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Apolipoprotein E4 effects 
on topological brain network 
organization in mild cognitive 
impairment
Gretel Sanabria‑Diaz1*, Lester Melie‑Garcia1, Bogdan Draganski1, 
Jean‑Francois Demonet2 & Ferath Kherif1

The Apolipoprotein E isoform E4 (ApoE4) is consistently associated with an elevated risk of developing 
late-onset Alzheimer’s Disease (AD); however, less is known about the potential genetic modulation 
of the brain networks organization during prodromal stages like Mild Cognitive Impairment (MCI). 
To investigate this issue during this critical stage, we used a dataset with a cross-sectional sample 
of 253 MCI patients divided into ApoE4-positive (‛Carriers’) and ApoE4-negative (‘non-Carriers’). 
We estimated the cortical thickness (CT) from high-resolution T1-weighted structural magnetic 
images to calculate the correlation among anatomical regions across subjects and build the CT 
covariance networks (CT-Nets). The topological properties of CT-Nets were described through the 
graph theory approach. Specifically, our results showed a significant decrease in characteristic path 
length, clustering-index, local efficiency, global connectivity, modularity, and increased global 
efficiency for Carriers compared to non-Carriers. Overall, we found that ApoE4 in MCI shaped the 
topological organization of CT-Nets. Our results suggest that in the MCI stage, the ApoE4 disrupting 
the CT correlation between regions may be due to adaptive mechanisms to sustain the information 
transmission across distant brain regions to maintain the cognitive and behavioral abilities before the 
occurrence of the most severe symptoms.

Late-onset Alzheimer’s Disease (AD) is a degenerative brain disease and the most common form of dementia in 
late-life, affecting millions of people worldwide1. Because of the lack of treatment, identifying causal risk factors 
at the early stages is paramount in clinical investigation. Most of the research is focusing its attention on the 
Mild Cognitive Impairment (MCI) stage. MCI is considered an intermediate phase between normal aging and 
AD. It is mainly characterized by a decline in cognitive abilities that do not interfere with daily functioning2. 
These patients are at increased risk of developing AD or another dementia1. Epidemiological research suggests 
an estimated 40% to 60% of MCI individuals aged 58 years and older have underlying AD pathology3,4.

Nevertheless, MCI does not always lead to dementia; some patients remain stable or revert to a normal state 
while other progress to different brain pathologies. This clinical variability is based on the interplay between 
physiological, environmental, and genetic factors as part of the disease multifactorial etiology5,6. In those MCI 
cases destined to evolve to Alzheimer’s Disease, this “window” is an opportunity to develop biomarkers that help 
to identify etiology and predict progression.

Our study is motivated by the fact that the Apolipoprotein E isoform E4 (ApoE4) is the best-established 
genetic risk factor for AD7. Among MCI ApoE4 Carriers, previous studies have reported an increased risk of 
developing AD, a younger mean age of onset and more rapid cognitive decline than non-Carriers8. Likewise, in 
MCI, the prevalence of this genotype is substantially higher than in control individuals9. The ApoE4 mechanisms 
in AD’s pathogenesis are not entirely understood but have been related to amyloid-β-dependent and independent 
pathways10. Although the amount of evidence linking ApoE4 with cognitive deficits, morphological, structural, 
and functional brain alterations during AD progression11,12 at this point, it is still unclear how this genetic risk 
factor impairs the brain networks organization.

Our study’s second motivation is based on previous research supporting the idea of AD being a disconnection 
syndrome, which disrupts higher-order neuronal networks13. In this context, using a network-based approach 
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is critical to understand brain alterations and cognitive deficits during the disease progression. One feasible 
mathematical approach to elucidate the AD impact on brain networks is the graph formalism14. In graph theory 
terms, our brain is studied as a model to describe some essential elements -nodes- (brain regions) and the rela-
tionship between them (edges). Afterward, the brain complex covariance patterns are translated into global and 
regional graph metrics15. During the last decade, the graph analysis has been applied to characterize the brain 
structural covariance in AD and MCI16. It is based on the phenomenon that regions correlated in morphometric 
descriptors (i.e., cortical thickness) are often part of the same brain system that subserve specific behavioral and 
cognitive functions17. The mechanisms underlying these coordinated patterns seem to be related to mutually 
trophic effects, common pathological vulnerabilities, and genetic factors16.

Following this modeling approach, studies using different neuroimaging modalities have shown aberrant 
brain network properties in AD, MCI, and preclinical states18. They revealed disease-related network alterations 
such as a loss of balance between segregation and integration of information (small-world attribute) and redistri-
bution of regions considered central for the information flux over the network (hub regions)19–23. Additionally, 
Alzheimer’s patients show decreased long-distance-interhemispheric correlations- and increased correlations 
between brain regions targeted by the disease18,19,23. These disruptions could reflect that the whole-brain net-
work is more segregated and less integrated during AD progression than in healthy individuals. Despite such 
findings, the ApoE4 risk factor’s inclusion has been scarce and limited mostly to healthy aging subjects and AD 
patients24–28.

