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Abstract TFE-fusion renal cell carcinomas (TFE-fusion RCCs) are caused by chromosomal

translocations that lead to overexpression of the TFEB and TFE3 genes (Kauffman et al., 2014).

The mechanisms leading to kidney tumor development remain uncharacterized and effective

therapies are yet to be identified. Hence, the need to model these diseases in an experimental

animal system (Kauffman et al., 2014). Here, we show that kidney-specific TFEB overexpression in

transgenic mice, resulted in renal clear cells, multi-layered basement membranes, severe cystic

pathology, and ultimately papillary carcinomas with hepatic metastases. These features closely

recapitulate those observed in both TFEB- and TFE3-mediated human kidney tumors. Analysis of

kidney samples revealed transcriptional induction and enhanced signaling of the WNT b-catenin

pathway. WNT signaling inhibitors normalized the proliferation rate of primary kidney cells and

significantly rescued the disease phenotype in vivo. These data shed new light on the mechanisms

underlying TFE-fusion RCCs and suggest a possible therapeutic strategy based on the inhibition of

the WNT pathway.

DOI: 10.7554/eLife.17047.001

Introduction
The MIT/TFE family of bHLH leucine zipper transcription factors includes the MITF, TFEB, TFE3 and

TFEC genes, which are master regulators of cell homeostasis, growth and differentiation
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(Levy et al., 2006; Sardiello et al., 2009; Settembre et al., 2011). All family members are able to

both homodimerize and heterodimerize with each other through their bHLH-LZ domain

(Hemesath et al., 1994). These transcription factors bind a DNA sequence called the M-box and a

non-canonical E-box sequence (TCATGTG, CATGTGA or TCATGTGA) (Hemesath et al., 1994;

Aksan and Goding, 1998). A large body of evidence indicate that they play an important role in

many cellular and developmental processes.

TFEB was found to regulate a large gene network, named Coordinated Lysosomal Expression

and Regulation (CLEAR). This network includes many genes involved in lysosomal biogenesis and

autophagy (Sardiello et al., 2009; Palmieri et al., 2011). Several studies have shown that TFEB

responds to a variety of stimuli and stress conditions, such as starvation, and acts as a master regula-

tor of the lysosomal-autophagic pathway and of cellular clearance (Ballabio, 2016; Roczniak-

Ferguson et al., 2012; Sardiello et al., 2009; Settembre et al., 2011, 2012; Settembre and

Medina, 2015; Martina et al., 2014b). Recent data indicate that the TFEB and TFE3 genes regulate

a similar set of genes and have partially redundant function (Martina et al., 2014a).

Renal cell carcinomas originate from the renal epithelium and include several subgroups defined

according to their histological phenotype. The most frequent RCCs are papillary (15–20%), Clear

Cells (65–70%) and cromophobe (5–10%) (Amin et al., 2002). In these categories, mutations in 12

different genes (VHL, MET, FH, FLCN, SDHB, SDHC, SDHD, TSC1, TSC2, PTEN, MITF and BAP1)

have been associated with an increased susceptibility of developing RCC (Linehan and Ricketts,

2013). TFE-RCCs are a group of renal cell carcinomas caused by chromosomal translocations involv-

ing TFEB and TFE3 genes (Kauffman et al., 2014) and representing around 2% of all RCCs

(Komai et al., 2009), and almost 12% of papillary type II RCCs (Linehan et al., 2015).

Recent TCGA analyses revealed that the gene fusions caused by chromosomal translocations

involving TFEB and TFE3 are the only recurrent translocations in the kidney (Linehan et al., 2015;

Malouf et al., 2014). In the case of TFEB, a recurrent chromosomal translocation t(6;11) (p21;q13)

involves the promoter of the non-coding Alpha gene and the transcription factor EB (TFEB)

(Argani et al., 2001, 2005). As a consequence, TFEB falls under the control of the strong Alpha

gene promoter, resulting in a high (up to 60-fold) overexpression of a structurally normal TFEB pro-

tein (Kuiper et al., 2003). More recently, additional TFEB translocation partners were described,

such as the KHDBRS2 (inv(6) (p21;q11)) (Malouf et al., 2014) and the CLTC (t(6;17) (p21;q23))

(Durinck et al., 2015) genes. Tipically, these tumors show nests of epithelioid cells with clear cyto-

plasm, known as clear cells (CCs), and clusters of small cells, usually around the multi-layered base-

ment membrane (mBM) made up of hyaline material (Argani et al., 2005). Some cases presented

with areas of a tubular or cystic structure covered by a single layer of flattened cuboidal to columnar

cells with clear cytoplasm, mimicking clear cell RCC with cystic changes (Rao et al., 2012). Currently,

TFEB translocation, overexpression and nuclear localization are considered as a diagnostic marker

for the disease. Initially, these tumors were mainly observed in pediatric patients, but now they are

considered relatively common in young adults (Komai et al., 2009). The mechanisms leading from

TFE3/TFEB gene overexpression to kidney tumor development remain largely uncharacterized, thus

the need for modeling these diseases in experimental animal systems for the identification of effec-

tive targeted therapies.

Here, we show the generation and characterization of two different transgenic mouse lines that

overexpress TFEB specifically in the kidney in a constitutive and inducible manner, respectively,

which recapitulate both the cystic changes and the cancer phenotype of the human pathology. An

extensive molecular and biochemical characterization of kidneys, as well as of primary kidney cells,

derived from these mice revealed a significant hyper-activation of the WNT pathway, suggesting

that this signalling pathway plays an important role in TFEB-driven kidney cancer. Finally, the use of

small molecules able to specifically inhibit the WNT pathway resulted in a significant rescue of both

the cystic and cancer phenotypes. These data may open the way to a new therapeutic strategy for

this type of tumors.
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Results

Generation of the transgenic mouse lines
To study the mechanisms underlying tumor development in TFEB-fusion RCC, we generated a trans-

genic mice that specifically overexpress TFEB in the kidney. We crossed a previously generated Tfeb

conditional overexpressing mouse line that carries Tfeb-3xFlagfs/fs under the control of a strong

chicken beta-actin (CAG) promoter (Settembre et al., 2011), herein referred to as Tfebfs/fs, with the

Cdh16Cre (Cadherin16Cre) mouse line, in which the Cre recombinase is specifically expressed in renal

tubular epithelial cells starting from embryonic stage E12.5 (Shao et al., 2002).

In addition, to assess the effects of Tfeb overexpression during kidney development, we gener-

ated a second transgenic line by crossing the Tfebfs/fs mice with a mouse line that carries a tamoxi-

fen-inducible CreErt2 element under the control of a Cdh16 promoter (Cdh16CreErt2promoter)

(Lantinga-van Leeuwen et al., 2006) (Figure 1—figure supplement 1A). Cdh16Cre::Tfebfs and

Cdh16CreErt2::Tfebfs double heterozygous mice were generated from these crossings (Figure 1—fig-

ure supplement 1B and C). We checked both the constitutive and inducible lines for renal Tfeb

overexpression and confirmed that Tfeb mRNA levels were highly increased, and further increasing

with time (Figure 1—figure supplement 1D). Consistently, immunoblot experiments revealed

increased levels of Tfeb-3xFLAG protein in kidneys from Cdh16Cre::Tfebfs and Cdh16CreErt2::

Tfebfs mice (Figure 1—figure supplement 1E).

