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Hydrogen evolution reaction (HER) is receiving a lot of attention because it produces

clean energy hydrogen. Catalyst is the key to the promotion and application of HER.

However, the precious metal catalysts with good catalytic performance are expensive,

and the preparation process of non-precious metal catalysts is extremely complicated.

The simple preparation process is the most important problem to be solved in HER

catalyst development. We synthetized cobalt oxide (CoOx) catalyst for HER through a

simple hydrothermal process. The CoOx catalyst shows excellent HER catalytic activity.

Characterization results reveal that there are a great deal of surface hydroxyl groups or

oxygen vacancy on the surface of CoOx catalyst. In alkaline media the CoOx catalyst

shows an over-potential of 112mV at 20mA cm−2 and a small Tafel slope of 94mV

dec−1. This paper provides a simple and easy method for HER catalyst preparation.
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INTRODUCTION

At present, the world’s energy consumption mainly comes from the expending of fossil energy
such as coal, oil, and natural gas. The burning of fossil energy brings two problems (Ojha
et al., 2018). First, fossil energy is a non-renewable resource, and it will be exhausted in the
near future. Second, the burning of fossil energy generates fearful environmental questions such
as haze and chemical rain (Chandrasekaran et al., 2019). H2 is a hopeful clean and renewable
source of energy to resolve the obstacle of fossil fuel exhaustion and environment increasingly
being destroyed (Chen et al., 2013; Zhao et al., 2020). In recent years, hydrogen production
from electrolyzed water has attracted scientists from all over the world as an emerging method
of hydrogen production (Morales-Guio et al., 2014). Scientists have discovered that Pt-based
precious metal materials are the best electrocatalysts for HER. However, platinum-based noble
metal materials limit their wide application in electrocatalysts due to scarce resources and
high prices (Zou and Zhang, 2015; Liu et al., 2020). Consequently, it is necessary to exploit
no-noble metal catalysts which are inexpensive and stable in activity. Because of their Pt-like
catalytic behaviors for HER, well electrocatalysts originated from the most abundant elements
(Co, Fe, Mo, Ni, Ti, W, and so on) has experienced rapid development over the past decade
(Jung et al., 2014; Kuznetsov et al., 2019; Liu et al., 2020). Scientists design and develop
various catalysts including transition metal oxides (CoO, Fe3O4, MoO2, TiO2, WO2) (Park and
Kolpak, 2019; Protsenko et al., 2019; Qian et al., 2019; Li L. et al., 2020; Li S. et al., 2020),
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metal sulfides (CoS, CuS, FeS2, MoS2, NiS2, V3S4, WS2) (Li et al.,
2018; Shi et al., 2019; Singh et al., 2019; Wang Y. et al., 2019;
Cao et al., 2020; Hao et al., 2020; Thangasamy et al., 2020), metal
carbides (MoC2, WC) (Ji et al., 2018; Hussain et al., 2019), metal
phosphides (CoP, NiP, FeP, WP, MoP) (Ojha et al., 2017; Zhang
C. et al., 2018; Wang P. et al., 2019; Ji et al., 2020; Lin et al., 2020),
metal selenides (CoSe2, MoSe2, NiSe2, WSe2) (Wang et al., 2012,
2020; Chen et al., 2020; Nam et al., 2020) andmetal boron (Huang
et al., 2019; Wang A. et al., 2019).

In order to obtain these prominent catalysts, scientists have
explored multifarious methods. In addition to using ultrasonic
vibration, hydrothermal, calcination and other methods, it also
needs to undergo steps such as sulfurization, selenization,
phosphating or other methods. As we all know, sulfur, selenium,
phosphorus and so on are all toxic and flammable under certain
conditions, which hinders the widespread use of these catalysts
for HER. In order to enable the hydrogen evolution reaction to
be promotion and application, its catalyst preparation must be
simple and easy to achieve industrial production. Therefore, a
simple and easy preparationmethod is one of the important tasks
in the development of HER catalysts.