There is only a handful of investigations on the ApoE4 effects on topological brain networks organizations 
in MCI. Two studies using resting-state Functional Magnetic Imaging (rs-fMRI) and diffusion weight imag-
ing (DWI) compared MCI Carrier and non-Carriers groups29,30. In both cases, the network analysis showed 
specific aberrant patterns in MCI Carriers. Yao and colleagues31 reported for the first time differences between 
Carriers and non-Carriers based on metabolic covariance networks using Fluorodeoxyglucose Positron Emis-
sion Tomography (FDG-PET). Carriers were found to have lower clustering index and disruptive long-distance 
interregional correlations.

Nevertheless, ApoE4-related effects on the structural covariance network topology have not yet been fully 
explored in MCI. Such work is necessary to clarify how the genetic risks mediate and constrain the covariance 
patterns and the phenotypic expression in MCI. The identification of these subtle alterations at the network 
level may help detect, at earlier stages, the risk of AD progression in MCI ApoE4 Carriers compared to other 
disease-related markers like atrophy.

Precisely, we focus on the ApoE4-related modulation of the topological organization of cortical thickness 
covariance brain networks in MCI through structural MRI (sMRI) and graph-theory approach. We examine 
different features of the structural brain topology: (1) regional cortical thickness, (2) global network attributes 
(clustering index, characteristic path length, local and global efficiency, global connectivity, and homologous 
region connectivity) (3) nodal properties (normalized betweenness centrality, hubs) (4) network community 
detection (modularity) and resilience to insults (target attack). We hypothesize that ApoE4 is related to both 
local and global network properties changes in MCI.

Materials and methods
Subjects.  Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. Weiner, MD. ADNI’s primary objective has been to test 
whether serial magnetic resonance imaging, positron emission tomography, other biological markers, and clini-
cal and neuropsychological assessment can be combined to measure the progression of MCI and early Alzhei-
mer’s Disease. For up-to-date information about ADNI, including Police and Procedures, see www.adni-info.
org.

In the present study, 253 MCI participants with baseline T1-weighted structural magnetic resonance images 
were selected and downloaded from the USC’s Laboratory of Neuroimaging ADNI (http://www.loni.ucla.edu/
ADNI/).

The inclusion criteria were as follows: Mini-Mental-State-Examination (MMSE) scores between 24 and 30 
(inclusive), a memory complaint, objective memory loss measured by education adjusted scores on the Wechsler 
Memory Scale Logical Memory II, a Clinical Dementia Rating (CDR) of 0.5, and absence of significant levels of 
impairment in other cognitive domains, essentially preserved activities of daily living and an absence of dementia.

Exclusion criteria included: (1) the presence of a major depressive disorder or significant symptoms of depres-
sion; (2) modified Hachinski ischemia score greater than 5; (3) significant neurological or psychiatric illness; (4) 
use of antidepressant drugs with anticholinergic side effects; (5) high dose of neuroleptics, chronic sedatives, hyp-
notics, antiparkinsonian medication, and use of narcotic analgesics. Detail about inclusion/exclusion criterium 
can be found in http://adni.loni.usc.edu/wp-conte​nt/theme​s/fresh​newa-dev-v2/clini​cal/ADNI-1_Proto​col.pdf)32.

The MCI group was stratified into those with one ApoE4 allele (Carriers) and those without (non-Carriers). 
ApoE genotyping details can be accessed at http://adni.loni.usc.edu/data-sampl​es/clini​cal-data/33. Participants 
with one or more E2 allele(s) were excluded from this study due to the allele’s possible protective effects34.

The subjects also met the following criteria: anatomical study acquired in a 1.5 T MRI-scanner, right-hand-
edness, high sMRI image quality. For biomarker’s measurements (Cerebrospinal fluid) characteristics, see Sup-
plementary Information.

Ethical statements.  As per ADNI protocols, all procedures performed in studies involving human par-
ticipants were under the institutional national research committee’s ethical standards and the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards. More details can be found at adni.loni.

http://www.adni-info.org
http://www.adni-info.org
http://www.loni.ucla.edu/ADNI/
http://www.loni.ucla.edu/ADNI/
http://adni.loni.usc.edu/wp-content/themes/freshnewa-dev-v2/clinical/ADNI-1_Protocol.pdf
http://adni.loni.usc.edu/data-samples/clinical-data/
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usc.edu. Participants were studied under ADNI protocols approved by the Institutional Review Board (IRB) at 
each recruitment site, and written informed consent was obtained from all subjects prior to enrollment. A listing 
of sites with named Site Investigators can be found online at http://adni.loni.usc.edu/wp-conte​nt/theme​s/fresh​
news-dev-v2/docum​ents/polic​y/ADNI_Ackno​wledg​ement​_List%205-29-18.pdf.

