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Abstract: Xylem is required for the growth and development of higher plants to provide water
and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves
plant survival, but also provides raw materials for industrial production. Numerous studies have
found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus
massoniana is an important woody tree species in China and is widely used to produce materials
for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs)
in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved
miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially
expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated
from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP
compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of
20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome
sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and
miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel
validation were in relatively high agreement. This study explored the potential regulatory network
of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation
in coniferous species.
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1. Introduction

The vascular tissue of higher plants consists mainly of the phloem and xylem. The
xylem transports water and inorganic salts throughout plants and provides mechanical
support for plant growth, and it is the basic channel for material and energy transport for
plant organs [1]. The secondary xylem arises from the vascular layer, and it is generally
present when vascular plants undergo secondary growth. The secondary xylem, which
is also known as wood, is the raw material for paper, construction and textile industries,
and it is closely related to human productivity and life. The secondary xylem includes
vessels, parenchyma cells, and fibers. Vessels and fiber cells undergo secondary cell wall
(SCW) thickening. This process increases the mechanical strength of plants and provides
abundant lignocellulosic biomass material for human activities and materials [2,3]. The
SCW of plants comprises most of the photosynthesis products that accumulate in plants,
and it is the main raw material of wood.

The main components of wood include cellulose, hemicellulose, and lignin. Cellulose
accounts for almost 1/3 of the dry weight of the plant, and it is the most important compo-
nent of SCWs. Cellulose is also the most abundant and renewable natural organic polymer
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in nature [4]. Cellulose is a linear polyglucan formed by D-glucose monomers linked by
β-1,4-glycosidic bonds, and its synthesis machinery is controlled by the cellulose synthase
(CESA) complex, which is located in the plasma membrane [5]. The cellulose synthase com-
plex (CSC) is composed of at least 18 CESA subunits [5]. Hemicellulose is the second major
carbohydrate that forms the structure of SCW, and it is a branched heteropolysaccharide
consisting of two or more monosaccharides linked in different ways [6]. Different types
of plants have different hemicellulose structures. The hemicellulose monosaccharides in
broadleaf trees, herbaceous plants, and plants from which herbal medicines are obtained
are mainly xylose monosaccharides, and the hemicellulose monosaccharides in coniferous
trees primarily include arabinose, galactose, and mannose [7]. Lignin is synthesized during
SCW formation in plants. Lignin provides mechanical support and allows the transport
of water and nutrients over long distances, which enables trees to grow to great heights
and prevents pathogen invasion [8,9]. The biosynthesis of lignin involves a very complex
process. Research showed that the shikimic acid pathway, phenylpropionic acid pathway,
and other specific pathways were necessary for lignin biosynthesis [9].

Forest trees provide most of the wood needed for human production. Thickened
SCWs constitute a major component of wood, and a three-level regulatory network of
transcription factors (TFs) tightly control their formation. The investigation of the process
of wood synthesis, specifically SCW thickening, will improve our understanding of the
mechanisms governing plant cell development and wood formation. The regulatory
network of wood formation, mainly the NAC-MYB TF network, was elucidated recently.
TFs in this regulatory network containing a NAC structural domain act upstream and
are switches of the SCW synthesis regulatory network. AtMYB46 and AtMYB83 act in
the second layer of the SCW biosynthesis regulatory network and are two redundant
R2R3-MYB TFs that are the direct target genes of NAC and key genes for SCW formation
in Arabidopsis thaliana. A series of MYB genes and other types of TFs play roles at the third
level [10–17]. Non-coding RNAs, represented by microRNAs (miRNAs), also regulate
SCW thickening.

Plant small RNAs (sRNAs) are divided into two categories based on their precursor
structures: microRNAs (miRNAs) and small interfering RNAs (siRNAs) [18]. Plant miR-
NAs are composed of a class of sRNAs with a length of 20~24 nt, and these molecules
target mRNAs via a seed region at positions 2~7 at the 5′ end [19]. Shorter miRNAs cleave
target mRNAs or inhibit the translation of their target mRNAs into proteins, and longer
miRNAs of 24 nt are involved in DNA methylation [20]. The discovery that miRNAs target
enhancers to activate gene expression debunked the notion that miRNAs only inhibited
gene expression [21,22]. MiRNAs are involved in the production of other sRNAs, and the
TAS1/2/3/4 genes of A. thaliana were studied in depth. TAS1/2, TAS3, and TAS4 are triggered
by miR173, miR390, and miR828, respectively, and the resulting target genes of phased
secondary small interfering RNAs (phasiRNAs) are pentatricopeptide-repeat (PPR), auxin
response factors (ARF), and MYB [23]. PhasiRNAs are targeted to the original transcript in
cis or to other transcripts in trans [24]. Primary miRNAs (pri-miRNAs) encode functional
peptides, and three small open reading frames (sORFs) were found within pri-miR171 in
Vitis vinifera, one of which encodes a small peptide that enhances the expression of the
vvi-miR171 gene [25,26].