Among the many metal oxide catalysts, the cobalt oxide
possesses a favorable activity and stability for HER (Wang
et al., 2016). Because of its unique electronic state, the cobalt
oxides demonstrate the good electrocatalytic activity (Zhang
X. et al., 2018). Inspired by the above-mentioned, we herein
have synthesized octahedral cobalt oxide particles using Co
foam through the simple hydrothermal method without adding
any other substances. Impressively, the resultant catalyst reveals
favorable electrocatalytic performances and excellent long-term
stability for the HER.

EXPERIMENTAL DETAILS

Synthetic Process
All chemical substances in the article were of analytical grade
and utilized as obtained without purification treatment. Co
foam was disposed by ultrasonic vibration in 1.5M hydrochloric
acid solution, acetone and secondary distilled water for 30min,
respectively. Then the treated Co foam and some redistilled water
were put into a Teflon-lined autoclave (rated capacity 100mL).
The autoclave was healed and placed at 200◦C for 24 h. After the
hydrothermal reaction accomplished, the autoclave was naturally
cooled naturally to indoor temperature. After moisturized with
filter paper, the Co foam was subjected to heat in a vacuum
tube furnace at 250◦C for 30min. The sample was obtained after
cooling and named Co1.

Characterization
XRD data was obtained by a Bruker D8 Advance X-
ray diffractometer (Cu Ka, l ¼ 1.5418 Å). The surface
morphology and microstructure were determined by
scanning electron microscope (FE-SEM, JEOL JSM-6700F)
and transmission electron microscope (TEM, Tecnai G2 F20).
X-ray photoelectronspectroscopy (XPS) measurements were
examined by a Phi V5000 X-ray photoelectron spectrometer
with Al–Kα radiation (hν = 1486.6 eV). Inductively coupled

plasma-atomic emission spectrometry (ICP-AES) was conducted
on a Leeman PROFILE SPEC.

Electrochemical Measurements
All the electrochemical measurements were conducted on a
CHI 760E electrochemical workstation (Shanghai Chenhua) in
a standard three-electrode system. The Co foam sample was
used as the working electrode, a graphite plate was used as
the counter electrode and the saturated calomel electrode (SCE)
was used as the reference electrode. For all electrochemical
tests, the electrolyte (1.0M KOH) was continuously bubbled by
high-purity nitrogen during the experiment. All linear sweep
voltammetry (LSV) tests were conducted with a uniform scan
rate of 5mV s−1. Electrochemical impedance spectroscopy
(EIS) was performed in the frequency scope from 105 to
0.01Hz under open circuit potential. Cyclic voltammogram
(CV) was detected at different scan rates (20, 40, 60, 80, 100,
120mV s−1). The stability measurements were characterized
by chronopotentiometric method. Furthermore, all potentials
mentioned in the article were calibrated vs. reversible hydrogen
electrode (RHE) according to the formula E (RHE) = E (SCE) +

0.0591pH+ 0.2415− 0.000761∗(T − 298.15).

RESULTS AND DISCUSSION

Figure 1 shows the X-ray diffraction (XRD) characterization of
the Co1catalyst. The main components of the material can be
derived from the XRD test results. As shown in Figure 1, the
diffraction angles of 31◦, 37◦, 45◦, 59◦, and 65◦ in the XRD curve
corresponds to the standard diffraction peak of Co3O4 (PDF.43-
1003), respectively. The spades of diffraction peaks correspond to
the X-ray diffraction peak of untreated cobalt foam (Figure S1).
The diffraction peak of 52◦ is also attributed to untreated cobalt
foam. And the peak that appears at 62◦ belong to CoO.

Figure 2 shows the SEM image of Co1. As shown in the
picture, octahedral CoOx particles covered on the skeleton of

FIGURE 1 | XRD patterns of Co1.
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FIGURE 2 | SEM images of Co1.

FIGURE 3 | (a) TEM image of Co1 catalyst; (b) High-resolution TEM image of Co1 catalyst.

cobalt foam. These particle sizes are mostly about 1 to 3µm.
The high-resolution TEM pictures and of the particles peeled
from Co1 is shown in Figure 3. From the lattice fringes reveal an
interplanar distance of 0.46 nm, which belong to the (111) plane
of Co3O4. The EDS data (Figure S2 and Table S2) indicates that
the Co element content should be 64 wt%. The result obtained
by EDS is nearly equal to that of ICP-AES (Co 65 wt%). This is
probably due to a massive hydroxyl groups on sample surface.

