for rAd
construction and the cloned coding regions of SARS-CoV VSPs, including S, S1, S2, E, M and N (lower panel). The amino acids were numbered
according to the corresponding proteins of SARS-CoV strain HK-39. The amino acid sequence of SPpGH is shown in the key and the detailed
sequence information of the IRES-eGFP fragment is available at ‘‘http://www.addgene.org/pgvec1?f=c&identifier=1736&cmd=findpl’’. (B)
Assessment of the optimal MOI for maximal transduction efficiency. The percentage of eGFP expressing cells was accessed by flow cytometer
with at least 1 · 105 cells were counted for each sample. Each data point of the three assays were determined in triplicate and represents the average of
three independent experiments ± standard error mean (S.E.M). (C) Expression of SARS-CoV VSPs in Vero E6 cells. The expressed proteins were
detected by using anti-V5 antibody and the sizes of the molecular marker were shown on the left of each blot.
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ribosomal entry site (IRES), respectively (Fig. 1A). The recombinant
adenovirus containing the VSPs (rAd-VSPs) was then generated by
incorporating the expression cassette into the pAdEasy-1 vector (Strat-
agene) according to manufacturer�s instructions (Stratagene). A control
adenovirus (rAd-Ctrl) with no transgenewas also constructed. The rAds
were propagated in AD-293 cells and CsCl-purified as described [39].
2.3. Immunoblotting
To access the expression of SARS-CoV VSPs, Vero E6 cells were

transduced with the corresponding rAds at multiplicity of infections
(MOI) of 100. Cells were harvested 84 hours (h) post-transduction
(p.t.) and cell lysate was denatured and subjected to SDS–PAGE (S,
S1 and S2 in 5% PAGE; other VSPs in 10% PAGE). To detect the ex-
pressed VSPs, Western blotting was carried out as described [37] using
AP-conjugated anti-V5 antibody (Invitrogen).

2.4. Cell viability assay
Viability of cells transduced at indicated MOI was accessed by try-

pan blue exclusion assay. Cells were harvested and stained with
0.025% trypan blue dye (Invitrogen) for 10 min, and the percentage
of dead cells (blue) was counted using haemocytometer.

2.5. Nuclear morphology
To detect chromatin condensation, cells transduced at indicated

MOI were collected by low-speed centrifugation and stained with Hoe-
chst 33342 (Molecular Probes) phosphate buffered saline (PBS) solu-
tion (1:1000 v/v) at 37 �C for 5 min. At least 200 cells from three
random fields of view were counted under fluorescence microscope.
2.6. DNA laddering assay
Cellular DNA fragmentation into characteristic ladders in apoptotic

cells was assayed as described [40] with modifications. Briefly, cells
were transduced with indicated rAds at MOI of 100. Both floating
and adherent cells were collected at indicated time points p.t. and were
subjected to low speed centrifugation. Cell pellets were then washed
once in ice-cold PBS and were subsequently resuspended in 80 ll of
the same solution. Three hundred microliters of lysis buffer [10 mM
Tris–HCl (pH 7.6), 10 mM EDTA, and 0.6% SDS] were added to
the cell suspension, prior to the addition of 100 ll of 5 M NaCl. Ly-
sates were then incubated at 4 �C overnight. Cell debris was pelleted
by centrifugation and the supernatants were treated with 10 ll of
20 mg/ml proteinase K (Gibco-BRL) at 37 �C for 1 h. Low molecular
weight DNA was concentrated by ethanol precipitation overnight at
�20 �C after phenol:chloroform extraction and subsequently analysed
by 2% agarose gel electrophoresis.

2.7. Flow cytometry analysis of early apoptosis by 7-AAD and Annexin

V staining
The asymmetry of the plasma membrane of rAd-S and-S2 trans-

duced cells at 84 h p.t. was monitored by dual staining with Annexin
V-PE and 7-aminoactinomycin D (7-AAD), which is a phosphatidyl-
serine (PS)-binding protein and an impermeable DNA-labelling dye,
respectively (Annexin V-PE apoptosis detection Kit I, BD Pharmingen
BioSciences). Data were acquired by Coulter Epics Elite Flow Cytom-
eter and were analyzed with the WinMDI v2.81 software package (the
Scripps Research Institute). Early apoptotic cells were recognized as
PS-externalized (Annexin V-PE labeled) with intact cell membrane that
resists 7-AAD staining (lower-right quadrant), which allows the exclu-
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sion of necrotic cells that are indistinguishable from the late apoptotic
cells (upper-right quadrant). At least 1 · 105 cells were counted for
each data point.