P. massoniana belongs to the Pinus genus, and it is widely distributed in southern
China. This plant adapts to relatively poor soil conditions. Its wood is rich in cellulose,
which may be used to make paper pulp, and it has high economic value [27]. Previous
studies showed that a variety of miRNAs exist in angiosperms and these miRNAs were
studied extensively. However, few studies on miRNAs were reported for gymnosperms.
Since scientists discovered the first miRNA in Caenorhabditis elegans in 1993, a database
for storing the sequences of mature miRNAs and precursors of miRNAs, miRBase, is
home to sequences of more than 38,000 miRNAs from 271 species, but no sequences of
miRNAs of P. massoniana are included [28,29]. Therefore, the possible roles of miRNAs
in P. massoniana are not clear. This study combined sRNA and degradome sequencing to
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explore the potential regulatory network of miRNAs involved in xylem development in P.
massoniana and provide new insights into wood formation in coniferous species.

2. Results
2.1. sRNAs Generated from Sequencing

In this study, high quality RNA was extracted from developing xylem (PM_X) and
protoplasts isolated from developing xylem (PM_XP) for sRNA sequencing (Figure 1). We
obtained 75,185,529 raw reads and 72,664,728 clean reads through sRNA sequencing, with
mean Q20 and Q30 values of 97.68% and 94.77%, respectively (Table 1). Previous studies
reported that plant sRNAs were 18~30 nt in length, most of which were 21~22 nt [30].
Our analysis revealed that the lengths of the sRNAs of the four libraries were similarly
distributed, and their lengths ranged from 18~30 nt. Most of the sRNAs were 21 nt in
length, and these sRNAs constituted 51.83, 43.61, 19.46, and 22.67% of the distributions
within the four libraries (Figure S1). More than 13 million reads were compared to the
P. massoniana transcriptome, and 155,015 reads per library were identified on average as
conserved miRNAs, while 164,185 reads were novel miRNAs (Table 1).
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Figure 1. RNA quality of the developing xylem (PM_X) and protoplasts isolated from developing xylem (PM_XP).

Table 1. Summary of sRNA sequencing data from four RNA libraries in the developing xylem (PM_X) and protoplasts
isolated from developing xylem (PM_XP).

Category PM1_X PM2_X PM1_XP PM2_XP Average

Raw Reads 19,122,111 21,352,761 17,656,738 17,053,919 -
Q20 97.67% 97.70% 97.67% 97.67% 97.68%
Q30 94.80% 94.83% 94.72% 94.74% 94.77%

Clean Reads 18,456,504 20,654,598 17,068,608 16,485,018 -
Clean Reads of sRNA 14,681,663 17,072,786 9,997,932 10,846,339 -
Mapped sRNA Reads 11,619,254 12,936,717 7,439,780 7,686,301 -

Mapped Rate 79.14% 75.77% 74.41% 70.87%
Conserved miRNA Reads 341,974 108,456 93,012 76,618 -

Uniq Conserved miRNA Reads 464 316 332 307 -
Conserved miRNA Hairpin 28 24 26 26 -
Conserved miRNA Mature 24 20 22 21 -

Novel miRNA Reads 371,500 182,024 52,850 50,364 -
Uniq Novel miRNA Reads 2454 1481 1556 1442 -

Novel miRNA Mature 165 162 152 153 -
Novel miRNA Hairpin 173 171 163 161 -
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2.2. Identification of miRNAs Involved in Developing Xylem

