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1  | INTRODUC TION

Genus Amaranthus contains over 60 species but only a few are cul-
tivated, and many are considered weeds (Marin, Narcisa, & Popa, 
2008). Amaranth is majorly cultivated for leaf and grains in many 
temperate and tropical regions. Amaranth is well known around 
the world and has become established for food use (both grain 
and leaves) in places like Africa, Central America, Southeast Asia, 
South America, and North America. The Amaranthus genotype 
species are cultivated as “pseudo cereals” due to their high content 
of carbohydrates, proteins and fats, comparable or even superior 
to cereals (Rusu, Marin, Moraru, Pop, & Cacovean, 2009; Toader 
& Roman, 2009). A seed of grain amaranth on average contains 
13.1–21.0% crude protein; 5.6–10.9% crude fat; and 50–69% starch 
(Grobelnik-Mlakar, Turinek, Jakop, Bavec, & Bavec, 2009). The av-
erage yield per hectare of amaranthus in Nigeria is low (7.60 t/ha) 

relative to values reported from United States of America (77.27 t/
ha) and the world average (14.27 t/ha) (FAO, 2007). Amaranthus vir-
idis is an underutilized grain with little or no industrial application 
at present. However, its starch could have industrial applications 
as cheap alternative source of starch for food industry. Amaranthus 
viridis is easily cultivated with low labor cost and high grain yield 
compared to some other sources of starch such as cassava, corn, 
and breadfruit. Corn, cassava, and potato, which are major sources 
of starch for food industry, have some other domestic and indus-
trial uses, which posed high demand on them. Moreover, the uses 
of starch in the food industry are becoming enormous at present. 
Therefore, there is need for alternative sources of starch from crops 
of lesser domestic and industrial demand.

Starch is an important food ingredient in the food industry. It is 
reported that about 53% of starch total production is used in the 
food sector (sweets – 18%, soft drinks – 11%, other foods – 24%; 
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nonfood sector (total share of 46%); 28% is used for production of 
paper, cardboard and corrugated board, 13% is used for fermentation, 
and others 5% (Gérard, Colonna, Buléon, & Planchot, 2001; Hejazi 
et al., 2008). The uses of starch in food industry include frozen foods, 
dairy products, soups, sauces, canned foods, beverages, condiments, 
confectionery and gum, meat products, jams and jellies, syrups and 
sweeteners, and baking products. However, the limitations of native 
starch include low shear stress resistance, high retrogradation and 
syneresis, and poor solubility in common organic solvents (Kavlani, 
Sharma, & Singh, 2012). Therefore, the functionalities of starch in food 
industries can be enhanced through modifications. One of such mod-
ification techniques is acetylation (esterification). Esterification (often 
called acetylation) is a chemical modification mechanism, in which the 
hydroxyl groups are replaced with acetyl groups thereby leading to 
steric obstacles and a subsequent decrease in the gelatinization tem-
perature. The acetylation reduces retrogradation and improves the 
stability at cooling and freezing points (Kavlani et al., 2012).

The starch properties of the seeds of some amaranth cultivars 
have been characterized (Baker & Rayas-Duarte, 1998; Hoover, 
Sinnott, & Perera, 1998; Radosavljevic, Jane, & Johnson, 1998; 
Marcone, 2001; Choi, Kim & Shin, 2004). However, there is a dearth 
of information on modification of A. viridis starch, using the esteri-
fication (acetylation) technique. It is worthy of mentioning that the 

Design of Experiments (DOE) approach was not used in most of 
these reports on Amaranthus starch.