Progressive cystic pathology in transgenic mouse lines
At sacrifice, kidneys from adult Cdh16Cre::Tfebfs and tamoxifen-treated Cdh16CreErt2::Tfebfs mice

completely filled the abdominal cavity (Figure 1A). An increase in kidney size from Cdh16Cre::

Tfebfs mice was observed starting at P12, with a sensible increase in size detected at P30

(Figure 1B). A striking increase in the Kidney to Body Weight (KW/BW) ratio was also observed at

this stage (Figure 1C). A severe enlargement of the kidneys and a significant increase in the Kidney

to Body Weight (KW/BW) ratio were also observed in Cdh16CreErt2::Tfebfs mice induced with tamoxi-

fen at several developmental stages (P12, P14, P30) (Figure 1—figure supplement 2A and B).

These abnormalities were less severe in mice induced at P30 (Figure 1—figure supplement 2B).

Survival time of Cdh16Cre::Tfebfs mice was approximately 3 months (Figure 1D). Interestingly, a late

induction of Tfeb overexpression in Cdh16CreErt2::Tfebfs mice resulted in a slower development of

the phenotype, with less severe kidney enlargement and overall increase in the survival rate

(Figure 1D). Renal function from Cdh16Cre::Tfebfs and Cdh16CreErt2::Tfebfs mice was severely

affected, as observed by the strong increase in blood urea and albuminuria (Figure 1—figure sup-

plement 2C). High-frequency ultrasound and histological analysis of kidneys from both Cdh16Cre::

Tfebfs and Cdh16CreErt2::Tfebfs mice revealed the presence of a severe cystic disease (Figure 1E, Fig-

ure 1—figure supplement 2D and E). In Cdh16Cre::Tfebfs mice, small cysts arose mainly from the

cortex and outer medulla at P12 and became significantly enlarged at P30. At P90, kidney architec-

ture was completely disrupted by cysts (Figure 1F). Cdh16CreErt2::Tfebfs mice induced at P12 with

tamoxifen and sacrificed at P90 showed a higher number of smaller cysts in both cortex and outer

medulla (Figure 1F). Cysts were also observed in Cdh16CreErt2::Tfebfs induced at P14 and, to a lesser

extent, at P30 (Figure 1—figure supplement 2E). Tubular epithelial cells lining the cysts showed

high levels of cadherin 16, indicating the presence of Cdh16Cre-mediated Tfeb overexpression in

these cells (Figure 1G). Histological analysis revealed that cysts from Cdh16Cre::Tfebfs mice were

positive for AQP2 and THP and negative for megalin, indicating that they originate from collecting

ducts and distal tubules and not from proximal tubules. Notably, the largest cysts were almost

completely negative to all tubular markers, suggesting that they became undifferentiated. Con-

versely, cysts from Cdh16CreErt2::Tfebfs mice were positive to megalin and THP, indicating that they

arose from proximal and distal tubules (Figure 1H, Figure 1—figure supplement 3). These differen-

ces in cyst origin have already been described in other polycystic kidney disease mouse models and

have been attributed to intrinsic differences of specific renal segments at different developmental

stages (Lantinga-van Leeuwen et al., 2007; Happé et al., 2009; Leonhard et al., 2016;

Piontek et al., 2007).

Cysts were lined by either a single layer-flattened cuboidal epithelium (sCy), or by a multilayer

epithelium (mCy), indicating a de-regulation of tubular cell proliferation (Figure 1I). We also noticed
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Figure 1. Tfeb overexpressing mice display cystic kidneys. Morphological analyses were performed on Cdh16Cre and Cdh16Cre::Tfebfs, and on tam-

treated Cdh16CreErt2 and Cdh16CreErt2::Tfebfs mice. (A) Representative images of the abdominal cavity at P90. (B) Kidney size at different stages (p=days

post-natal). (C) Relative ratio of kidney-to-body weight (KW/BW). Data from males (M) and females (F) are shown separately as means of Cdh16Cre::

Tfebfs to Cdh16Cre KW/BW ratio. Three-way Anova was applied (factors: gender, time, genotype). (D) Evaluation of the survival of Cdh16Cre::Tfebfs and

Figure 1 continued on next page
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the presence of very enlarged cells with a clear cytoplasm, which are commonly known as Clear Cells

(CCs) (Krishnan and Truong, 2002) (Figure 1I). Sirius Red staining showed the presence of fibrosis

and protein casts and revealed a significant accumulation of collagen inside the affected kidneys, as

well as the presence of regions surrounded by multi-layered basement membranes (mBM)

(Figure 1I). Importantly, the presence of Clear Cells, fibrosis and mBMs are characteristic features of

kidneys from human patients with TFEB-fusion RCC (Rao et al., 2012).

Identification of papillary renal cell carcinoma and of liver metastases
18F-FDG PET analysis showed a higher glucose consumption in the kidneys of transgenic animals

compared to controls, indicating a higher rate of glucose metabolism and suggesting a neoplastic

transformation (Figure 2A). Similarly with PET analysis, HE and Ki67 stainings of the kidneys of

Cdh16Cre::Tfebfs mice revealed progressive hyperproliferation, which evolved into Ki67-positive neo-

plastic papillae at 5 months (Figure 2B). Neoplastic nodules, micropapillae and Hobnail-like cells,

and mitotic spindles were detected at P12, 1 month, and 5 months, respectively (Figure 2C–F).

Focal microcalcifications (Figure 2G), together with Clear Cells, and nests of neoplastic cells

(Figure 2H) were also detected in Cdh16CreErt2::Tfebfs mice.

Kidneys from both Cdh16Cre::Tfebfsand Cdh16CreErt2::Tfebfs mice presented numerous neoplastic

lesions with both solid and cystic aspects, ranging from 0.102 to 2.93 mm and sometimes showing

local invasion of the surrounding stroma (Figure 2I). Most importantly, liver metastases ranging from

0.9 to 3.8 mm, were found in both Cdh16Cre::Tfebfsand Cdh16CreErt2::Tfebfsmice. In Cdh16Cre::

Tfebfs animals, they were detected starting from P90 with an incidence of 23% (5 cases out of 21

Cdh16Cre::Tfebfsmice older than 3 months). These metastases were positive for PAX8, that is a well-

established marker for primary and metastatic RCC (Ozcan et al., 2012; Shen et al., 2012) and

CDH16, which is a specific renal protein (Shen et al., 2012), while they were negative for the bile

ducts and cholangiocarcinoma marker CK7 (Cytokeratin 7), consistent with their renal origin

(Figure 2L).