Detailed information about the mature and precursor sequences of 198 miRNAs is
shown in Table S1 and Additional file S1. Only 25 conserved miRNAs were found in
PM_XP and PM_X, and these miRNAs belonged to 19 families (Figure 2a, Table S1). We
used the transcripts per million (TPM) method to measure the abundance of miRNAs. The
abundances of the 25 conserved miRNAs varied greatly. The TPM values of pma-miR159a,
pma-miR396, pma-miR947, and pma-miR951 were greater than 10,000, and the values of
pma-miR1316, pma-miR159b, pma-miR390, pma-miR950a, and pma-miR952a were lower
than 10. The TPM difference between different members of the same miRNA family, such
as the pma-miR159 family, was also very large. The TPM value of pma-miR159a in PM_XP
and PM_X was greater than 10,000, but the TPM value of pma-miR159b was extremely low
(Figure 2b, Table S2).
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We also identified 173 novel miRNAs that ranged from 18~24 nt in length (Table S1),
which is consistent with the criteria established in previous studies [30]. Most of the novel
miRNAs were 21 nt in length, and these miRNAs accounted for greater than 50% of the
total amount of novel miRNAs (Figure S2). MiRNAs have relatively strong base preference
and understanding the base preference of miRNAs can lead to an improved understanding
of the characteristics of P. massoniana miRNAs. We found that the most common base at the
5′ end of the miRNA of P. massoniana was uridine (U) (Figure 3). The cleavage site of the
target gene is generally between the 10th and 11th nucleotides composing the miRNA [18].
The dominant nucleotides at positions 10 and 11 of the conserved miRNAs were adenine
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(A) and thymine (U), respectively, and most of the nucleotides of the novel miRNAs
were thymine (U) at positions 10 and 11 (Figure 3). T-tests found a significant difference
in the base distribution between conserved and novel miRNAs at positions 10 and 11
(p adj = 0.000044 for position 10, and p adj = 0.0058 for position 11). In contrast, for all of
the miRNAs present in the developing xylem of P. massoniana, we found a strong preference
for U at position 1, A at position 10, and U at position 11 of the miRNA, which is consistent
with previous studies. Most plant miRNAs start with U at the 5′ end, which is associated
with selective processing of Argonaute (AGO) proteins, and the base preference at miRNA
positions 10 and 11 may be related to the specific binding of miRNAs to target genes.
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2.3. Differentially Expressed miRNAs (DEmiRNAs) between PM_XP and PM_X

We found substantial expression differences between PM_XP and PM_X for 58 miR-
NAs, with 26 miRNAs (23 novel miRNAs and 3 conserved miRNAs) significantly up-
regulated in PM_XP compared with PM_X and 32 miRNAs (29 novel miRNAs and
3 conserved miRNAs) significantly down-regulated in PM_XP (Figure 4a. Table S3). We
noticed that 4 miRNAs were induced in the cell wall after removal (Figure 4b). DEmiR-
NAs accounted for 29.29% (58 out of 198) of all miRNAs, and most DEmiRNAs were
up-regulated (Figure S3).
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2.4. Gobal Analysis of miRNA Target Genes via Degradome Sequencing

PsRNATarget was used to predict the target genes of miRNAs [31]. We ultimately
obtained 4140 potential target genes of 182 miRNAs (Table S4). CleaveLand4 was used to
validate the target genes of the miRNAs [32]. A total of 865 target genes of 133 miRNAs
were obtained, including 153 target genes of 20 conserved miRNAs and 712 target genes
of 113 novel miRNAs. The complete list of miRNA-mRNA regulatory pairs is shown in
Table S5 and Additional file S2. Table 2 lists several target genes of miRNAs.
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Table 2. Target genes of conserved and novel miRNAs identified in developing xylem of P. massoniana by degradome sequencing.

miRNA Target Transcript Transcript Annotation Degradome Category DegradomePval

pma-miR951 Cluster-18410.91163 TIR-NBS-LRR 0 0.022455112
pma-miR946a-3p Cluster-17513.1 CC-NBS-LRR 0 0.006001718
pma-miR946a-3p Cluster-18410.68882 CC-NBS-LRR 0 0.053772939
pma-miR946a-3p Cluster-6417.0 CC-NBS-LRR 0 0.003278143
pma-miR946a-3p Cluster-6417.1 CC-NBS-LRR 0 0.003550836
pma-miR946a-3p Cluster-6417.2 CC-NBS-LRR 0 0.006545539
pma-miR946a-3p Cluster-18410.69983 BXL1 0 0.025393001