Data acquisition and preprocessing.  Preprocessed versions of the 253 baselines T1-weighted MRI scans 
were downloaded. Further details are available in the ADNI-MRI technical procedures manual (http://adni.loni.
usc.edu/metho​ds/docum​ents/MRI protocols). Preprocessing steps can be found elsewhere35–37.

Computation of mean cortical thickness matrices.  Cortical reconstruction and volumetric seg-
mentation were performed using the Freesurfer analysis software suite with default settings (http://adni.loni.
usc.edu/metho​ds/docum​ents/MRI protocols). The technical details of these procedures have been previously 
described38. FreeSurfer provides the cerebral cortex’s parcellation based on Destrieux sulci-gyral-based atlas39 
and the mean cortical thickness for each cortical structure. We used these outputs to construct our data matrices 
for each group. The number of rows corresponds to the number of subjects, while the number of columns cor-
responds to the number of structures (Fig. 1).

Cortical thickness network construction.  We defined a connection as statistical associations in cortical 
thickness between each pair of brain regions for a parcellation scheme of N = 148 anatomical structures (sub-
cortical gray nuclei were excluded) (Supplementary Table S1 online). The synchronized covariations in cortical 
thickness between two regions were computed using Pearson’s correlation coefficient across subjects. Thus, the 
interregional correlation matrix (N × N, N is the number of brain regions) of such connections was obtained 
using all pairs of anatomical structures. Self-connections were excluded implying zeros in the diagonal of the 
symmetric matrix. It is essential to point out that a partial correlation analysis could not be used in our case 
because the sample size was not large enough for a robust estimation of this measure.

Before the correlation analysis, a linear regression was performed at every region to remove the effects of age, 
gender, age-gender interaction, and cerebral mean cortical thickness.

In the next step, we obtained for each MCI group Nboot = 2000 bootstrap samples of the connectivity matrix 
by selecting a random subset of subjects with replacement using the classical bootstrapping procedure described 
in40.

Figure 1.   Flowchart of the cortical thickness matrix construction. (a) Representation of the M individual 
anatomic MRI images. (b) During FreeSurfer processing, the cortical surface of the M subjects was extracted. (c) 
Using the FreeSurfer toolbox, the cortical surfaces were labeled using a reference atlas. (d) The cortical thickness 
for each structure was calculated as the mean thickness of all vertices defined as belongs to that structure. (e) All 
mean thickness values for all structures and subjects were organized in an array denoted by T of M rows by N 
columns.

http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf
http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/policy/ADNI_Acknowledgement_List%205-29-18.pdf
http://adni.loni.usc.edu/methods/documents/MRI
http://adni.loni.usc.edu/methods/documents/MRI
http://adni.loni.usc.edu/methods/documents/MRI
http://adni.loni.usc.edu/methods/documents/MRI
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The connectivity matrices obtained from bootstrapping were thresholded to create sparse binary graphs. We 
explored the Network Properties of the graphs over a range of sparsity degrees varied from 0.5 to 0.9 in steps of 
0.0241. This range of sparsity degree has been indicated in previous studies to be optimal42,43. Similarly to other 
papers, only the positive correlation values are used to define the connectivity matrices. This choice is based on 
the lack of a clear physiological justification for negative correlations and the possible contamination by spurious 
negative correlation as a side effect of regressing out global effects in the preprocessing step (Fig. 2).

Network properties analysis, graph theory approach.  In general, a complex network can be rep-
resented as a graph G = [N, K], the components of this system are called nodes (N), and the relations or con-
nections between them are called edges (K)44. The nodes are the anatomical regions, and the edges are the cor-
relations in cortical thickness across subjects between pairs of these brain regions. It is important to note here 
that this is a mathematically derived network whose connections do not necessarily constitute brain functional 
or physiological mechanisms directly. However, these networks are based on structural data. Therefore, they 
indirectly reflect the underlying mechanism, allowing us at the same time to use them and their properties as 
possible biomarkers of the differences between normal and pathological brain states.

In particular, we analyzed the following global network attributes: clustering index45, characteristic path 
length44,45, local and global efficiency46, global connectivity, and homologous regions connectivity47. To describe 
the network’s nodal properties, we computed the normalized betweenness centrality (NBC)19,23 measure to 
identify the network hubs. We also performed a modularity analysis representing a network with densely inter-
connected nodes and relatively few connections between nodes in different modules48. It is a reflection of the 
natural segregation within a network49–51. Additionally, we carried out a ’Targeted-Attack’ study to evaluate the 
cortical thickness covariance network’s resilience when the most critical regions (hubs) are virtually attacked. 
Definitions for these measures within the traditional interpretation of complex networks framework52 can be 
found in Supplementary Information and Table S2 online.