TFEB overexpression results in the induction of the canonical WNT
pathway
To characterize the molecular mechanisms and identify the relevant pathways leading from TFEB

overexpression to tumor development, we performed transcriptome analysis on kidney samples

from Cdh16Cre::Tfebfs and Cdh16Cre mice at P0 (GSE62977-KSP_P0 dataset) and at P14 (GSE63376-

KSP_P14 dataset) (see Materials and methods) and found that Tfeb overexpression perturbed the

kidney transcriptome in a statistically significant manner (Figure 3—source data 1 and 2, see also

Materials and methods). Targeted analysis of the transcriptomic data revealed a significant induction

of genes belonging to both ErbB and WNT signaling pathways. This was confirmed by real-time PCR

Figure 1 continued

tam-treated Cdh16CreErt2::Tfebfs mice. Mantel-Cox test was applied (Cdh16CreErt2::Tfebfs tam P12/tam P14 p-value 0.02; Cdh16CreErt2::Tfebfs tam P12/P30

p-value<0.0001). (E) Haematoxylin and Eosin (HE) staining of kidneys. Enlarged panels show cyst growth over time. (F) Number (left graph) and area

(right graph) of kidney cysts in Cdh16Cre::Tfebfs, and Cdh16CreErt2::Tfebfs mice. Number of cysts is shown as an average (± SEM) with bars sub-divided

according to the dimension of the cysts. Cyst areas are presented as independent values (dots) with lines representing the means. Three-way (cyst

number) and two-way (cyst area) Anova was applied. Cor, cortex; oMed, outer medulla; iMed, inner medulla. (G) Cadherin16 (CDH16) staining of

kidneys from P30 mice. (H) Megalin, THP and AQP2 stainings in P90 Cdh16CreErt2::Tfebfs mice. (I) PAS and Sirius Red staining. PAS staining shows the

presence of single-layered or multi-layered cysts, and the presence of Clear Cells (CCs). SR staining shows areas of interstitial fibrosis, multi-layered

basement membrane and protein casts. Asterisks, protein casts; sCy, simple Cysts; mCy, multilayered Cy; IF, Interstitial Fibrosis; mBM, multi-layered

Basement Membrane. (*p<0.05, **p<0.01, ***p<0.001).

DOI: 10.7554/eLife.17047.002

The following figure supplements are available for figure 1:

Figure supplement 1. Generation of transgenic mouse lines with kidney-specific Tfeb overexpression.

DOI: 10.7554/eLife.17047.003

Figure supplement 2. Renal-specific Tfeb overexpression results in kidney enlargement and failure.

DOI: 10.7554/eLife.17047.004

Figure supplement 3. Characterization of cyst origin in Cdh16Cre::Tfebfs and Cdh16CreErt2::Tfebfs mice.

DOI: 10.7554/eLife.17047.005
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performed on Cdh16Cre::Tfebfs mice at several developmental stages. Moreover, real-time PCR

revealed an induction of Myc and Axin2 genes, which are, together with Ccnd1, well-established

WNT direct gene targets (Clevers, 2006) (Figure 3A and B, Tables 1 and 2). Kidneys from

Cdh16CreErt2::Tfebfs mice also had higher levels of all WNT-related genes that were identified in the

constitutive line, and of many of the ErbB-related genes (Figure 3—figure supplement 1A and B).

Based on these results, we checked the activation of both ErbB and WNT signaling pathways. No

evidence for an increase in the phosphorylation of AKT and ERK1/2 kinases (Arteaga and Engelman,

2014) was detected in P30 Cdh16Cre::Tfebfs kidneys or in primary kidney cells obtained from

Figure 2. Kidney-specific Tfeb overexpression is associated with cancer development in Cdh16Cre::Tfebfs and Cdh16CreErt2::Tfebfs mice. (A) 18F-FDG

PET/CT scan on P30 Cdh16Cre::Tfebfs mice. (B) HE and Ki67 staining performed on Cdh16Cre::Tfebfs mice at P1, P12, P30 and 5 months. Beginning at

P12 the increase in cyst size is associated with an increase in papillary proliferation that becomes completely neoplastic by 5 months. NP, Neoplastic

Papillae. (C–H) Representative images of neoplastic lesions at different stages: (C) neoplastic nodules (arrows) in P12 Cdh16Cre::Tfebfs mice; (D)

micropapillae (arrows) and (E) hobnail-like cells (arrows) in P30 Cdh16Cre::Tfebfs mice; (F) mitotic spindles (arrows) in 5-month-old Cdh16Cre::Tfebfs mice;

(G) microcalcifications (asterisk) in tam-treated Cdh16CreErt2::Tfebfs mice induced at P14 and sacrificed at 5 months; (H) neoplastic nests (NN) and clear

cells (CCs) in tam-treated Cdh16CreErt2::Tfebfs mice induced at P12 and sacrificed at P90. (I) HE staining of neoplastic lesions invading the surrounding

stroma (arrows) in Cdh16Cre::Tfebfs and in tam-treated Cdh16CreErt2::Tfebfs mice. (L) Liver metastases in 5 month-old Cdh16Cre::Tfebfs mice stained for

HE, Ki67, PAX8 and CK7.

DOI: 10.7554/eLife.17047.006
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Figure 3. Activation of ErbB and WNT signaling pathways in kidneys from Cdh16Cre::Tfebfs mice. Transcriptional and biochemical analyses were

performed on Cdh16Cre and Cdh16Cre::Tfebfs mice. (A,B) Tables show the relative increase of genes related to the ErbB (A) and WNT (B) pathways in

the microarray analyses performed on kidneys from P0 Cdh16Cre::Tfebfs mice. Graphs show real-time PCR validations performed on kidneys from

Cdh16Cre::Tfebfs mice at different stages (P0, P12, P30). Data are shown as the average (± SEM) of at least three Cdh16Cre::Tfebfs mice normalized

versus wild-type mice. (C,D) Immunoblot analyses performed on (C) P30 kidney tissues and (D) primary kidney cells isolated from Cdh16Cre::Tfebfs mice

to evaluate ErbB and WNT activation status. Each replicate is a distinct biological sample. ErbB signaling was assessed by looking at phosphoAKT

(Ser473) to total AKT ratio, and phosphoERK1 (T202/Y204)/ERK2(T185/Y187) to total ERK ratio; WNT signaling was assessed by quantifying b-catenin

and CCND1 (Cyclin D1) protein levels. Graphs represent the densitometry quantification of Western blot bands. Values are normalized to actin when

not specified and are shown as an average (± SEM) (*p<0.05, **p<0.01, ***p<0.001, two-sided, Student’s t test).

DOI: 10.7554/eLife.17047.007

Figure 3 continued on next page
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transgenic mice (Figure 3C and D), indicating that the ErbB pathway was not induced. Erk1/2 activa-

tion, as detected by pERK1/2, was observed only at late stages (Figure 3—figure supplement 2A).