pma-miR482a Cluster-18410.4683 Zinc Ion-binding protein 0 0.009260186
pma-miR396 Cluster-18410.26942 CYCT1-3 2 0.045402037
pma-miR166c Cluster-18410.59035 C3HDZ2 0 0.00027359
pma-miR166a Cluster-18410.60044 C3HDZ2 2 0.011549044
pma-miR166a Cluster-18410.65256 C3HDZ2 2 0.022964707
pma-miR159a Cluster-18410.64102 BIM3 1 0.000935432
pma-miR1314 Cluster-22970.0 BAM3 0 0.00027359
pma-miR1312 Cluster-18410.35178 TIR-NBS-LRR 1 0.018543312

novel_95 Cluster-18410.58110 C3HDZ2 0 0.000820545
novel_92 Cluster-18410.48111 ARF16 0 0.00109391
novel_92 Cluster-18410.55513 ARF16 0 0.002186624
novel_92 Cluster-18410.62143 ARF16 0 0.000547105
novel_92 Cluster-18410.71517 ARF16 0 0.001367201
novel_92 Cluster-18410.73418 ARF16 0 0.005185428
novel_92 Cluster-18410.73420 ARF16 0 0.003823454
novel_92 Cluster-18410.73422 ARF16 0 0.004913182
novel_82 Cluster-18410.37093 TIR-NBS-LRR 1 0.022210506
novel_82 Cluster-18410.114635 TIR-NBS-LRR 1 0.031318655
novel_82 Cluster-18410.19951 TIR-NBS-LRR 0 0.011156025
novel_67 Cluster-18410.75829 TIR-NBS-LRR 2 0.034248531
novel_59 Cluster-18410.68783 TIR-NBS-LRR 2 0.034248531
novel_59 Cluster-18410.68790 TIR-NBS-LRR 0 0.000547105
novel_57 Cluster-18410.74100 LAC 0 0.013318255
novel_54 Cluster-18410.61870 CC-NBS-LRR 0 0.027257968
novel_5 Cluster-18410.33788 BIM2 2 0.05642673

novel_35 Cluster-18410.30641 TIR-NBS-LRR 0 0.097521346
novel_34 Cluster-18410.90022 TIR-NBS-LRR 0 0.017359701
novel_32 Cluster-18410.57154 SGS3 0 0.076790575
novel_27 Cluster-18410.37995 TIR-NBS-LRR 2 0.078095614
novel_25 Cluster-18410.82637 TIR-NBS-LRR 2 0.011549044
novel_20 Cluster-18410.84714 LRK1 0 0.003550836

novel_174 Cluster-18410.33579 TIR-NBS-LRR 0 0.035210347
novel_174 Cluster-18410.101866 TIR-NBS-LRR 0 0.009531243
novel_168 Cluster-18410.19527 RDR6 0 0.082080284
novel_168 Cluster-18410.92321 LRK1 0 0.020044798
novel_16 Cluster-18410.85741 MYB33 0 0.00027359
novel_16 Cluster-18410.85743 MYB33 0 0.000547105
novel_16 Cluster-18410.27112 MYB33 0 0.00109391

novel_151 Cluster-18410.19951 TIR-NBS-LRR 2 0.078095614
novel_146 Cluster-18410.109049 TIR-NBS-LRR 0 0.002186624
novel_122 Cluster-18410.49874 LRK1 1 0.010241759
novel_113 Cluster-18410.63994 AGO1 0 0.004913182
novel_113 Cluster-18410.63996 AGO1 0 0.004640862
novel_11 Cluster-18410.33711 TIR-NBS-LRR 2 0.0673241
novel_11 Cluster-18410.33065 TIR-NBS-LRR 0 0.019776619

novel_109 Cluster-18410.27403 TIR-NBS-LRR 2 0.034248531
novel_10 Cluster-18410.113971 CC-NBS-LRR 0 0.000547105

BXL1 (Beta-D-xylosidase 1), CYCT1-3 (Cyclin-T1-3), C3HDZ2 (Class III homeodomain-leucine zipper protein), BIM3 (BES1-interacting
Myc-like protein 3), BAM3 (Leucine-rich repeat receptor-like serine/threonine-protein kinase), ARF16 (auxin response factor 16), LAC
(laccase), SGS3 (protein suppressor of gene silencing 3), LRK1 (L-type lectin-domain containing receptor kinase), AGO1 (Argonaute 1).
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Analyses of the miRNA target genes found that most of the genes encoded TFs,
including ARFs and MYBs (Table S5). Previous studies revealed complex regulatory
relationships between miRNAs and TFs. For example, TFs bind to the upstream promoter
region of MIR genes and affect the transcription of miRNAs, and miRNAs also act on the
mRNAs of TFs and affect their translation process [33]. We found that one miRNA can have
many different target genes. For example, novel_42 can target 30 different transcripts, and
pma-miR482a can target 32 transcripts. More than one miRNA targeted the same transcript,
for example, 3 miRNAs simultaneously targeted Cluster-20177.1 (unknown) (Table S5).