Methodology for studying differences in regional cortical thickness.  Cortical vertex-wise regres-
sion analyses were performed using the SurfStat MATLAB toolbox (http://www.math.mcgil​l.ca/keith​/surfs​tat). 
Age, gender, and mean cortical thickness (CT) were statistically controlled. The statistical significance of the 
t-statistic maps for cortical thickness differences was corrected for multiple comparisons using Random Field 

Figure 2.   Steps for assessing the networks of cortical thickness covariance. (a) Matrix of the morphometric 
descriptor (cortical thickness) for the Destrieux parcellation. (b) The data matrix was substituted by residuals 
of the linear regression to subtract effects of age, gender, interaction age–gender, and the global effect (global 
mean cortical thickness) represented in (c). (d) Correlation matrix representing the concurrent changes among 
all pairs of anatomical structures. (e) The thresholding process for different sparsity levels to generate binary 
graphs. (f) Assessment of the network properties for all binary graphs obtained in (e).

http://www.math.mcgill.ca/keith/surfstat
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Theory (RFT) to avoid false positives when more than 80,000 tests were performed53. RFT identifies statistically 
significant "clusters" of vertices and vertex "peaks". Cluster p-values show regions of connected vertices with 
p-values below 0.001 in clusters whose extent is significant at p < 0.05, i.e., a collection of connected vertices with 
p < 0.001 that was unlikely to occur by chance.

Statistical methods to study ApoE4 modulation of global network properties.  Network prop-
erties (NP) of the cortical thickness correlation matrices were computed for each sparsity degree values and 
different bootstrap samples in each MCI group. Thus, we had a set of Nboot = 2000 NP curves for each network 
property. The area under the curve (AUC) was computed for each network attribute to contrast the global behav-
ior of these attributes54. The NP curves’ monotonic changes make AUC a suitable descriptor of the networks’ 
global performance.

We followed three main steps to examine differences in global network properties between groups: (1) con-
struction of the empirical bootstrapped distribution of differences by subtracting the corresponding bootstrap 
samples between groups; (2) definition of the statistical significance level: a 95 percent confidence interval (CI) 
(biased corrected percentile bootstrap CI)55 of the distribution of the empirical difference is estimated; (3) 
Hypothesis testing: a significant difference between groups is accepted if CI does not contain zero, no significant 
difference is considered otherwise. A p-value associated with each hypothesis test is also reported.

Methodology to explore nodal betweenness centrality (NBC) differences between groups.  For 
each bootstrap sample of the cortical thickness connectivity matrix, the NBC was computed at every single spar-
sity degree. Previously to this process, the largest component54 of all bootstrap samples of the cortical thickness 
covariation matrices were calculated. The minimum sparsity degree for the largest connected components (equal 
to the number of structures) was used as an upper limit of the sparsity degree range. This step guarantees that 
all nodal NBCs come from fully connected cortical thickness networks. Similarly to global network properties, 
we take the AUC and follow the three main steps to examine differences between groups for each anatomical 
structure. To control for multiple comparisons (across the number of structures), we applied the False Discovery 
Rate (FDR) correction.

Hubs were selected as those with mean NBC superior to 1.5, similar to41.
Construction of the Cortical Thickness Network and computation of network metrics were performed using 

the MorphoConnect toolbox56 and subroutines of the Brain Connectivity Toolbox52 (https​://sites​.googl​e.com/
site/bctne​t/). The figures were created using the BrainNet Viewer package57 (http://www.nitrc​.org/proje​cts/bnv) 
and the Gephi package58 (https​://gephi​.org/).

Results
Demographic and neuropsychological variables.  There were no significant differences in gender, 
education, MMSE scores, and mean cortical thickness between groups (Table 1). However, the age was signifi-
cantly different between MCI Carriers compared to non-Carriers (U (6542) = − 2.51, p = 0.01). The MCI Carriers 
group was younger than non-Carriers on the diagnosis age (74.17 vs. 76). This result agrees with previous studies 
were ApoE4 had been associated with a younger age of onset59.

ApoE4‑related changes in regional cortical thickness.  Differences in cortical thickness between 
MCI Carriers and non-Carriers were not statistically significant after FDR correction (Supplementary Fig. S1 
online). However, percent difference maps show trends for a reduced thickness bilaterally in the anterior tem-
poral lobe and frontal lobe regions in the Carriers group compared with non-Carriers. The non-Carriers group 
tended to lower cortical thickness values in left posterior parietal areas, the precuneus, posterior cingulate gyrus, 
and frontal pole. For a list of clusters, see Supplementary Table S3 online.

Table 1.   Demographics and neuropsychological variables for MCI groups. Age, Education, MMSE, and Mean 
cortical thickness values are represented by means and standard deviations. Gender (M/F) is represented by 
the number of subjects. Significant set at p < 0.05. The superscripts “&” represents χ2 test; “+” represents the 
Mann–Whitney U test. Key: MCI mild cognitive impairment; Carriers: ApoE4-positive; non-Carriers: ApoE4-
negative; M male; F female; y years; MMSE mini-mental state examination.