The same result was observed in P14 and P30 tam-treated Cdh16CreErt2::Tfebfs mice (Figure 3—fig-

ure supplement 2B and C). Conversely, we detected increased levels of total b-catenin and CCND1

in P30 renal tissues and primary kidney cells (Figure 3C and D) and increased levels of active b-cate-

nin and of pLRP6 (Ser1490)/ LRP6 ratio in P30 and P90 renal tissues from Cdh16Cre::Tfebfsmice

(Figure 4A and B) and in P14 and P30 tam-treated Cdh16CreErt2::Tfebfs mice (Figure 4—figure sup-

plement 1). Moreover, b-catenin and active b-catenin staining of renal sections from Cdh16Cre::

Tfebfs mice was significantly enhanced (Figure 4C). These results indicate the presence of a strong

activation of the WNT signaling pathway in TFEB-overexpressing mice. Interestingly, the WNT path-

way is known to play a role in renal cyst development (Vainio and Uusitalo, 2000; Rodova et al.,

2002) and renal tumor formation, such as in VHL syndrome (Peruzzi and Bottaro, 2006) and Wilm’s

tumor (Koesters et al., 1999; Zhu et al., 2000; Kim et al., 2000). To investigate the role of TFEB in

WNT pathway activation, we performed luciferase assays using a TOP-FLASH Luciferase WNT-

reporter on immortalized kidney cell lines (HEK293 and HK2) co-transfected with TFEB and with

both b-catenin and TCF4 plasmids to stimulate WNT signaling. Luciferase activation was significantly

higher in cells transfected with TFEB compared to controls without TFEB. No changes were

observed when TFEB was transfected alone or only with b-catenin (Figure 5A and B). Together

these data suggest that TFEB is able to enhance WNT pathway activation.

Figure 3 continued

The following source data and figure supplements are available for figure 3:

Source data 1. Complete list of 294 genes (represented by 361 probesets) significantly induced (FDR�0.05) in the KSP_P0 microarray dataset (GSE62977).

DOI: 10.7554/eLife.17047.008

Source data 2. Complete list of 628 genes (represented by 729 probesets) significantly induced (FDR�0.05) in the KSP_P14 microarray dataset (GSE63376).

DOI: 10.7554/eLife.17047.009

Figure supplement 1. ErbB and WNT transcriptional profiles in Cdh16CreErt2::Tfebfs mice.

DOI: 10.7554/eLife.17047.010

Figure supplement 2. Biochemical analysis of ErbB signaling.

DOI: 10.7554/eLife.17047.011

Table 1. ErbB-related genes up-regulated in the microarray analyses. (A) List of six genes with a known role in ErbB signaling pathway

which are significantly up-regulated (FDR�0.05) following TFEB overexpression in KSP_P0 microarray dataset (GSE62977). (B) One

gene with a known role in ErbB signaling pathway which are significantly up-regulated (FDR�0.05) following TFEB overexpression in

KSP_P14 microarray dataset (GSE62977).

A

Probe set ID Gene symbol Gene title signed_ratio (KSP_P0/CTL)

1418350_at Hbegf heparin-binding EGF-like growth factor 2,194808473

1421943_at Tgfa transforming growth factor alpha 1,9286888

1421134_at Areg amphiregulin 1,631011877

1424638_at Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) 1,628361867

1425855_a_at Crk v-crk sarcoma virus CT10 oncogene homolog (avian) 1,579433149

1450070_s_at Pak1 p21 protein (Cdc42/Rac)-activated kinase 1 1,507716537

B

Probe set ID Gene symbol Gene title signed_ratio (KSP_P14/CTL)

1421134_at Areg amphiregulin 1,221605795

DOI: 10.7554/eLife.17047.012
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Treatment with WNT inhibitors ameliorate the disease phenotype
Primary kidney cells derived from the renal cortex and medulla of Cdh16Cre::Tfebfs mice showed sig-

nificantly higher levels of proliferation compared to wild-type cells (Figure 5C). We tested whether

this hyperproliferative phenotype was sensitive to WNT inhibition. Strikingly, cell proliferation was

significantly dampened, in a dose-dependent way, by two small-molecules, PKF118-310 and

CGP049090 that specifically inhibit the WNT pathway by disrupting the interaction between b-cate-

nin and TCF4 (Avila et al., 2006) and are known to suppress cell proliferation in several types of can-

cers, both in vitro and in vivo (Wei et al., 2010; Wakita et al., 2001) (Figure 5D). Moreover, b-

catenin and CCND1 protein levels were highly reduced after PKF118-310 treatment (Figure 5E).

Based on the results obtained in primary kidney cells, we tested whether WNT inhibition could

ameliorate the disease phenotype in vivo. P21 Cdh16Cre::Tfebfs transgenic animals were treated with

daily IP injections of PKF118-310 for 30 days. At the end of the treatment, they showed an almost

complete rescue of both cystic and cancer phenotypes (Figure 6A). Indeed, treated animals showed

nearly normal KW/BW ratios (Figure 6B) and a significant reduction of many parameters of cystic

and neoplastic pathology, such as the number and size of cysts and neoplastic papillae, and levels of

Ki67 (Figure 6C and D, Figure 6—figure supplement 1, Figure 6—source data 1). We confirmed

that drug-treatment in Cdh16Cre::Tfebfs mice suppressed the WNT pathway both at the mRNA and

protein levels, as shown by the reduction of the mRNA levels of the WNT direct gene targets Cyclin

D1, Myc and Axin2 (Figure 6—figure supplement 2A), by the reduction of Cyclin D1 and MYC pro-

teins (Figure 6—figure supplement 2B) and by the decrease of Cyclin D1-positive nuclei in

Cdh16Cre::Tfebfs drug-treated mice (Figure 6—figure supplement 2C). Furthermore, WNT inhibition

resulted in normalization of expression levels of the gene encoding the transmembrane Glycoprotein

nmb (Gpnmb) (Figure 6E and F), a known marker of melanomas, gliomas and breast cancers, which

is also overexpressed in TFE-fusion ccRCCs (Malouf et al., 2014; Zhou et al., 2012). Interestingly,

Table 2. WNT-related genes up-regulated in the microarray analyses. (A) List of four genes with a

known role in WNT signaling pathway which are significantly up-regulated (FDR�0.05) following TFEB

overexpression in KSP_P0 microarray dataset (GSE62977). (B) List of 10 genes with a known role in

WNT signaling pathway which are significantly up-regulated (FDR�0.05) following TFEB

overexpression in KSP_P14 microarray dataset (GSE63376).