Modeling and optimization of processes involved in the food 
processing industry can be used to improve the yield of the target 
products. Rather than the typical one-factor-at-a-time method 
of optimization, which does not describe the complete effects 
of the variables in the process and does not consider the inter-
actions between the variables, Response Surface Methodology 
(RSM), which defines the effect of the independent variables, 
alone or in combination in a process, is nowadays being applied 
in modeling and optimization studies (Bas & Boyaci, 2007; Betiku 
& Taiwo, 2015). This tool has been widely used in many areas 
of food research, such as production of dairy tofu (Chen, Chen, 
& Lin, 2005), ethanol production (Betiku & Taiwo, 2015), citric 
acid production (Betiku & Adesina, 2013; Dhillon, Brar, Verma, 
& Tyagi, 2011), lactic acid production (Naveena, Altaf, Bhadraya, 
Madhavenda, & Reddy, 2005) and oxalic acid production (Emeko, 
Olugbogi, & Betiku, 2015). Artificial Neural Network (ANN), 
which is a computational method that can mimics the neurological 
processing capability of the human brain, has also been applied to 
modeling of many food processing studies. These studies include 
gluconic acid (Osunkanmibi, Olowlabi & Betiku, 2015), ethanol 
(Betiku & Taiwo, 2015) and oxalic acid (Emeko et al., 2015) pro-
duction processes as well as in enzymatic reaction catalyzed by 
amyloglucosidase (Bas & Boyaci, 2007). Many of these studies 
have demonstrated consistently that the predictive capability of 
ANN is stronger than RSM (Bas & Boyaci, 2007; Betiku & Taiwo, 
2015; Emeko et al., 2015).

Therefore, this work aims to investigate the acetylation of A. vir-
idis starch with the view to enhancing the utilization of the starch 
in food industry. The acetylation process was modeled, using both 
RSM and ANN. The vital variables of the acetylation process investi-
gated include starch solids, acetic anhydride concentration, and the 
reaction time. The variables were optimized, using RSM and ANN 
coupled with genetic algorithm.

2  | MATERIAL S AND METHODS

2.1 | Materials

Amaranthus viridis grains were cultivated by National Horticultural 
Research Institute (NIHORT), Kano, Nigeria and matured grains were 
collected after 14 weeks (April to July, 2015). The grains were wet 
cleaned and dried in a hot air oven (SM9053, Uniscope, UK) at 50°C 
for 8 hr. All chemicals were of analytical grades and obtained from 
Fisher Scientific (Oakville, ON, Canada) and Sigma Chemicals (St. 
Louis, MO, USA).

2.2 | Isolation of starch from amaranth grains

Starch was extracted as described by Kong, Bao, and Corke (2009) 
with some modifications. The amaranth grains were soaked in dis-
tilled water (1:5, w/v) maintained at 28 ± 2°C for 12 hr. The seeds 

F IGURE  1 Flow chart for extraction and acetylation of 
Amaranthus viridis starch
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were rinsed, drained, and wet milled in attrition mill (Double Win, 
FS450, China). The resultant slurry was filtered through 149 μm 
mesh sieve. The filtrate was then centrifuged at 4552 × g, using a 
centrifuge (0502-1, Hospibrand, USA) for 20 min. The starch layer 
was redispersed in distilled water (1:5 w/v), and centrifuged as ear-
lier described, and this procedure was carried out in duplicate. The 
isolated starch was dried in an air oven (Uniscope, SM9053) at 50°C 
for 36 hr and ground, using a hammer mill to pass through a sieve 
with mesh sieve 212 μm. The flow chart for the process is as shown 
in Figure 1.

2.3 | Experimental design and RSM modeling

The orthogonal central composite design (CCD) of RSM was used for 
this work. The three independent variables considered for the mod-
eling include starch solid (50–150 g), acetic anhydride (5–15 ml) and 
time (3–13 min). The number of experimental conditions (Table 1) 
used for this work was generated using Equation (1), distance of the 
star points from the center point (2); real values of the center and 
star points were obtained, using Equations (3) and (4), respectively. 
The order of experimentation was completely randomized to avoid 
systematic errors.

where, k is the number of independent variables, no is the number of 
centre point and 2k is the number of star point, Xhigh level is value of 
independent variable at high level, Xlow level is value of independent 
variable at low level, Xmean is mean of values of independent variable 
at low level and high level, Xrange, is difference between values of 
independent variable at high level and low level.