More information on the composition and valence state of
the sample was obtained by XPS. The 2p spectra of Co and 1s
spectra of O are shown in Figure 4 which calibrated with a C
1s peak of 284 eV. The high-resolution core spectrum for Co 2p,
where the peaks at 780 and 798 eV are belonged to Co 2p3/2 and
2p1/2 peak in Co3O4 (Cheng et al., 2013). The two Co 2p peaks
can be deconvoluted into four sub-peaks at 778, 781, 795, and
799 eV, representing signatures of Co+3 and Co+2 , respectively (Xu
et al., 2016). These values are in accordance with the Co2p state,
suggesting the Co 2p is derived from CoO. In addition, there
are two satellite peaks at 785 eV and 805 eV in Figure 4 indicate
that the most of Co element in the end product is Co2+ cation
(Lv et al., 2018). This represents there is a high concentration

of Co+2 on the surface of the Co3O4. Therefore, it can come to
the conclusion that there is numerous a lot of oxygen vacancy to
neutralize electrons for HER.

For the high-resolution O 1s spectrum, the peak centered
at 528 eV correspond to the lattice oxygen in Co3O4, and the
peak at 532 eV is related to hydroxyl groups or oxygen vacancy
on surface. Moreover, the bread peak at 533.5 eV could be
ascribed to absorbed oxygen on the surface of Co1 catalyst.
The peak intensity of hydroxyl groups is much greater than
the peak intensity of absorbed oxygen, which suggest that
there are a great deal of surface hydroxyl groups and oxygen
vacancy on the sample surface. According to the reported paper,
the hydroxyl groups on catalyst surface could promote the
decomposition of H2Oby attenuatingO-H bond (Xu et al., 2016).
Moreover, the oxygen vacancy can boost the conductivity of
HER catalyst and, boost the adsorption of H2O molecules. Thus,
the cobalt oxide particles possess good catalytic performance
for HER.

The HER catalytic activities of the Co1 catalyst were
investigated in 1.0M KOH with a representative three-electrode
system. Comparison of polarization curves is provided in
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FIGURE 4 | XPS spectra of Co 2p and O 1s.

FIGURE 5 | (A) Polarization curves of untreated Co foam, Co1 and Pt/C; (B) Corresponding Tafel plots; (C) The first and 2000th cycle polarization curves of Co1; (D)

Stability test for Co1.

Figure 5A together with untreated Co foam and commercial
Pt/C. All of the polarization curves are ohmic potential drop
(iR)-corrected. The Co1 catalyst demonstrates a dramatically
high activity with an onset potential of ∼40mV 10mA cm−2

(Figure 5A), which was comparable to the reported cobalt oxides
measured in 1.0M KOH, such as Co3O4 nanosheets (49mV),
CoOx (85mV) (Table S1). When the HER current density
achieves to 20mA cm−2, but only a small overpotantial as

112mV. The cobalt oxide was shown to promote the dissociation
of H2O on account of the stronger electrostatic affinity of OH−

to Co2+ and Co3+ in alkaline medium.
In general, according to the rate-determining step, the HER

mechanism can be fall into two basic types, Volmer–Tafel and
Volmer–Heyrovsky mechanism. In the Volmer–Tafel theory,
firstly the initial M–H bond is formed in Volmer step, secondly
followed the dimerization of two adsorbed H in Tafel step. But in
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FIGURE 6 | (A) Cyclic voltammetry of Co1 at different scan rates in the non-faradaic potential region; (B) Capacitive current density as a function of scan rate; (C)

Nyquist plots of electrochemical impedance spectra in 1M KOH; (D) Quantitative H2 measurement via water displacement.