2.8. Statistical analysis
A paired student�s t-test was used to compare the significance be-

tween specified groups, with P < 0.05, or 0.01 be defined as statistically
significant.
3. Results

3.1. Adenovirus-mediated expression of SARS-CoV VSPs

To determine the rAd dosage needed for maximum trans-

duction efficiency with minimal cytopathic effects, Vero E6

cells were transduced with rAd-Ctrl at different MOIs and were

examined at 84 h p.t. (Fig. 1B). At a MOI of 100, about 95% of

cells were expressing eGFP, while no substantial apoptotic ef-

fect (i.e., less than 5% of non-viable and chromatin condensed

cells) was observed. Therefore, a MOI of 100 was chosen as the

upper dose limit of the rAd transductions in this study. The

successful and comparable transductions of all rAd-VSPs were

ensured in which at least 95% of cells showed the expression of

eGFP and V5 epitope as detected by flow cytometer (data not

shown), while the expression of SARS-CoV VSPs was further

confirmed by Western blots (Fig. 1C). It was noted that the

well-resolved double band pattern was observed for S and S1

at around 200 and 110 kDa, respectively, which mirrored pre-
Fig. 2. Transduction of Vero E6 cells by rAd-S and rAd-S2 induced cell death
Vero E6 cells at 84 h after transduction with the indicated rAds (a–h, repres
MOI of 100. Cells undergoing cytoplasmic shrinkage are indicated in by arrow
of the Vero E6 cells transduced as in (A). Cells undergoing chromatin conden
transduction of all rAds at a MOI of 100 were compared quantitatively in ter
(bars) using trypan blue exclusion assay and Hoechst 33342 staining, res
Characteristic DNA ladders with approximately 200 bp increments are
representatives of three independent experiments.
vious reports that these two proteins are heavily glycosylated

[41–45]. Among the bands of the S protein doublets, the one

with lower molecular weight is at about 180 kDa, which is ex-

pected to be the glycosylated protein found in the endoplasmic

reticulum, and the one with higher molecular weight, which is

about 200 kDa, is expected to represent its more complexly

glycosylated form that is found in Golgi bodies [46].

3.2. Transduction by rAd-VSPs induces apoptosis in Vero E6

cells

We next compared the apoptotic effects induced by rAd-

VSPs transductions in terms of cell morphology, cell viability,

chromatin condensation and cellular DNA fragmentation at

12 h intervals p.t. At 84 h p.t., cytopathic effects with abnormal

cell morphology (i.e., shrinkage and detachment) (Fig. 2A) and

chromatin condensation (Fig. 2B) were observed in a substan-

tial proportion of cells transduced by rAd-S and-S2, but nei-

ther in mock nor other rAds transduced cells. As shown in

Fig. 2C, cells transduced by rAd-S and rAd-S2 collected at

84 h p.t. showed significantly (P < 0.01, **) stronger apoptotic

effects in terms of both cell viability and chromatin condensa-

tion. Moreover, cellular DNA fragmentation into characteris-

tic ladders was only observed in rAd-S and -S2 transduced cells

(Fig. 2D), in which increments of about 200 bp in size became

weakly observable at 36 h p.t. Although random shearing of

DNA was also observed in parallel, the intensity of the ladder

was substantially increased at 84 h p.t. These observations
and apoptosis. (A) Photomicrographs showing the cell morphology of
enting Mock, rAd-Ctrl, -S, -S1, -S2, -E, -M and -N, respectively) at a
s. (B) Phase contrast/Hoechst 33342 fluorescence merged photographs

sation are indicated by arrows. (C) The apoptotic effects induced by the
ms of cell viability (lines) and percentage of chromatin condensed cells
pectively, as in Fig 1B. (D) Cellular DNA fragmentation analysis.
indicated by arrowheads. Results shown in (A), (B) and (D) are
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indicate that both S and S2 protein are able to induce apopto-

sis in Vero E6 cells while the other VSPs do not.

3.3. Transduction of rAd-S2 showed a stronger apoptotic effect

than that of rAd-S

To further confirm the observed apoptotic effect of the S

proteins, Vero E6 cells were transduced with rAd-Ctrl, -S, -

S1 and -S2 at different MOIs and the percentage of apoptotic

cells at 84 h p.t. were evaluated by chromatin condensation

and PS-externalization using fluorescent microscopy and flow

cytometry, respectively. As shown in Fig. 3A, the percentage

of chromatin condensed cells induced by either rAd-S or -S2

transduction at all indicated MOIs was significantly higher

than that of the others (P < 0.05, * or P < 0.01, **) in a dos-

age-dependent manner. Moreover, at MOIs of 50 and 100,

the percentage of chromatin condensed cells induced by rAd-

S2 transduction was significantly higher than those induced

by rAd-S transduction (P < 0.01, #). A similar phenomenon

was observed when the cell membrane asymmetry of cells were

examined (Fig. 3B), in which the percentage of early apoptotic
Fig. 3. Transduction of rAd-S2 showed a stronger apoptotic effect than that o
induced by rAd-S and -S2 in terms of chromatin condensation. Cells were tra
was determined by Hoechst 33342 staining at 84 h p.t as in Fig. 1B. (B) Early a
of the plasma membrane of rAd-S and -S2 transduced cells at 84 h p.t. was mo
flow cytometry. Quadrant keys are showed at the lower-left corner. The perc
Results shown in (B) are representative of three independent experiments.
cells in rAd-S and -S2 transduction was at least 2 times higher