The following statistical indicators were employed: coefficient 
of determination (R2), adjusted (Adj. R2), probability value at 95% 
confidence interval, predicted R2, coefficient of variation, lack-of-fit, 
and analysis of variance (ANOVA). The modeling and optimization of 
the esterification process were carried out, using RSM of the Design 
Expert software version 8.0.7.1 (Stat-ease Inc., MN, USA). Pareto 
chart was developed using Statistica software, version 12.0 (Stat 
Soft, Inc., 2014).

2.3.1 | Derivation of acetylated starch and process 
parameters optimization

The acetylation process was carried out as described by Lawal 
(2004) with some modifications. The extracted native amaranth 

(1)n=2k+2k+n0,

(2)±∝=2k∕4,

(3)Centre point= (Xhigh level+Xlow level)∕2,

(4)Star point=Xmean±∝

(

Xrange

2

)

,

TABLE  1 Acetyl content and degree of substitution of acetylated starch

Expt. No. Run order Starch solid (g)
Acetic anhydride 
(ml) Time (min) %Acetyl

Degree of 
substitution

1 3 −1 (50) −1 (5) −1 (3) 0.34 ± 0.01 0.01 ± 0.00

2 6 1 (150) −1 (5) −1 (3) 1.15 ± 0.41 0.05 ± 0.01

3 2 −1 (50) 1 (15) −1 (3) 2.64 ± 0.37 0.10 ± 0.01

4 15 1 (150) 1 (15) −1 (3) 1.53 ± 0.11 0.06 ± 0.00

5 1 −1 (50) −1 (5) 1 (13) 0.97 ± 0.02 0.04 ± 0.00

6 9 1 (150) −1 (5) 1 (13) 1.43 ± 0.02 0.05 ± 0.01

7 13 −1 (50) 1 (15) 1 (13) 2.09 ± 0.07 0.08 ± 0.01

8 20 1 (150) 1 (15) 1 (13) 0.57 ± 0.01 0.03 ± 0.00

9 5 −1.68 (15.9) 0 (10) 0 (8) 1.52 ± 0.01 0.06 ± 0.01

10 10 1.68 (184.1) 0 (10) 0 (8) 0.96 ± 0.02 0.04 ± 0.00

11 8 0 (100) −1.68 (1.59) 0 (8) 0.68 ± 0.02 0.03 ± 0.00

12 16 0 (100) 1.68 (18.41) 0 (8) 1.99 ± 0.11 0.08 ± 0.01

13 11 0 (100) 0 (10) −1.68 (0.41) 2.05 ± 0.14 0.08 ± 0.01

14 18 0 (100) 0 (10) 1.68 (16.41) 1.73 ± 0.09 0.07 ± 0.01

15 4 0 (100) 0 (10) 0 (8) 2.12 ± 0.04 0.09 ± 0.02

16 17 0 (100) 0 (10) 0 (8) 2.12 ± 0.12 0.09 ± 0.02

17 19 0 (100) 0 (10) 0 (8) 2.20 ± 0.08 0.09 ± 0.01

18 7 0 (100) 0 (10) 0 (8) 2.00 ± 0.02 0.09 ± 0.01

19 14 0 (100) 0 (10) 0 (8) 2.10 ± 0.01 0.08 ± 0.01

20 12 0 (100) 0 (10) 0 (8) 2.20 ± 0.02 0.09 ± 0.01

Values reported are means ± SD of triplicate determinations.
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starch varying from 50 to 150 g (Table 1) was dispersed in 500 ml 
of distilled water and magnetically stirred for 20 min. The pH of 
the slurry was adjusted to 8.0. Acetic anhydride varying from 
5–15 ml was added while maintaining a pH range of 8.0–8.5. The 
reaction was allowed to proceed for time varying from 3 to 13 min 
after the addition of acetic anhydride. Thereafter, the pH of the 
resultant slurry was adjusted to 7 using 0.1 mol/L HCl solution, 
centrifuged at 4552 × g, using a centrifuge (0502-1 Hospibrand) 
for 15 min, washed with distilled water (1:10 w/v) four times, 
dried in a hot air oven (Uniscope, SM9053) for 36 hr, milled using 
attrition mill, sieved with mesh 212 μm and packaged in an air-