MCI

StatisticsCarriers Non-carriers

N 126 127 –

Gender (M/F) 80/46 88/39 p = 0.33&

Age (y) 74.17 (6.91) 76 (7.97) U(6542) = − 2.51, p = 0.01+

Age range 56.8–88.9 54.6–89.8 –

Education (y) 15.63 (3.03) 15.61 (3.38) U(7878) = − 2.21, p = 0.83+

MMSE 26.97 (1.85) 27.17 (1.83) U(7492) = − 0.87, p = 0.38+

Mean cortical thickness (mm) 2.23 (0.12) 2.23 (0.14) U(7902) = − 0.17, p = 0.86+

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/
http://www.nitrc.org/projects/bnv
https://gephi.org/
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ApoE4 modulates the global network properties.  Figure 3 shows the cortical thickness matrices for 
negative (Fig. 3a,b) and positive correlation values (Fig. 3c,d) for each group. Only matrices with positive values 
were used for the subsequent analysis.

Figure 4 shows the changes in global network properties for both groups across various densities thresholds 
(0.5 to 0.9). The two networks exhibit differences in clustering index, characteristic path length, local and global 
efficiency, global connectivity, homologous regions connectivity, and modularity. The Target Attack simulation 
was not significantly different between groups (p > 0.05) for the whole range of densities values (Table 2).

The comparison of the global network properties based on the AUC values revealed in MCI Carriers as 
compared with non-Carriers a decrease in clustering index, characteristic path length, local efficiency, homolo-
gous regions connectivity, global connectivity strength, and modularity. In contrast, the MCI Carriers group 
exhibited higher global efficiency (Fig. 5). The results of the statistical analysis, including confidence intervals, 
can be found in Table 2.

Group‑based differences in normalized betweenness centrality (NBC).  We also studied the 
effects of ApoE4 on the Normalized Betweenness Centrality (NBC), a regional network property. The AUC 
analysis showed 11 regions with NBC differences between groups after FDR correction (p < 0.05) (Fig. 6). The 
full list of structures and the statistical analysis results (including confidence intervals) can be found in Supple-
mentary Table S4 online. NBC regional differences between groups comprise mainly occipital-temporal brain 
areas followed by limbic and frontal regions. Compared with non-Carriers, Carriers showed lower NBC for all 
brain regions except for the right lingual gyrus, left inferior temporal sulcus, right medial occipitotemporal sul-
cus (collateral sulcus), and lingual sulcus.

ApoE4 modifies the brain network hubs.  We also studied the effects on the hubs of the cortical thick-
ness covariance network due to the presence of ApoE4. There were identified 24 hubs in each group (Fig. 7). The 
detailed list of structures and its NBC values were tabulated in Supplementary Table S5 online. We identify 11 
common hubs to both groups (Fig. 7, yellow structures), including limbic (bilateral anterior part of the cingulate 

Figure 3.   Cortical thickness correlation matrices for each group. (a) and (b) display matrices with positive 
and negative correlation values. (c) and (d) represent matrices with positive correlation values. The strength 
of the connection is indicated by the color bar. The ’R-’R’ and ’L-’L’ quadrants represent the intra-hemispheric 
cortical thickness correlations in the right and left hemispheres. The ’R-’L’ and ’L-’R’ quadrants depict the 
inter-hemispheric interactions. The diagonal of the ’L’-’R’ quadrant shows the correlations in cortical thickness 
between homologous structures across hemispheres.
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gyrus and sulcus, left posterior-dorsal part of the cingulate gyrus), insular (bilateral posterior ramus of the lateral 
sulcus, anterior segment of the circular sulcus of the insula), frontal (central operculum and sulci), temporal 
(superior temporal sulcus) and temporal-occipital and parietal-occipital regions (parieto-occipital sulcus, ante-
rior transverse collateral sulcus).

Compared to non-Carriers, where hubs comprised mainly parietal-occipital-temporal areas, in the Carri-
ers group were localized predominantly in frontal and parietal-occipital-temporal regions. Hub regions found 
only in Carriers, including the posterior-dorsal part of the cingulate gyrus, inferior occipital gyrus and sulcus, 
superior temporal and orbital gyrus. Areas identified as hubs in the non-Carriers comprised the lingual aspect 
of the medial occipitotemporal gyrus, supramarginal gyrus, and subcallosal gyrus.

ApoE4‑related change of the cortical thickness network modularity.  Modularity estimation was 
performed on the groups averaged connectivity matrix using Newman’s metric. The resulting analysis (Fig. 8) 
divided the 148 cortical nodes into five modules for MCI Carriers and three modules in the non-Carriers group.