2.5. Enrichment Statistics of miRNA Target Genes

We found that “response to hormone”, “small-submit processing”, “rRNA processing”,
and “double-stranded DNA binding” were the top 4 terms, and all of these terms had
significant p-values (Figure S4a). A total of 521 target mRNAs of miRNAs supported by the
degradome were assigned to 18 KEGG metabolic pathways. The 3 most abundant pathways
were “Folding, sorting and degradation” (50), “Translation” (60), and “Environmental
adaptation” (98). These results imply that miRNA target genes play an important role in
plant growth and development (Figure S4b).

3. Discussion

Our study systematically identified miRNAs present in the developing xylem of
P. massoniana and combined sRNA and degradome sequencing techniques to reveal the poten-
tial miRNA-mRNA regulatory networks involved in the developing xylem of P. massoniana.
We identified a total of 198 miRNAs in the developing xylem of P. massoniana, including
25 conserved and 173 novel miRNAs. Differential expression analysis found that the expres-
sion of 4 miRNAs were induced after cell wall removal, and 58 miRNAs were significantly
differentially expressed. An increasing number of studies used single-cell sequencing to
study the mechanism of wood formation [34], and our study found that the expression of a
small number of miRNAs was induced after the removal of the cell wall, which suggests
that we need more thinking in the use of protoplasts for plant signal transduction and cell
osmolarity-related studies. A total of 133 miRNAs regulated 841 potential target genes
that formed 865 miRNA-mRNA regulatory relationship pairs, and the potential regulatory
functions of miRNAs were revealed in this study (Figure 5, Table S5). Two types of target
genes were of interest to us, as described below.

3.1. Mirna-Target Regulatory Pathways Related to the Stress Response in the Developing Xylem of
Masson Pine

Sixteen novel miRNAs and 3 conserved miRNAs showed the ability to target NBS-LRR
genes. NBS-LRR genes give plants the ability to resist various pathogens. The structural
features of NBS-LRR genes are very conserved in general [35]. We found that 27 NBS-LRR
genes were regulated by miRNAs in the developing xylem of P. massoniana. The products
of 20 of these genes contained TIR domains (TIR-NBS-LRR), and 7 did not contain TIR
domains (CC-NBS-LRR). Previous studies showed that miRNA were regulatory factors that
played a role in regulating the expression of NBS-LRR genes in response to stress [36–40].
We found that most of the P. massoniana NBS-LRR genes could be regulated by miRNAs,
which suggests that the response of cells to stress is relatively strong after the cell wall
is removed.
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Leucine-rich-repeat receptor-like kinases (LRKs) are the most abundant class of re-
ceptor protein kinases. LRKs are widely found in monocots and eudicots and are closely
associated with plant growth and development, disease defense and the response to ad-
verse stress conditions. A total of 379, 216, and 300 LRK genes were identified in Populus
trichocarpa [41], A. thaliana [42], and Oryza sativa [43], respectively. The present study
identified 20 LRK genes that could be targeted by 3 miRNAs (novel_20, novel_122, and
novel_168) in P. massoniana, which suggests that miRNAs are involved in plant develop-
ment via regulation of LRK expression.