tight plastic container. The flow chart for the process is shown in 
Figure 1.

2.4 | Determination of percentage acetylation and 
degree of substitution

The methods described by Medinav, Pardo, and Ortiz (2012) with 
some modifications were used. Acetylated starch (1 g) was dispersed 
in 50 ml of 75% ethanol in a 250-ml conical flask, stirred in a ther-
mostated water bath (Julabo, model SW22, Germany) at 50°C for 
30 min and cooled to 30°C. A 40 ml of 0.5 mol/L KOH and a few 
drops of phenolphthalein were added. The flask was corked, shaken 
and allowed to stand for 72 h on more at 30 ± 2°C while it was occa-
sionally swirled. After this, the content was titrated with 0.02 mol/L 
HCl. The flask was allowed to stand at 30 ± 2°C for 2 hr. Thereafter, 
the additional alkali which leached from sample was titrated with 
0.02 mol/L HCl. The same procedure was carried out with the native 
starch to serve as a reference. The percentage of acetyl (CH3-C = O−) 
group was calculated as shown in Equation (5) while the degree of 
substitution (DS) of the acetylated starch was calculated using 
Equation (6).

where, blank is ml of HCl used in the native starch titration, sam-
ple is the ml of HCl used in the esterified starch titration, 0.043 
is milliequivalents of the acetyl group, 162 is the molecular 
weight of glucose, 4300 is molecular weight of the acetyl group 
multiplied by 100, and 42 is the molecular weight of the acetyl 
group −1.

2.5 | Modeling and optimization using ANN

A commercial software, NeuralPower version 2.5 (CPC-X Software), 
was used for the ANN modeling and optimization. The dependent 
variables (%acetyl and DS) were predicted by using multilayer full 

feed forward (MFFF) and multilayer normal feed forward (MNFF) 
neural networks, which were trained by different learning algorithms 
such as incremental back propagation (IBP), quickprob (QP), genetic 
algorithm (GA), batch back propagation (BBP), and Levenberg-
Marquardt algorithm (LM). Each ANN was trained using a default 
stopping criteria of 100,000 iterations. The dataset in Table 1 was di-
vided into three parts for training (70%), testing (15%), and validating 
(15%) the network. The inbuilt genetic algorithm in the NeuralPower 
software was employed in optimization of the independent variables 
and predictions of the dependent variables. The accuracies of the 
optimum points predicted were evaluated by comparing values of 
the predicted-dependent variables with experimental values, using 
mean relative percent deviation modulus (E), and absolute average 
deviation (AAD).

where, n is the number of experimental data, ap,i is the predicted 
values, ap,ave is the average predicted values ae,i is the experimen-
tal value, ae,ave is the average experimental values, and j is the 
number of input variables (Akanbi, Adeyemi, & Ojo, 2006; Emeko 
et al., 2015).