A

Gene symbol signed ratio (KSP_P0/CTL)

Rnf146 1,700903945

Fzd3 1,650328884

Kdm6a 1,565386988

Ccnd1 1,377411994

B

Gene symbol signed ratio (KSP_P14/CTL)

Rhou 1,639718601

Plcg2 1,601227563

Gata3 1,358534898

Fbxw2 1,262750602

Mark2 1,248332335

Axin1 1,21985179

Tab1 1,217280695

Psmb3 1,211737817

Ndrg2 1,193338279

Chd8 1,185904267
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Figure 4. Molecular and histological analysis of WNT signaling. (A,B) Western blot analysis performed on (A) P30 and (B) P90 kidneys from Cdh16Cre::

Tfebfs mice to assess WNT signaling activation by looking at different proteins related to this pathway. Each replicate is a distinct biological sample.

p-LRP6 (Ser1490)/LRP6, active b-catenin, b-catenin and p-GSK3b (Ser9)/GSK3b protein levels were quantified by densitometry analysis of the Western

blot bands. Values are normalized to actin when not specified, and are shown as an average (± SEM) (*p<0.05, **p<0.01, ***p<0.001, two-sided

Figure 4 continued on next page
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this gene is a direct target of TFEB, based on promoter (Table 3) and ChiP-Seq analysis

(Sardiello et al., 2009) (Table 4).

Autophagy is not required for disease progression
Considering the known role of TFEB as a master regulator of the lysosomal-autophagy pathway

(Argani et al., 2001, 2005; Camparo et al., 2008; Davis et al., 2003), and the recent evidence indi-

cating that activation of autophagy driven by MiT/TFE genes plays an important role in pancreatic

cancer (Perera et al., 2015), we tested whether autophagy plays a role in TFE-tRCC development.

We analyzed the expression levels of a well-characterized panel of TFEB target genes known to be

involved in lysosomal biogenesis and autophagy in Cdh16Cre::Tfebfs mice. Surprisingly, no significant

changes in the expression levels of these genes were detected in Cdh16Cre::Tfebfs compared to wild

type mice, with a few exceptions (Figure 6—figure supplement 3A). Consistently, immunoblot anal-

ysis of the autophagy marker LC3 in kidneys from transgenic mice did not reveal any significant

changes compared to control littermates (Figure 6—figure supplement 3B). Furthermore, to test

the role of autophagy in the pathogenesis of TFE-tRCC we crossed Cdh16Cre::Tfebfs mice with

autophagy-deficient Atg7flox/flox mice. No changes in kidney size or in the cystic phenotype were

observed in TFEB overexpressing/autophagy-deficient double transgenic mice (Atg7flox/flox::

Cdh16Cre::Tfebfs), herein referred to Atg7flox/flox::Cdh16Cre::Tfebfs, compared to Cdh16Cre::

Tfebfs mice (Figure 6—figure supplement 3C–E). Interestingly, most of the double transgenic ani-

mals died at approximately 1 month of age, suggesting that the combination of TFEB overexpres-

sion with autophagy inhibition in the kidney is toxic. This may be due to the previously described

increase in sensitivity to oxidative stress of kidney-specific autophagy-deficient mice (Liu et al.,

2012). These results suggest that autophagy does not play a critical role in the development of TFE-

tRCC phenotype.

Discussion
Kidney cancers associated with translocations of TFE genes represent a major unmet medical need

(Argani et al., 2005; Komai et al., 2009; Malouf et al., 2014). Unfortunately, little is known about

the mechanisms underlying this type of tumors.

In most cases, TFEB-tRCCs are associated to a well-characterized chromosomal translocation

involving the TFEB gene and the non-coding Alpha gene, generating the alpha-TFEB fusion (t

(6;11) (p21.2;q13) (Davis et al., 2003; Kuiper et al., 2003). Until recent reports, TFEB breakpoints

were in all cases observed within a 289 bp cluster region (BCR) upstream exon 3, thus retaining the

entire TFEB coding sequence (Davis et al., 2003; Argani et al., 2005; Inamura et al., 2012). As a

consequence, the chromosomal translocation leads to a promoter substitution of the TFEB gene,

and to a strong up-regulation of TFEB transcript and protein up to 60-times (Kuiper et al., 2003).

Only recently, a new breakpoint was identified within exon 4, but the protein size appears to be the

same as the wild-type protein (Inamura et al., 2012). In rare cases of RCCs, TFEB translocation part-

ners were the KHDBRS2 (inv(6) (p21;q11)) (Malouf et al., 2014) and the CLTC (t(6;17) (p21;q23))

genes (Durinck et al., 2015). The situation of TFE3 chromosomal translocations appears to be more

complicated. TFE3 was found to be involved in translocations with five known gene partners (i.e.

PRCC, ASPSCR1, SFQP, NONO, CLTC) leading to the generation of fusion proteins. The identifica-

tion of multiple TFE3-gene partners and the characterization of two TFE3-fusion proteins (TFE3-

NONO, TFE3-SFQP) (Clark et al., 1997) strongly suggested that RCC is caused by TFE3, rather than

by its partners (Kauffman et al., 2014). Indeed, TFE3 fusion protein resulted to be much more sta-

ble and transcriptionally active than the wild-type protein (Weterman et al., 2000). Together, these

Figure 4 continued

Student’s t test). (C) Immunohistochemistry staining of CDH16, b-catenin and active b-catenin proteins performed on P30 kidney tissues from Cdh16Cre::

Tfebfs mice.

DOI: 10.7554/eLife.17047.014

The following figure supplement is available for figure 4:

Figure supplement 1. Molecular analysis of WNT signaling pathway in Cdh16CreErt2::Tfebfs animals.

DOI: 10.7554/eLife.17047.015
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Figure 5. Inhibition of WNT signaling rescues the hyper-proliferative phenotype of kidney cells from Cdh16/Tfeb mice. (A,B) Activity of the TCF/LEF

reporter TOP-FLASH. Luciferase activity after co-transfection of b-catenin and TCF plasmids in HEK293 (A) and HK2 (B) cells with and without Tfeb

overexpression. Values are shown as an average (± SEM) of each point in duplicate, normalized to the Renilla values and to the basal condition. Data

are representative of three independent experiments. (C) MTT tetrazolium reduction assay (MTT) was used to evaluate proliferation of primary kidney

Figure 5 continued on next page

Calcagnı̀ et al. eLife 2016;5:e17047. DOI: 10.7554/eLife.17047 12 of 26

Research article Cancer Biology Human Biology and Medicine

http://dx.doi.org/10.7554/eLife.17047


data suggest that the first step, and driving force, of the disease pathological cascade is the overex-

pression of active TFEB and TFE3 proteins, which is likely associated to an increase of their function

as transcription factors.

Currently, there are no model systems to study the mechanisms underlying TFE-tRCC kidney

tumors and to identify and test new therapeutic strategies. Until now, very limited data were avail-

able on the biological pathways involved in these tumors. Argani et al. (Argani et al., 2010)

reported activation of the mTOR pathway in TFE-tRCC patients compared to ccRCCs, as shown by

increased phosphorylation levels of the downstream mTOR target S6. Unfortunately, selective

mTORC1 inhibition performed on patients with TFE-tRCCs did not improve the disease phenotype

(Malouf et al., 2010). Up-regulation of the MET-tyrosine kinase receptor, which in turn activates

HGF-signaling, was detected in TFE-tRCC patients by in vitro assays (Tsuda et al., 2007), but subse-

quent analyses on TFE3-renal samples failed to identify activated MET protein (Kauffman et al.,

2014). The lack of mechanistic insights in TFE-tRCCs have hampered the identification of effective

therapeutic strategies (Kauffman et al., 2014). Some patients with metastatic TFE3-tRCC have been

treated with inhibitors of ErbB receptors and of the mTOR pathway. Unfortunately, most of these

patients relapsed after an initial period of remission (Parikh et al., 2009; Wu et al., 2008).