The modules are represented on a circular graph layout, where the nodes are placed in circles if they belong 
to the same module. Three communities defined the non-Carriers modularity with similar region numbers 
(community 1: N = 41, community 2: N = 59, and community 3: N = 48). Each module included a distributed set 
of regions. However, the analysis per lobule showed an anterior community based mainly in the frontal areas, 
a central module with similar frontal, parietal and occipital regions, and a posterior module integrated by tem-
poral and temporal-occipital areas. On the other hand, Carriers showed more segregated modularity based on 
5 communities with two large modules (community 2: N = 33 and community 3: N = 39) and three smaller ones 
(community 1: N = 30, community 4: N = 22, and community 5: N = 24). In this group, the community compo-
sition was more diverse as compared with non-Carriers. However, we were able to identify that the modules 
showed a specific pattern of regions summarized as follows: community (1) temporal-occipital, community (2) 

Figure 4.   Global network properties as a function of sparsity degrees.

Table 2.   Network properties differences between groups. Network properties in each group are represented by 
the mean and standard deviations: mean (s.d). In bold, the significance differences, those confidence intervals 
that do not contain zero.

Network property Carriers Non-carriers Confidence interval (95%) p-value

Clustering index 7.92 (0.2) 8.57 (0.3) [− 1.62, − 0.61] 0.04*10–4

Characteristic path length 28.74 (0.06) 29.04 (0.15) [− 0.88, − 0.28] 0.03*10–3

Target attack 16.24 (0.09) 16.25 (0.09) [− 0.12, 0.42] 0.67

Local efficiency 12.39 (0.08) 12.70 (0.13) [− 0.78, − 0.32] 0.09*10–4

Global efficiency 11.24 (0.01) 11.19 (0.03) [0.04, 0.14] 0.06*10–3

Global connectivity 0.06 (0.01) 0.07 (0.01) [− 0.01, − 0.001] 0.04

Homologous regions connectivity 0.36 (0.01) 0.4 (0.01) [− 0.08, − 0.01] 0.02

Modularity 3.83 (0.20) 4.45 (0.28) [− 1.61, − 0.29] 0.02
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Figure 5.   The area under the curves (AUC) of the cortical thickness covariance global properties. The bar 
heights represent the mean of the network properties, and the error bars are their standard deviation.

Figure 6.   Significant differences between groups based on NBC. The bar heights represent the mean NBC 
values for each group, and the error bars the standard deviations. R: right hemisphere, L: left hemisphere. The 
regions were mapped onto the cortical surfaces using the BrainNet Viewer package (http://www.nitrc​.org/proje​
cts/bnv).

http://www.nitrc.org/projects/bnv
http://www.nitrc.org/projects/bnv


9

Vol.:(0123456789)

Scientific Reports |          (2021) 11:845  | https://doi.org/10.1038/s41598-020-80909-7

www.nature.com/scientificreports/

frontoparietal, community (3) parietal-occipital, community (4) insula, community (5) frontal regions. For a 
complete list of regions per module in each group, see Supplementary Table S6 online.

It is worth noting that modules 2 and 3 in Carriers are assigned to the second module in non-Carriers and 
modules 4 and 5 to module 3, suggesting a low level of segregation for non-Carriers. The sub-modules combine 
to form predominantly anterior–posterior large communities.

Discussion
We investigated for the first time the cortical thickness structural covariance networks in ApoE4 Carriers and 
non-Carriers groups to assess the effect of genetic risk on large-scale network topology in MCI. Few previous 
studies have found evidence of the ApoE4 modulation on the MCI brain network topology using graph theory 
based on physiological variables derived from other image modalities (rs-fMRI, FDG-PET, and DWI). However, 
our approach is timely based on the following points:

(1)	 As a morphometric descriptor, cortical thickness offers unique information about morphological covari-
ance patterns between brain regions compared to other cortical measures41.

(2)	 Structural covariance analysis is attractive because of the wide availability (in clinical and research settings) 
of high-quality sMRI scans compared with other modalities. Additionally, the cortical thickness derived 
from sMRI has proved consistent across scanner systems and field strengths60.

(3)	 It has been shown that anatomical covariance patterns are related to functional and anatomical connectiv-
ity. However, comparing these connectivity measures has demonstrated that brain structural covariance 
networks capture complementary information of the same physiological processes16,61.

(4)	 Graph theory provides a unique description of the multivariate neural process by looking at their local and 
global connectivity topology.

(5)	 Unlike the previous studies29–31, we introduced the modularity and target attack analyses providing further 
information about the topological organization of the structural covariance networks in MCI.

Figure 7.   Hubs regions in MCI Carriers and non-Carriers based on the Normalized Betweenness Centrality 
(NBC). The blue regions represent hubs in the Carriers and the red ones the non-Carriers. In yellow are 
represent hubs common to both groups. The NBC values were mapped onto the cortical surfaces using the 
BrainNet Viewer package (http://www.nitrc​.org/proje​cts/bnv).

http://www.nitrc.org/projects/bnv
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Summarizing, our research presents novel experimental evidence regarding the ApoE4 effects on the brain 
network topology, which are worth investigating to define intermediate phenotypes in MCI.