3  | RESULTS AND DISCUSSION

3.1 | Acetyl content and degree of substitution

The results of the acetyl content and degree of substitution (DS) 
are presented in Table 1. The acetyl content of the acetylated 
starch ranged from 0.34 to 2.64%. The results indicated that per-
centage acetyl increased with increase in the concentration of 
acetic anhydride in the reaction medium. Similar results were re-
ported by Saartrat, Puttanlek, Rungsardthong, and Uttapap (2005) 
for kidney bean starch (1.31–4.40%). Wani, Sogi, and Gill (2015) 
reported a range of 0.80–2.09% for Indian black gram. According 
to United States Code of Federal Regulations (FAO/JECFA, 2014), 

(5)%Acetyl=
(Blank−Sample)ml×mol/LHCI×0.043×100

Weight of sample
,

(6)Degree of substitution=
(162×%Acetyl)

(4300− (42×%Acetyl))
,

(7)R2=1−

∑n

i=1
(ae,i−ap,i)

2

∑n

i=1
(ap,i−ae,ave)

2
,

(8)Adjusted R2=1−

[

(1−R2)×
n−1

n− j−1

]

,

(9)
E%=

�

100
∑n

i=1

�

xei−xpi

xei

�2
�

n
,

(10)AAD(%)=

(

1

n

n
∑

i=1

(

yi, exp−yi,cal

yi, exp

)

)

×100,
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the maximum acetyl group allowed in food is 2.50%. The three-
free hydroxyl (OH) groups located at C2, C3, and C6 have differ-
ent reactivity. The primary OH attached to C6 is more reactive 
and is acetylated more readily than the secondary ones at C2 and 
C3 due to steric hindrance and their affinity for OH groups on the 
neighboring glucose unit (Miyazaki, Hung, Maeda, & Morita, 2006). 
According to Xie, Liu, and Cui (2005), acetylation of starch affects 
its functional properties and starch containing 0.5–2.5% acetyl 
group usually improves the stability and clarity of sols by increasing 
the degree of swelling and dispersion of starch granules and also 
reducing retrogradation.

The DS observed in this work ranged from 0.01 to 0.10. The re-
sults were similar to a range of 0.05–0.17 reported by Saartrat et al. 
(2005) for kidney bean. The difference in DS may be attributed to 
the difference in amylose content and the intergranular packing 
of starch (Wani et al., 2015). Like the results obtained for the per-
centage acetyl group, the DS also increased with increase in the 
concentration of acetic anhydride in the reaction medium. The DS 
gives information concerning the number of hydroxyl functions sub-
stituted per glucose unit. The level of acetylation is expressed as 
DS (Singh, Kaur, & McCarthy, 2007). Kalita, Kaushik, and Mahanta 
(2014) reported that in modified food starches, only very few of the 
hydroxyl groups are altered and ester groups are attacked at very 
low DS values.

3.2 | Modeling and parameters optimization of 
starch acetylation process by RSM

In order to describe the relationship between the dependent vari-
ables (acetyl content and DS) and the independent variables (starch 
solids, acetic anhydride, and reaction time), the dependent variables 
were fitted by second-order polynomial quadratic regression mod-
els. By applying multiple regression analysis on the experimental 
data obtained for the dependent variables (Table 1), the analysis 
of variance (ANOVA) generated for the models are presented in 
Table 2. According to Myers and Montgomery (2002) and Fristak, 
Remenarova, and Lesny (2012), a large F-value indicates that most 
of the variations could be explained by the regression equation, 
whereas a low p-value (p < .05) indicates that the model is consid-
ered to be statistically significant.

The fitness and adequacy of the models were judged by the co-
efficient of R2 and significance of lack-of-fit. The R2 is defined as the 
ratio of the explained variation to the total variation, a measure of 
the degree of fit (Chan, Lee, Yap, Wan-Aida, & Ho, 2009; Wang, Yang, 
Du, & Yi, 2008). The closer the value of R2 to unity, the better the 
empirical model fits the actual data (Fan, Han, Gu, & Chen, 2007). 
The adjusted R2 is a corrected value for R2 after the elimination of 
the unnecessary model terms. If there are many nonsignificant terms 
included in the model, the adjusted R2′would be remarkably smaller 