The lack of knowledge of the mechanisms underlying TFE-tRCCs prompted us to generate trans-

genic mouse models that overexpress TFEB in the kidney, thus mimicking the human disease situa-

tion. We generated two transgenic mouse models overexpressing TFEB in the epithelial cells of the

kidney in either a constitutive (Cdh16Cre::Tfebfs) or an inducible (Cdh16CreErt2::Tfebfs) manner. A

severe renal cystic pathology associated with a significant increase in renal size was observed in

these mice. In the constitutive model, cysts arose from the collecting ducts and distal tubules,

whereas in the inducible one they derived from proximal and distal tubules.

We observed that cysts were either single- or multi-layered. Epithelial cells lining the mono-lay-

ered cysts often lost their cuboidal shape, becoming flattened. Further analyses revealed the pres-

ence of protein casts inside the cysts and multi-layered basal membranes in the regions surrounding

the cysts, due to collagen deposition. Interestingly, the presence of fibrosis, mBMs and tubular or

cystic structures covered by a single layer of flattened, cuboidal, and columnar cells is also observed

in human patients affected by TFEB-tRCCs (Rao et al., 2012, 2013). Finally, in both types of trans-

genic lines, we observed the presence of highly enlarged cells with a clear cytoplasm, that closely

resemble the ’Clear Cells’ found in human patients with RCC (Rao et al., 2012).

Transgenic mice also displayed a higher glucose metabolism, as shown by PET-scan performed in

P30 animals suggesting the presence of renal cancer. At P12, Cdh16Cre::Tfebfs mice already pre-

sented cystic changes together with neoplastic nodules that were Ki67-positive. The progressive

hyper-proliferation of these nodules resulted in the development of micropapillae starting from P30,

which evolved into neoplastic papillae in 5-month-old mice. Finally, liver metastases positive for

PAX8 and CDH16 and neoplastic nests were observed in older animals. These data indicate that

these newly generated transgenic lines bear all major histological and phenotypic features of human

TFE-tRCC (Kauffman et al., 2014; Rao et al., 2012, 2013), thus representing excellent models to

study this disease.

To identify the effect of TFEB overexpression on the kidney transcriptome, we performed micro-

array analysis on kidney samples from P0 Cdh16Cre::Tfebfs mice. Unexpectedly, transgenic mice did

not show a significant induction of the autophagy machinery and crossing of these animals with an

Figure 5 continued

cells derived from Cdh16Cre::Tfebfs mice. Values are shown as an average (± SEM) of each point in triplicate and normalized versus wild-type mice. Data

are representative of three independent experiments. (D) MTT proliferation assays of primary kidney cells treated independently with two WNT

signaling inhibitors, PKF118-310 and CGP049090, added at different dosages for 24 hr. 0 mm represents the basal proliferation of cells. Values are

shown as means (± SEM) of three replicates per point normalized to the vehicle (DMSO), added at the same concentration, and versus the

Cdh16Cre cells without drug treatment. Results are representative of three independent experiments. Two-way Anova was applied (factors: cell

genotype, treatment). (E) Immunoblot analysis on primary kidney cells treated with Drug (PKF118-310) or Vehicle (DMSO) for 24 hr at 1.6 mM. Graphs

show the densitometry quantifications of Western blot bands. Values are normalized to actin and are shown as averages (± SEM) (Cor, cortex; Med,

medulla). (*p<0.05, **p<0.01, ***p<0.001).

DOI: 10.7554/eLife.17047.016
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Figure 6. Treatment with WNT inhibitor attenuates cystic and neoplastic phenotypes. Morphological, histological and biochemical analyses performed

on Cdh16Cre::Tfebfs mice treated with Vehicle (DMSO) or Drug (PKF118-310). (A,B) Kidney images (A) and sizes (KW/BW) (B) from Cdh16Cre::Tfebfs mice

injected intraperitoneally (IP) either with vehicle or drug at 0.85 mg/kg. KW/BW ratios are shown as means (± SEM) and values are normalized to the

Cdh16Cre animals treated with vehicle. Two-way ANOVA was applied (factors: treatment, genotype). (C) Ki67 staining of kidneys from Cdh16Cre::Tfebfs

Figure 6 continued on next page
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autophagy deficient Atg7flox/flox mouse line failed to revert the disease phenotype, thus suggesting

that autophagy does not play an essential role in the pathogenesis of this disease.

Transcriptome analysis revealed a significant induction of genes involved in the WNT pathway,

such as WNT direct target genes Ccnd1, Myc and Axin2 and WNT-related genes Fzd3, Rnf146 and

Kdm6a. This transcriptional induction was consistent with increased protein levels of total b-catenin,

active b-catenin, CCND1 and pLRP6 (Ser1490)/ LRP6 ratio. Furthermore, an induction of the phos-

pho-GSK3b (Ser9)/ GSK3b ratio, an inactive form of the GSK3b kinase, was detected at later stages.

Hyper-activation of the WNT pathway was also observed in cortical and medullary primary kidney

cells derived from Cdh16Cre::Tfebfs mice. Most importantly, luciferase assays performed on HEK-293

and HK-2 cells revealed that TFEB overexpression resulted in a significant enhancement of WNT

pathway activation.

WNT signalling is of central importance for the development of many organs and has been impli-

cated in tumor pathogenesis at different sites such as skin (Robbins et al., 1996), brain

(Zurawel et al., 1998), liver (de La Coste et al., 1998) and prostate (Voeller et al., 1998). Its activa-

tion requires the formation of the WNT signalosome, resulting from the binding of WNT ligands to

Frizzled (Fzd) receptors. This mediates the interaction of Fzd with LRP5/6 proteins. Fzd-LRP5/6 het-

ero-oligomerization is required to sequester the b-catenin degradation complex, containing several

kinases such as GSK3 and CK1. GSK3 is then able to phosphorylate LRP but not b-catenin. Active b-

catenin translocates into the nucleus and activates its target genes, such as MYC, AXIN2 and

Figure 6 continued

mice after treatment with vehicle or drug. Insets are enlargements of a single cyst. (D) Quantification of several parameters related to cysts and papillae

performed on kidney sections from vehicle- and PKF118-310-treated Cdh16Cre::Tfebfs mice. (E) Gpnmb mRNA fold activation in kidneys from Cdh16Cre::

Tfebfs and tam-treated Cdh16CreErt2::Tfebfs mice at different stages. Values are shown as means (± SEM) of at least three mice and each group is

normalized to the proper control (respectively Cdh16Cre and tam-treated Cdh16CreErt2). (F) Gpnmb fold activation in kidneys from Cdh16Cre::Tfebfs mice

treated with vehicle or PKF118-310. Values are shown as means (± SEM) of at least three animals per group and are all normalized versus the Cdh16Cre

mice treated with vehicle. (*p<0.05, **p<0.01, ***p<0.001, two-sided Student’s t test).