In general, our findings revealed a decrease in global and homologous connectivity strength, clustering index, 
characteristic path length, local efficiency, modularity, and an increase of global efficiency in MCI Carriers 
compared to non-Carriers. MCI carriers showed lower values of NBC in several brain regions. Together, these 
findings concur with the evidence that ApoE4 is associated with an aberrant brain network topology in MCI. 
On the other hand, the changes are not detectable with the standard univariate approach based on the cortical 
thickness’s differences. Our results support the concept that multivariate measures (i.e., covariations) combined 
with a graph theoretical approach are more sensitive to identifying complex pathological processes, as found in 
other brain diseases. Univariate measures derived from the standard methods could be insufficient for capturing 
subtle (early) abnormal changes.

Some of these results deserve more attention and will be discussed in the following.
In particular, we observed a decrease in the clustering coefficient index in MCI Carriers relative to non-

Carriers, indicating lower local cortical thickness correlations. This finding suggests a topological organization 
more like a random network in this group of patients, a structure previously reported in AD subjects18,62,63. 
Moreover, it has been demonstrated an association between longitudinal decreases of the clustering index and 
risk of MCI conversion into AD63. Previous studies showed no differences between groups or reported similar 
results29,31. The disagreement between investigations could be related to several factors like group composition, 
sample size, different neuroimaging modalities, and atlas parcellation.

In the current study, we also observed a shorter characteristic path length associated with the presence of 
the ApoE4, indicating that fewer steps are required to carry on the information across remote brain regions64. A 
similar result was found in previous research in cognitively normal elderly ApoE4 Carriers26 using FDG-PET. A 
compensatory mechanism for early local pathological events seems a plausible hypothesis when the clustering 
index decreases in the presence of shorter characteristic path length. Also, the ApoE4 allele has been proposed 
as an example of antagonistic pleiotropy65. The concept means that ApoE4 may offer benefits during early and 

Figure 8.   Module distributions for both Carriers and non-Carriers groups estimated using Newman’s spectral 
community detection algorithm at sparsity degree 0.88. The circular representation of the modules was based on 
the Gephi package (https​://gephi​.org/). Inferior panels show the cortical surface mapping of the modules in both 
Carriers and non-Carriers groups using the BrainNet Viewer package (http://www.nitrc​.org/proje​cts/bnv). Each 
color represents those regions that belong to a specific module.

https://gephi.org/
http://www.nitrc.org/projects/bnv
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middle age and promote better compensatory mechanisms during early disease phases like MCI that can be 
captured using a complex network approach.

Like in the clustering index, one previous study reported no differences between groups in characteristic path 
length31. However, our results seem to be more reliable since Yao et al. (2015) gathered the MCI, AD, and healthy 
controls to form the Carriers and non-Carriers groups, making it challenging to disentangle group differences31.

Our analysis also showed a decrease in global connectivity strength- an aggregate measure of the correlation 
values between all possible pairwise anatomical structures- in MCI Carriers relative to non-Carriers. Previous 
studies did not report on this network property29–31. This finding may indicate that mechanisms underlying 
cortical thickness are differentially coordinated across this group of patients. Another possibility is that ApoE4 
increases the interindividual differences between regional cortical thicknesses in Carriers. It may be due to less 
cortical thickness coordinated patterns concerning the homogeneity effects created by putative compensatory 
and shared brain region vulnerability associated with the aging processes and interactions with the MCI stage.

The nodal properties results allowed us to generate hypotheses about the ApoE4 impact on brain network 
integration and segregation in MCI. Similar to previous studies, we found the opposite effects of the ApoE4 
genotype on nodal centrality30,31. There is probably more than one cause for these alterations, which makes 
disease-related changes in structural covariance challenging to interpret. A regional lower NBC may be sugges-
tive of dysconnectivity due to a localized degeneration. By contrast, an increase may indicate over connectivity 
or synchronized cortical thickness loss in several areas targeted by the same neurodegenerative process. Most 
brain regions reported here are different from previous studies30,31 based on other neurophysiological variables. 
It is indicative that the networks of cortical thickness covariance capture supplementary information of the 
anatomical brain organization. Other factors could also be playing a role like sample characteristics and differ-
ent statistical approaches.

Our findings showed agreements with previous studies in AD neurodegeneration. The fact that crucial struc-
tures like Posterior Cingulate Cortex (PCC) showed lower NBC values in the Carriers group suggests that 
regional topological properties may capture disease-related effects that can be further explored in association 
with the risk of AD progression. We identified between-group differences in NBC across different lobes, consist-
ent with previous findings26,30. Several regions in the Limbic and Frontal cortex decreased centrality in Carriers 
as compared with non-Carriers. Notably, for all detected hubs, NBC was lower in Carriers than non-Carriers. 
Some of these structures were: cingulate gyrus, middle occipital gyrus, occipital pole, superior frontal sulci, and 
orbital gyrus. It is important to note that several of these regions are part of the Default Mode Network (DMN). 
As is recognized, the DMN is involved in self-referential functions such as episodic memory66 affected by AD. 
In this network, the PCC is a key integration node between the medial temporal lobe and medial prefrontal 
subsystems66,67. Previous studies reported in the DMN (including PCC) high glycolytic metabolism, enhancing 
abnormal amyloid deposition aggregation68,69. ApoE4, as a disrupted metabolic factor10, may alter the DMN 
resting-state activity and ultimately bringing atrophy in MCI ApoE4 Carriers, accelerating AD pathology early 
during the disease course.