TABLE  2 Regression analysis of acetylated starch

Model terms

% Acetyl Degree of substitution

F-value p-value Regression coefficient F-value p-value Regression coefficient

Model 125.27 <.0001* – 25.72 <.0001* –

Constant βo – – 2.13 – – 0.084

x1 56.32 <.0001* −0.17 17.81 .0018* −7.98 × 10−3

x2 279.20 <.0001* 0.38 48.90 <.0001* 0.01

x3 13.46 .0043* −0.08 2.37 × 10−3 .9621 9.20 × 10−5

x1x2 272.03 <.0001* −0.49 66.93 <.0001* −0.02

x1x3 10.34 .0093* −0.10 0.38 .5497 1.53 × 10−3

x2x3 105.54 <.0001* −0.30 8.14 .0171* −7.05 × 10−3

x2
1

234.11 <.0001* −0.34 51.94 <.0001* −0.01

x2
2

189.57 <.0001* −0.30 41.69 <.0001* −0.01

x2
3

23.20 .0007* −0.11 10.47 .0089* −5.95 × 10−3

Lack of fit 1.52 .3296 – 2.91 .1331 –

R2 .9912 .9586

Adj. R2 .9833 .9213

Pred. R2 .9549 .7298

CV 5.14 9.60

Ad. pred. 39.56 16.39

Mean 1.62 0.06

SD 0.08 0.01

x1, Starch solid; x2, Acetic anhydride; x3, Time; R2, Coefficient of determination; Adj. R2, Adjusted coefficient of determination; Pre. R2, Predicted coef-
ficient of determination; CV, Coefficient of variation; Ad. Pre., Adequate prediction.
*Significant factors (p < .05).
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than the R2 (Chan et al., 2009; Myers & Montgomery, 2002). Also, 
the absence of any lack-of-fit (p > .05) strengthened the reliability 
of a model.

In the case of acetyl content (Table 2), the model low p-value 
(<.0001) and F-value (125.27) indicate the statistical significance 
of the quadratic model. The R2 and adjusted R2 were .9912 and 
.9833, respectively, which illustrate that there were excellent 
correlations between the independent variables; and the fit-
ted model could describe the independent variables adequately 
(Chen, Chen, Srinivasakannan, & Peng, 2011; Pishgar-Komleh, 
Keyhani, Mostoft-Sarkari, & Jafari, 2012). The value of R2 showed 
that only 0.88% of the total variation could not be explained by 
the model. Hence, the quadratic model obtained was adequate to 
describe the influence of the independent variables on the acetyl 
content.

The coefficient of variation, CV, which is independent of the unit 
is defined as the ratio of the standard deviation of estimate to the 
mean values of the observed response. The CV is a measure of repro-
ducibility and repeatability of the model (Chen, Xiong, Peng, & Chen, 
2010; Chen et al., 2011; Pishgar-Komleh et al., 2012). The CV value 
of 5.14% observed in this work suggests that the model could be 
considered reasonably reproducible (CV < 10%) (Chen et al., 2011). 
The adequate prediction (Ad. Pred.) compares the range of the pre-
dicted value at the design points to the average prediction error. 
Adequate prediction measures signal to noise ratio. A ratio greater 
than 4 is desirable (Rajmohan & Palanikumar, 2013). The value of the 
adequate prediction for the acetyl content was significantly greater 
than 4 (39.56). The lack-of-fit test value of 0.3296 was not significant 
(p > .05), which also shows a good fit between experimental data and 
the model.

In the case of DS, the model p-value of <.0001, F-value (25.72), 
lack-of-fit (0.1331), R2 (.9586), Adj. R2 (.9213), CV (9.60%) and Ad. 
Pred. (16.39) confirmed the suitability of the generated model. The 
R2 value indicates that the model could explain up to 95.86% of 
the total variation in the esterification process. It, therefore, shows 
that the developed models for the esterification process could ad-
equately define the real behavior of the process and could be used 
for the prediction of the acetyl content and DS. The mathematical 
models in coded forms to predict the acetyl content and DS are pre-
sented in Equations (11) and (12).