DOI: 10.7554/eLife.17047.017

The following source data and figure supplements are available for figure 6:

Source data 1. Numerical data of each parameter showed in Figure 6D and divided per genotype and treatment.

DOI: 10.7554/eLife.17047.018

Figure supplement 1. In vivo treatment of Cdh16Cre::Tfebfs mice with the WNT inhibitor PKF118-310 partially rescues cystic and neoplastic phenotypes.

DOI: 10.7554/eLife.17047.019

Figure supplement 2. In vivo treatment of Cdh16Cre::Tfebfs mice with the PKF118-310 drug inhibits WNT pathway overactivation.

DOI: 10.7554/eLife.17047.020

Figure supplement 3. Inhibition of autophagy in Tfeb overexpressing mice (Atg7flox/flox::Cdh16Cre::Tfebfs) does not affect the cystic phenotype.

DOI: 10.7554/eLife.17047.021

Table 3. GPNMB expression profiles and CLEAR sites. (A) Differentially expression of Gpnmb transcript in KSP_P0 (GSE62977), in

KSP_P14 microarray dataset (GSE63376) and in RCC dataset. (B) Sequence analysis of the CLEAR sites (i.e. the consensus TFEB

binding sites) in the human and murine promoter region of Gpnmb.

A

Probe set
ID

Gene
symbol

Gene title Representative
public ID

Ensembl ratio (KSP_P0/
CTL)

ratio (KSP_P14/
CTL)

ratio (RCC/
CTL)

1448303_at Gpnmb glycoprotein
(transmembrane) nmb

NM_053110 ENSMUSG00000029816 10,61358979 4,926015853 141,4101213

B

Gene Score Sequence Chrom ABS start ABS end TSS_position

Gpnmb 0,8731563 GGGGCAAGTGACTC chr6 49036518 49036531 1

Gpnmb 0,803943 ACATCACATGATCT chr6 49036587 49036600 70

GPNMB 0,8484716 CCATCACATGATCC chr7 23286328 23286341 13

DOI: 10.7554/eLife.17047.022
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CCND1 (Clevers, 2006), by interacting with the TCF4/LEF1 transcription factors (Voronkov and

Krauss, 2013).

Interestingly, hyper-activation of the WNT pathway was recently detected in a melanoma cell line

in which MITF, another member of the MiT/TFE family, was overexpressed, leading to an expansion

of the endo-lysosomal compartment that in turn was able to concentrate and relocate the WNT sig-

nalosome/destruction complex and consequently to enhance WNT signaling (Ploper et al., 2015). In

addition, several studies have linked alterations in the regulation of the b-catenin pathway to abnor-

malities of kidney development and function (Vainio and Uusitalo, 2000). Indeed, b-catenin is nec-

essary for proper regulation of the PKD1 promoter (Rodova et al., 2002), that is mutated in 85% of

patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). Furthermore, the WNT path-

way is also known to play a role in renal tumor formation, such as in VHL syndrome (Peruzzi and Bot-

taro, 2006) and Wilm’s tumor (Koesters et al., 1999; Zhu et al., 2000; Kim et al., 2000). Mice

lacking the Apc gene specifically in the kidney are prone to the development of cystic renal cell car-

cinomas (Sansom et al., 2005). Finally, cytoplasmic accumulation of b-catenin was observed in

patients with TFE3-tRCC, suggesting the presence of a possible link between TFE-factors and WNT-

signaling components (Bruder et al., 2007). Together these studies reveal a strong link between

hyper-activation of WNT signaling and tumorigenesis in the kidney and reinforce our finding of WNT

hyper-activation in TFEB transgenic mice as a critical step of the disease pathogenesis.

Based on this evidence, we postulated that treatment with WNT inhibitors had beneficial effects

on TFE-tRCCs. To test this hypothesis, we treated primary kidney cells from Cdh16Cre::Tfebfs mice

with two small molecules, PKF118-310 and CGP049090, able to inhibit the WNT pathway by disrupt-

ing the interaction between b-catenin and TCF-4 (Avila et al., 2006). Drug treatments significantly

reduced the hyper-proliferation rate observed in cells from transgenic mice, bringing it to normal

levels. Therefore, we sought to reproduce these data in vivo by treating Cdh16Cre::Tfebfs mice with

WNT inhibitors. Administration of the PKF118-310 molecule or vehicle for 30 days resulted in a sub-

stantial reduction of several important parameters, such as kidney size, cyst number and size, Ki67

index and the number of neoplastic papillae. Moreover, drug-treated Cdh16Cre::Tfebfs animals

Table 4. List of 11 genes shared between the KSP_P0 dataset and from an HeLa TFEB-overexpressing ChIP-Seq dataset.

Gene
symbol

signed_ratio
(KSP_P0/CTL) chromosome start stop

peak
tags

distance from
5’ end of gene RefSeq ID symbol ID

ABS
distance

Elf3 1,881188134 chr1 2E
+08

201978977 8 -712 NM_001114309 ELF3 ETS-related transcription
factor Elf-3

712

Gna13 1,504591673 chr17 6E
+07

63053379 8 -58 NM_006572 GNA13 guanine nucleotide-
binding protein subunit

58

Ankrd12 1,599217835 chr18 9E
+06

9137025 15 0 NM_015208 ANKRD12 ankyrin repeat domain 12
isoform 1

0

Atp6v1c1 1,658752808 chr8 1E
+08

104033525 15 0 NM_001695 ATP6V1C1 V-type proton ATPase
subunit C 1

0

Bhlhe40 2,03490115 chr3 5E
+06

5021164 10 0 NM_003670 BHLHE40 class E basic helix-loop-
helix protein 40

0

Gpnmb 10,61358979 chr7 2E
+07

23286524 9 0 NM_002510 GPNMB transmembrane
glycoprotein NMB
isoform b

0

Kdm6a 1,58385317 chrX 4E
+07

44732628 33 0 NM_021140 KDM6A lysine-specific
demethylase 6A

0

Lats2 1,761917857 chr13 2E
+07

21636098 22 0 NM_014572 LATS2 serine/threonine-protein
kinase LATS2

0

Ppargc1a 2,713649997 chr4 2E
+07

23891989 11 0 NM_013261 PPARGC1A peroxisome proliferator-
activated receptor gamma

0

Rnf146 1,700903945 chr6 1E
+08

127588198 14 0 NM_030963 RNF146 ring finger protein 146 0

Usp2 2,284889961 chr11 1E
+08

119252760 8 0 NM_004205 USP2 ubiquitin specific
peptidase 2 isoform a

0

DOI: 10.7554/eLife.17047.023
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showed a significant decrease in the mRNA levels of Gpnmb, a known marker of melanomas, glio-

mas and breast cancer, which was reported to be overexpressed in TFE-fusion ccRCCs

(Malouf et al., 2014; Zhou et al., 2014). Interestingly, we also found that Gpnmb is a direct tran-

scriptional target of TFEB (Sardiello et al., 2009).