3.2. Conserved Mirna-Mrna Modules between Softwood and Hardwood Formation

Non-coding RNAs are widely involved in various processes of plant growth and
development. SRNAs, represented by miRNAs, regulate gene expression at the post-
transcriptional level, and a large number of studies also found that miRNAs were involved
in the process of wood formation. For example, miRNAs can target MYB, ARF, and LAC
genes to regulate the wood formation process.
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MYB TFs are widely distributed in higher plants and constitute one of the largest
TF families in plants. MYB TFs are involved in most aspects of plant development and
metabolism. The present study showed that one of the target genes of novel_16 encoded a
MYB TF. As components of the classic regulatory network underlying wood formation,
members of the MYB family constitute the second and third levels of the regulatory net-
works during wood formation. The NAC TFs PtrWND2B and PtrWND6B in P. trichocarpa
regulate the expression of many wood formation-related TFs, such as PtrMYB3, PtrMYB18,
PtrMYB28, PtrMYB75, PtrMYB90, and PtrMYB152, and activate the expression of lignin-
and cellulose-related genes [44]. The CCCH zinc finger protein-encoding genes PdC3H17
and PdCH18 in Populus deltoides are direct targets of PdMYB3 and PdMYB21, which in-
crease the thickness of the xylem secondary walls in stems and promote wood biomass by
regulating the expression of downstream secondary wall development-related genes [45].
Similarly, PtoMYB156 in Populus tomentosa negatively regulates the expression of CESA17,
C4H2 and GT43B, and knockdown of the PtoMYB156 gene leads to an increase in lignin
and cellulose contents [46]. Our results showed that novel_16 may be involved in wood
formation via the targeting of MYB genes.

ARFs are key TFs that regulate growth hormone-related signaling, and their functions
are involved in plant growth and development [47]. The ARF genes in woody plants species
are closely related to the formation of the phloem and xylem, and two genes in P. trichocarpa
are homologous to AtARF5, both of which are related to vascular tissue development and
may play a similar role in the development of secondary xylem in P. trichocarpa [48]. MiR-
NAs also regulate ARF genes. For example, miR160 targeted ARF10/16/17 in A. thaliana [49].
In this study, we found that ARF16 is targeted by novel_92. The expression of novel_92
in PM_XP and PM_X was 1030.1195 and 90.919, respectively, and the expression of target
genes in PM_XP and PM_X was 1.38 and 9.06 (Cluster-18410.48111), 0.53, and 4.02 (Cluster-
18410.55513), and 5.86 and 18.85 (Cluster-18410.73418), respectively. Taken together, these
results suggested the expression of novel_92 was induced after the cell wall removal via an
unknown mechanism, which increased novel_92 expression and further suppressed the
expression of its target gene ARF.

Lignin is an important component of SCWs in vascular plants and has important bio-
logical functions. Lignin synthesis is a complex and orderly process. Lignin in higher plants
is synthesized via the phenylpropanoide pathway and the lignin-specific pathway, and
phenylalanine is synthesized via a series of reactions to produce 3 major lignin monomers,
which are ultimately polymerized into polymeric lignin under the catalysis of peroxidase
(POX) and laccase (LAC) [9]. Numerous studies showed that various non-coding RNAs,
such as miR156, miR160, miR164, miR319, and miR397, target LAC [50–52]. The present
study found that novel_57 and novel_104 directly targeted LAC to prevent individual lignin
monomers from entering the lignin synthesis pathway (Figure 6). Degradome analysis
showed that novel_16 and novel_57 and their target genes were strongly associated with
category 0 and had significant p-values (Figure 7). Normalized expression levels and
qRT-PCR showed that the expression of novel_57 and novel_104 in PM_XP was lower than
PM_X (Figure 8). The role of lignin in plants is very important, but lignin in the plant cell
wall is the main obstacle in the process of making pulp and plant-based biofuels [53]. A
high level of lignin in fruits also affects taste, which results in great economic loss. Re-
searchers have used traditional breeding or transgenic breeding techniques to select plants
with a low lignin content for the past few decades but found that these practices have
several adverse effects on plant development, such as lodging, stunted growth, reduced
survival, innate immunodeficiency and reduced yield and biomass [54,55]. Indirect control
of lignin biosynthesis via manipulation of miRNAs is a relatively novel approach.
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4. Materials and Methods
4.1. Plant Materials and Sequencing

The developing xylem and its protoplasts were collected from two different genotypes
of P. massoniana growing on the campus of Nanjing Forestry University. The detailed
method for the preparation of the protoplasts of P. massoniana is described in a master’s
thesis [56]. Briefly, peeled branches with exposed developing xylem were cut into 5–10 cm
sections, and these sections were immediately transferred to a freshly prepared enzyme
solution and incubated in the dark at 28 ◦C for 4 h. After the addition of W5 solution to
stop digestion, protoplasts were released by filtration and collected by centrifugation.