Equations (11) and (12) show that starch solids, x1; acetic anhy-
dride, x2; and reaction time, x3 have significant (p < .05) influence 
on the amount of acetyl group present in the starch. Starch solids 
and reaction time were inversely related to the acetyl content of the 

esterified starch while the quantity of acetic anhydride was directly 
proportional. There was significant (p < .05) interactions among the 
independent variables. The DS was significantly (p < .05) influenced 
by amount of starch solids and acetic anhydride. There was posi-
tive correlation between acetic anhydride and DS. The DS was also 
significantly (p < .05) influenced by the interactions between starch 
solids and acetic anhydride; acetic anhydride and reaction time. 
The quadratic term of all independent variables had significance 
effect (p < .05) on DS. The graphical representations of the regres-
sion equations for the optimization of the esterification process are 
shown in Figure 2a–b. At constant reaction time, for specific mass of 
starch solids, the formation of starch esters was directly affected by 
the amount acetic anhydride employed. Similar observations were 
recorded for DS at a constant reaction time, for a given mass of 
starch solids.

Pareto charts were developed to evaluate the standardized 
effects and interactions of starch solids, acetic anhydride and 
reaction time on acetyl content and DS, and are presented in 
Figure 2c–d. Figure 2c indicates that all the linear terms, quadratic 
terms and interaction terms significantly (p < .05) influenced the 
amount of acetyl group in the esterified starch. Acetic anhydride 
was identified as the most significant process variable on ace-
tyl level of the esterified starch. Figure 2d shows that quadratic 
model terms of starch solids and acetic anhydride were significant 
(p < .05) and linear model term of acetic anhydride and interac-
tion model term of starch solid x acetic anhydride were significant 
(p < .05). A positive coefficient shows favorable interaction effect 
on the dependent variable while a negative coefficient shows an 
inverse relationship between the model term and dependent vari-
able (Emeko et al., 2015).

3.2.1 | Optimal values and verification of 
predictive models

According to United States Code of Federal Regulations (FAO/
JECFA, 2014), the maximum acetyl content allowed in foods is 
2.5%, and DS <0.1. The regression Equations (11) and (12) were 
solved using Design Expert Software. The values of the inde-
pendent variables were estimated and presented in Table 3(a). 
Starch solids (x1) was estimated as 149.57 g, acetic anhydride 
(x2) was 10.83 ml, and reaction time (x3) was 3 min; the cor-
responding acetyl content and DS were 1.61% and 0.06, re-
spectively. The confirmatory experiments conducted under the 
optimal condition showed acetyl content of 1.68% and DS of 
0.06, which were consistent with predicted values. The valid-
ity of the predicted optimum points was done using AAD and 
mean E. The AAD values of 4.17% and 0% were recorded for 
acetyl content and DS, respectively; the values of E for acetyl 
content and DS were 0.17% and 0%, respectively. The small val-
ues (<10%) of AAD and E for the dependent variables indicated 
the validity of the model and the developed models are suitable 
for describing derivation of esterified starch from native starch  
of A. viridis.

(11)

%Acety=2.13−0.17x1+0.38x2−0.083x3−0.49x1x2−0.095x1x3

−0.30x2x3−0.34x2
1
−0.30x2

2
−0.11x2

3

,

(12)

DS=0.084−7.975×10−3x1+0.013x2+9.201×10−5x3

−0.020x1x2+1.529×10−3x1x3−7.046×10−3x2x3

−0.013x2
1
−0.012x2

2
−5.952×10−3

.
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3.3 | Modeling and parameters optimization of 
starch acetylation process by ANN