than that of the controls at MOIs of 50 and 100. In summary,

the above data strongly suggest that rAd-mediated over-

expression of S and S2 protein induces apoptosis in Vero E6

cells, of which rAd-S2 induced substantially stronger apoptosis

than rAd-S under the condition tested.
4. Discussion

Infection of SARS-CoV in Vero E6 cells induces extensive

apoptosis through a caspase-3 and p38 MAPK dependent

pathway [27,28,30,31]. Using rAd-mediated expression system,

we assessed the apoptotic effect of the major structural pro-

teins of SARS-CoV, including S, S1, S2, E, M and N protein.

Typical features of apoptosis such as cell rounding, shrinkage,

nuclear condensation, DNA fragmentation and PE-external-

ization were observed only in cells transduced with rAd carry-

ing S and S2, but not S1, nor other structural proteins studied.

These data suggest that the over-expression of SARS-CoV S
f rAd-S in Vero E6 cells. (A) Dosage-dependence of the apoptotic effect
nsduced by rAds at indicated MOIs. The percentage of apoptotic cells
poptosis of Vero E6 cells transduced by rAd-S and -S2. The asymmetry
nitored by double staining with the Annexin V and 7-AAD detected via
entage of cells in each quadrant is showed at the top of each dot-plot.
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and S2 could induce apoptosis. The present findings seem to be

unique within the coronavirus family. In MHV [22] and IBV

[23], overexpression of S protein did not induce observable

apoptosis in vitro. On the other hand, the observed in vitro

apoptotic effects of the VSPs of other coronaviruses, such as

the E protein of MHV [22] and the N protein of TGEV [20],

were, however, not observed when we overexpressed the

SARS-CoV homologues in Vero E6 cells. Interestingly, the E

and N protein of SARS-CoV has been reported to induce

apoptosis in Jurkat T and COS-1 cells, respectively, under ser-

um depletion conditions [34,35], which were not observed un-

der the conditions tested in the current and a previously study

[8]. Recently, over-expression of two newly identified viral pro-

teins of SARS-CoV, ORF3a and 7a, were shown to induce

apoptosis in Vero E6 cells as well, which is associated with cas-

pase-8 and -3 activity, respectively [32,33]. Since the expression

level of these viral proteins in SARS-CoV infected cells has not

been clearly demonstrated, their pro-apoptotic properties may

not be the only contributing factor in SARS-CoV induced

apoptosis. In contrast, the S protein is one of the major viral

proteins in SARS-CoV infected cells apart from N protein

[47]. In SARS-CoV infected Vero E6 cells, cleavage of the S

protein into fragments was suggested in previous studies

[41,43], which includes a form that resembles the S2 protein

in this study, and the inhibition of such protein processing

completely abrogated the virus-induced cytopathic effects

in vitro, suggesting the potential roles of S and S2 in SARS-

CoV induced apoptosis. Although the activation of mitochon-

drial apoptotic pathway, caspase cascade, and the p38 MAPK-

dependent pathway are reported in several in vitro models of

SARS-CoV induced apoptosis [27,28,30,31], the viral compo-

nent(s) responsible for these observations remains unclear.

Ren and co-workers demonstrated that the addition of inacti-

vated SARS-CoV viral particles to Vero E6 cells is unable to

induce apoptosis, implicating that expression of viral genes is

indispensable for the viral-induced apoptosis in vitro. Regard-

ing these findings, the pro-apoptotic properties of S and S2 in

this report and the comparative study between the apoptotic

pathways initiated by expression of individual viral genes

and viral infection would certainly provide important clues

in dissecting the molecular components responsible for the

SARS-CoV induced apoptosis.

The demonstrated roles of SARS-CoV S protein in viral entry

and elicitation of neutralizing immune responses make it an

attractive target for antiviral therapies [10]. In this regard, inves-

tigations on the molecular basis of the S protein induced apop-

tosis, which are ongoing in our laboratory, together with the

findings in this study, are expected to provide important insights

for the rational design of anti-viral therapies, and to the under-

standing of themolecular pathogenesis of SARS-CoV infection.
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