Total RNA was extracted from developing xylem and its protoplasts of P. massoniana us-
ing an RNAprep Pure kit (Tiangen, Beijing, China), in accordance with the manufacturer’s
instructions. The methods of RNA integrity and concentration assays were reported in
our previous publications [57]. Four sRNA libraries were constructed using the NEBNext®

Multiplex Small RNA Library Prep Set for Illumina® kit (NEB, Ipswich, MA, USA), and
the principle and procedure were described in our previous publications [57]; the prepared
sRNA libraries were sequenced using the Illumina HiSeq 2500 platform for 1 × 50 bp
sequencing (Novogene, Beijing, China). RNA isolated from the developing xylem and
protoplasts isolated from the developing xylem tissue were mixed together equally to
construct a degradome library according to previous methods [57]. The prepared libraries
were sequenced on the Illumina HiSeq 2500 platform for 1 × 50 bp sequencing (Lianchuan
Bio, Hangzhou, China).

4.2. Identification of Conserved and Novel Mirnas

The adaptor sequences for sRNA sequencing were obtained using dnapi.py [58],
followed by quality control using cutadapt with the detailed parameters -j 0 -a adaptor
–quality-base 33 -m 18 -M 30 -O 4 –discard-untrimmed -q 20 –max-n 0 –quiet -o Sam-
ple_name.Clean.fq Sample_name.Raw.fq.gz [59]. The detailed methods used to identify
miRNAs were described in our previous research [57]. Briefly, we filtered reads of low
quality and reads derived from other RNAs then used miREvo and miRDeep2 software to
predict P. massoniana miRNAs [60,61].

4.3. Identification of DEmiRNAs

To identify DEmiRNAs, we normalized the expression levels of miRNAs in PM_X1,
PM_X2, PM_XP1, and PM_XP2 samples via TPM values. We then used DEseq2 software
to perform a differential expression analysis of miRNAs [62]. MiRNAs with |log2 (fold
change)| value > 1 and an adjusted p-value < 0.05 were identified as differentially expressed.
Cluster analysis was subsequently performed by TBtools [63].

4.4. Identification of miRNA Target Genes

First, we used the online software psRNATarget to predict the target genes of miR-
NAs [31]. The prediction criterion was a seed region of the 2nd~8th nt from the end of
the miRNA 5′ end, and no mismatch was allowed in the seed region. The raw data of
degradome sequencing were quality controlled using fastp [64]. We used CleavelLand4
with parameters -t -c 2 to analyze the degradome sequencing data and comprehensively
predict the target genes of miRNAs [32]. Transcriptome data were downloaded from
the SRA database with the accession numbers SRR12596930-SRR12596933, and the data
processing methods are described in detail in Xu’s master’s thesis [56].

4.5. Enrichment Analysis of miRNA Target Genes

We used Blast2GO to annotate the target genes of miRNAs [65], a custom-made
Python script was then used to filter and sort the annotation results, and the enrichment
analysis was performed via clusterProfiler [66].
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4.6. qRT-PCR Validation

The reference genes for qRT-PCR performed in this study were UBI4 and TUA, and the
sequences of the primers used are shown in Table S6. According to the Mir-X miRNA First-
Strand Synthesis kit instructions (TAKARA, Dalian, China), 1 µg of total RNA (containing
miRNA) was first reverse transcribed into cDNA and verified by qRT-PCR using the specific
mRQ 3′ primers in the kit with the corresponding miRNA sequences. Reactions were
performed on ViiA™ 7 real-time PCR Systems (Applied Biosystems, Waltham, MA, USA),
and three technical replicates were performed for each sample, and relative expression was
calculated using the 2−∆∆Ct method.

5. Conclusions

We identified miRNAs in the developing xylem of P. massoniana and validated miRNAs
by qRT-PCR. We found that 4 miRNAs (novel_16, novel_57, novel_92, and novel_104) may
be involved in P. massoniana wood formation via the targeting of MYB, ARF, and LAC. Our
results revealed a potential regulatory network in which miRNAs were involved in the
developing xylem of P. massoniana, revealed possible conserved miRNA-mRNA modules
involved in softwood and hardwood formation, and provided new insights into wood
formation in coniferous species.
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Detailed information of differentially expressed miRNAs; Table S4: Target genes of miRNAs identified
in P. massoniana by psRNATarget; Table S5: Target genes of miRNAs identified in P. massoniana by
degradome sequencing; Table S6: Primers used in this study; Additional file 1: Secondary structures
of miRNA precursors; Additional file 2: Target plots of P. massoniana degradome sequencing.
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