In the derivation of esterified starch process, many neural net-
work architectures and topologies for the estimation and predic-
tion of the dependent variables were tested. The ANN models 
in the optimal region are presented in Table 3(b). As reported by 
Betiku and Taiwo (2015), there are many learning algorithm types 
reported in the literature, thus, it is difficult to know in advance 
which of the learning algorithms will be more efficient for a given 
study. According to Betiku and Taiwo (2015), the transfer func-
tion types employed affect the neural network learning and aid its 
performance. Thus, several ANN learning algorithms and transfer 
functions effects were evaluated by successful training of the neu-
ral network models. The results obtained indicated that IBP was 
the most suitable learning algorithm for the dependent variables 
synthesis (Table 3b). Multiple topologies were examined in order to 
determine the optimum number of neurons in the hidden layer, in 
which the neurons were varied from 1 to 10 (Figure 3a). The predic-
tive ability of the network was measured using R2 and RMSD. The 
topology of 3-8-2 was identified as the most appropriate, which 
has eight neurons. The multilayer normal feed forward (MNFF) 

connection type and incremental back propagation (IBP) network 
with hyperbolic tangent as both hidden and output layers function 
was identified as the most suitable ANN model for acetyl content 
and DS synthesis (Figure 3b).

The values of R2 and RMSD for training dataset were 0.9928 and 
0.01%, respectively. For the testing dataset, the values were 0.9928 
and 0.42%, respectively. This implies that empirical models derived 
from ANN could be used to describe the input variables for acetyl 
content and DS synthesis. The predicted conditions were starch 
solids of 152.56 g, acetic anhydride of 11 ml and reaction time of 
2.92 min (Table 3a). The values of 1.74% and 0.06 were predicted for 
acetyl content and DS, respectively (Table 3a). The predicted values 
for acetyl content and DS were authenticated by conducting three 
experimental replicates under the predicted optimal conditions (as 
it was done in section 3.2.1). The average experimental values of 
1.69% and 0.06 were obtained for acetyl content and DS, respec-
tively. The prediction was validated by using absolute average de-
viation (AAD) and mean relative percent deviation modulus (E). The 
results showed that the low values (value <10%) of AAD and E for 
the dependent variables indicated that the developed ANN model 
was effective and adequate for the esterification process. Overall, 
the most important independent variable for the derivation of 

F IGURE  2 Contour plots and pareto charts for optimization of acetylation of Amaranthus viridis starch
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esterified starch was acetic anhydride (42.59%), followed by starch 
solids (33.90%) and then reaction time (23.51%) (Figure 3c).

3.3.1 | Performance evaluation of ANN and RSM 
for the acetylation process

The extent of accuracy of the developed models from RSM and ANN 
were examined using R2 and E (Table 3). The average R2 of RSM and 
ANN were .9749 and .9928, respectively; and E values of 0.09 and 
0.05% for RSM and ANN, respectively. Thus, the ANN model proved 
to be more effective due to the higher value of R2 and lower value of E. 
Similar observations were reported in the modeling and optimization 
studies on enzymatic reaction catalyzed by amyloglucosidase (Bas & 
Boyaci, 2007), ethanol production from breadfruit starch (Betiku & 
Taiwo, 2015) and oxalic acid production from cashew juice (Emeko 
et al., 2015). Conclusively, ANN performed better than RSM in the 
modeling and optimization of acetylation process for A. viridis starch.

4  | CONCLUSION

The work examined the acetylation (esterification) of A. viridis starch and 
optimization of the process variables. The acetylation process showed 
that starch solids, acetic anhydride, and reaction time had significant 

(p < .05) effects on the modification process. The optimal condition 
of 152.46 g of starch, 11 ml of acetic anhydride, and reaction time of 
2.92 min yielded acetyl content of 1.74% and degree of substitution (DS) 
of 0.06 for the ANN method while optimal condition of 149.57 g (starch), 
10.38 ml (acetic anhydride), and 3 min (time) yielded acetyl content of 
1.61%, and DS of 0.06 for RSM method. ANN was demonstrated to be a 
superior modeling tool than RSM. The work provides useful information 
regarding the development of economic and efficient process for 
modification of A. viridis starch via acetylation method.
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