Lower NBC values were also found in regions that belong to the Saliente Network (i.e.insula). This network 
operates on identified salience and, as such, includes known sites for sustained attention and working memory 
(dorsolateral prefrontal cortex, lateral parietal cortex), response selection (dorsomedial frontal), and response 
suppression (prefrontal cortex)70–72. Our findings may suggest that ApoE4 Carriers have altered regulation of 
control processes that subsequently influence memory performance.

To the best of our knowledge, we reported, for the first time, a modularity analysis of the structural covari-
ance network in MCI. We observed a decreased modularity in Carriers as compared with non-Carriers. A less 
modular network implies fewer connections within modules and more connections to other modules. In graph 
theory terms, Carriers shows better cost-efficiency wiring regarding the physical volume occupied, conduction 
delay, and metabolic cost. On the other hand, the increase of interconnectedness between modules can lead to 
the rapid spreading of disease pathological markers (neurodegenerative process) and loss of specialization73. In 
many networks, as in our case, modularity and global efficiency are inversely related, as a highly modular topol-
ogy could require long communication paths to integrate information across the network.

In addition to these differences, the module size and composition also change associated with the ApoE4. This 
analysis revealed in Carriers a spatial rearrangement of these communities. They include sets of brain regions that 
are anatomically proximal, and they mainly belong to the same lobule. However, in non-Carriers, the module’s 
compositions are more distributed across the cortex. We identified anterior-medial-posterior network modular-
ity mainly formed by frontal, frontal-parietal, and temporal-occipital modules. This modular topology has been 
described previously in resting-state networks in normal aging. It evidences the brain network evolves from a 
preferentially local connectivity pattern to a more distant and functionally community structure74. Further lon-
gitudinal studies on modularity patterns differences between Carriers and non-Carriers could offer an exciting 
opportunity to distinguish those MCI patients at high risk of AD progression.

In conclusion, our study applies the graph theory to assess the ApoE4-related changes on global and local 
network topology in MCI based on the concurrent variations of the cortical thickness across anatomical struc-
tures. Our findings showed that some network properties changes in MCI Carriers seem to be associated with 
altered communication between neighboring regions. It may be an early response to AD-related pathological 
markers (i.e., tau-tangles and amyloid-beta plaques depositions). On the other hand, a better global network 
communication could be considered the expression of compensatory/degeneracy mechanisms to sustain the 
transmission of the information across distant brain regions associated with the genetic challenge. These changes 
in topological attributes may be considered sensitive markers to detect early brain network changes related to 
the disease progression.

The methodological approach used in this study has several limitations. The structural covariance analysis 
has a static nature. Evidence suggests that the brain undergoes spontaneous reconfiguration at a temporal scale75, 
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as such properties like modular structure and hub may fluctuate over time. A quantitative comparison of the 
network topological attributes between studies is difficult. These properties’ values depend on experimental 
parameters like brain parcellation, nodes-edge definitions, and sample size76. Despite providing useful infor-
mation, structural covariance analysis is a group approach. It does not allow individual analysis and statistical 
associations between topological network attributes and clinical/cognitive measures.

Other aspects need to be addressed in future investigations. (1) MCI patients exhibit different progression 
trajectories that we did not consider here; accordingly, further follow-up longitudinal studies are warranted to 
examine the interaction between network properties, disease progression, and ApoE4 (2) The inclusion of healthy 
elderly sample, as well as AD patients, would help to fully characterize the ApoE4 effect on the brain network 
properties across the disease spectrum (4) This study did not investigate whether the ApoE4-related impact on 
the brain network topology is mediated by pathological disease markers like beta-amyloid and tau deposition. 
Further investigations on this topic will clarify the underlying mechanisms associated with the brain network 
properties changes. Despite these limitations, our study sheds light on the structural connectomics of MCI associ-
ated with the ApoE4. We considered a complex network analysis with the genetic risk factors inclusion, a valu-
able approach to understanding the AD spectrum, which could improve the personalized medicine perspective.

Data availability
Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) database (adni.loni.usc.edu). ADNI database is publicly accessible from adni.loni.usc.edu upon 
request. ADNI’s primary goal has been to test whether serial MRI, PET, other biological markers, and clinical 
and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment 
and early Alzheimer’s Disease. The Principal Investigator of ADNI is Michael W. Weiner, MD (email: Michael.
Weiner@ucsf.edu).
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