the Volmer–Heyrovsky mechanism, the adsorbed H reacts with
the proton source in alkaline solution in Heyrovsky step (Liu
et al., 2017). Tafel plot is often useful to reflect the electrode
catalytic performance and evaluate the rate determining step of
the HER mechanism. The Tafel plot for each of the polarization
curves in Figure 5A is presented in Figure 5B. The Tafel slope
of Co1 is 94mV dec−1, which is superior to that of untreated
Co foam (195mV dec−1). Low Tafel slope indicates the catalyst
possess strong catalytic activity. It indicates that the HER
might be proceeded via the Volmer–Heyrovsky mechanism.
Stability is significant indicator to evaluate the performance
of HER catalyst. As shown in Figures 5C,D, the stability
measurements of the Co1 sample are inducted by linear sweep
voltammetry and chronoamperometry. The minimal attenuation
of the polarization curves in Figure 5C after 2000 cycles signifies
that Co1 catalyst possesses favorable electrochemical stability in
alkaline medium. As shown in SEM images of Co1 after the
stability measurements (Figure S4), many gaps appeared on the
smooth surface of octahedral catalyst after the 2000 cycles linear
sweep voltammetry test. Additionally, as shown in Figure 5D,

Co1 catalyst can keep a stead current density at 16.5mA cm−2

at a given over-potential (103mV) for 20 h.
The excellent HER performance of Co1 may be ascribed

to the big surface area, giving rise to the exposure of more
catalytic active sites in HER.Moreover, the electrochemical active
surface area (ECSA) directly reflects electrocatalysts activity (Wei
et al., 2018). The double-layer capacitance (Cdl) at the interface
between solid and liquid was also measured to reflect the effective
reaction area and the quantity of active sites (Sun et al., 2016).
Figure 6A and Figure S3 show the CV patterns of Co1 and other
catalysts at different scan rates. As shown in Figure 6B, drawn
a portrait of the current densities at the center of the testing
voltage ranges along the different scan rates. In which the slopes
of fitting lines are Cdl of the corresponding samples. The Cdl is
in direct proportion to the electrochemical surface area of HER
catalyst. The Cdl of Co1 is 52.86 mF cm−2, close to the Cdl of
Pt/C (74.93 mF cm−2), and greater than the Cdl of the untreated
cobalt foam (2.91 mF cm−2). The large value of Cdl guarantees
a competitive ECSA and high HER efficiency. As shown in
Table 1, using the SBET, the turnover frequency (TOF) of Co1
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TABLE 1 | Electrochemical parameters of different catalysts as the HER catalyst

in alkaline medium.

Electrodes SBET (m2

g−1)

TOF

(s−1)

Rs

(�cm2)

Rct

(�cm2)

CPE

(Fsn−1cm−2)

Untreated Co

foam

0.26 / 0.749 46.041 0.0012

Co1 16.15 0.049 2.355 4.472 0.0035

Pt/C 83.47 0.031 2.049 2.746 0.0047

catalyst was calculated to be 0.049 s−1 at 100mV. These TOF
values are estimated values. This is owing to the specific active
sites and non-reactive interface caused by particles contact are
indeterminate. However, it is feasible to evaluate the performance
of catalysts based on TOF values estimated from experimental
and theoretical surface areas. EIS measurements were conducted
to further determine the electrochemical reaction process of Co1
for HER. As shown in Figure 6C, Co1 affords a small charge
transfer resistance (Rct) of 6.1�, which is closed to that of
Pt/C (2.9�) and lower than untreated Co foam (44�). Faradic
efficiency would exhibit the utilization of reaction charge. As
shown in Figure 6D, the quantitative H2 determination reveals
the Faradic efficiency of Co1 catalyst is approach to 100%. It
indicates that the whole charge arisen in HER procedure could
be served as creating H2.

CONCLUSIONS

In general, the octahedral CoOx catalysts are prepared on
Co foam through the facile hydrothermal synthesis process.

EDS and XPS results reveal that the surface of the CoOx

catalyst has plenty of hydroxyl groups and oxygen vacancy those
further HER catalytic activity. The CoOx catalyst shows excellent
electrochemical performance for HER. Our strategy provides a
quick and simple method to synthesize the HER catalyst used the
earth-abundant element.
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