This study provides direct evidence that overexpression of TFEB in the kidney is able to generate

a severe cystic pathology associated with the development of kidney cancer and liver metastases,

thus mimicking the cancer phenotype associated with human TFE-fusion ccRCCs chromosomal trans-

locations. Thus, the transgenic mouse lines that we generated represent the first genetic animal

models of renal cell carcinoma. The study of these mice revealed that WNT activation plays a crucial

role in TFE-tRCCs and that WNT inhibitors can be used to rescue the phenotype of our transgenic

mouse models, suggesting that targeting WNT signaling could be a promising therapeutic approach

for the treatment of TFE-tRCC patients.

Materials and methods

Mouse models
Tfebfs/fs transgenic mice (generated by Dr. Settembre [Settembre et al., 2011]) were crossed with a

kidney-specific Cdh16Cre (Cdh16, Cadherin 16) (Jackson laboratories RRID:IMSR_JAX:012237) and

Cdh16CreErt2 (generated by Dr. Peters [Lantinga-van Leeuwen et al., 2006]) mice. The Atg7 condi-

tional KO mice (Komatsu et al., 2005) (Atgflox/flox mice) was a generous gift from T.Eissa. Mice were

crossed with Cdh16Creand Tfebfs/fs mice to obtain kidney-specific Atg7 deletion and TFEB overex-

pression (Atgflox/flox: :Cdh16Cre::Tfebfs). All mice used were maintained in a C57BL/6 background

genotype. Cdh16Creand Cdh16Cre::Tfebfs mice were injected intra-peritoneally (IP) with tamoxifen at

a dosage of 100 mg/g of mouse weight for three consecutive days to obtain an efficient recombina-

tion. For the Kidney to Body weight ratio experiments, we analyzed at least three animals per geno-

type/sex/condition, but often the number was higher than 5. Experiments were conducted in

accordance with the guidelines of the Animal Care and Use Committee of Cardarelli Hospital in

Naples and authorized by the Italian Ministry of Health.

Cell culture, transfections and plasmids
Primary kidney cells were obtained following the protocol described in Leemans

et al. (Leemans et al., 2005). Briefly, kidneys were collected and uncapsulated. Tissue from the outer

cortex and inner medulla was cut into approximately 1 mm3 pieces, and subsequently digested by

1 mg/ml collagenase type 1A (Sigma- Aldrich, Saint Louis, MO) at 37˚C for 1 hr. After washing cells

with PBS, primary TECs were grown to confluence in DMEM-F12 culture medium supplemented with

10% FCS, 100 IU/ml penicillin, 100 mg/ml streptomycin, 2 mM L-glutamine (Gibco; Invitrogen

Corp.), 1% ITSe and 1% S1 hormone mixture (Sigma-Aldrich) and were cultured in 5% CO2 at 37

degrees. TECs were identified by characteristic cobblestone-shaped morphology. Tfeb overexpres-

sion was confirmed by FLAG immunoblot (Figure 2). HEK293 (CRL-1573, RRID:CVCL_0045) and HK2

(CRL-2190, RRID:CVCL_0302) cells were purchased from ATCC. The identity of these cells have

been confirmed by STR profiling (http://web.expasy.org/cellosaurus/CVCL_00459) (http://web.

expasy.org/cellosaurus/CVCL_0302). No mycoplasma contamination was detected in these cells.

HEK293 cells were cultured in DMEM (Euroclone) supplemented with 10% FBS, 100IU/ml penicillin,

100 mg/ml streptomycin and 2 mM L-glutamine (Gibco; Invitrogen Corp.). HK2 cells were grown in

DMEM-F12 (Invitrogen) supplemented with 5% FBS, 100 IU/ml penicillin, 100 mg/ml streptomycin,

2 mM L-glutamine (Gibco; Invitrogen Corp.) and 1% ITSe. Cells were grown at 5% CO2 at 37

degrees. Human full-length TFEB-FLAG was previously described (Settembre et al., 2011). The Top-

Flash and FopFlash plasmids (Upstate), the pCS2+MT-Myc-tagged b-CATENIN (full-length b-CATE-

NIN), and the Evr2-Tcf1E plasmid (Tcf1E) were kindly provided by Dr. M. Plateroti.

Cells were transfected with Lipofectamine LTX and Plus reagent (Invitrogen) following the manu-

facturer’s protocol. Luciferase activity was measured 48 hr post-transfection using the Dual-Lucifer-

ase Reporter Assay System (Promega). To normalize transfection efficiency in reporter assays, the

HEK293 and HK2 cells were co-transfected with a plasmid carrying the internal control reporter

Renilla reniformis luciferase driven by a TK promoter (pRL-TK; Promega). Data are representative of
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three independent experiments and statistical significance was determined using Student’s t-test.

p<0.05 was considered as significant.

In vitro drug treatments and MTT proliferation assay
Cultured primary kidney cells derived from the cortex and medulla of Cdh16Cre and Cdh16Cre::Tfebfs

mice were seeded in 96-well plates at the density of 5 � 103 cells/well, maintained overnight at

37˚C, and incubated in the presence of the test compounds at the different concentrations. PKF118-

310 and CGP049090 were added at different dosages (0 mm, 0.2 mm, 0.4 mm, 0.8 mm, 1.6 mm,

3.2 mm) for 24 hr. 0 mm represents the basal proliferation of cells after 48 hr of plating. MTT assay

was used to assess cell proliferation. Briefly, 5 mg of MTT powder was solubilized in 1 mL of PBS

and filtered. Ten microliter of this solution was added to 100 ml of cell culture medium without phe-

nol red. At the end of the incubation time, cells were washed twice with PBS and incubated with

MTT-media solution to form formazan crystals. After 4 hr, media was removed and 100 ml/well of a

solubilisation solution was added to the cells (2.1 mL HCl 10 N, 500 mL isopropanol) for 4 hr at 37˚C
to obtain a complete solubilization of the crystals. As a readout, absorbance of the 96-well plate was

measured recording the Optical Density (OD) at 570 nm with a microplate spectrophotometer sys-

tem. Results are representative of three independent experiments performed on three different

Cdh16Cre and Cdh16Cre::Tfebfs mice. T-test is referred to cells without drug (0 mm) taken from

Cdh16Cre::Tfebfs mice versus cells without drug (0 mm) taken from Cdh16Cre mice. Data are represen-

tative of three independent experiments, and statistical significance was determined using Student’s

t-test. p<0.05 was considered as significant.

In vivo drug treatments
P21 Cdh16Creand Cdh16Cre::Tfebfs mice were injected IP daily, from Monday to Friday, with the

PKF118-310 drug at the dose of 0.85 mg/kg or with an equal amount of vehicle (DMSO). After 30

days from the beginning of the treatment, animals were sacrificed and kidneys were collected and

weighted and processed for further analyses. Six animals for each group and genotype were

collected.

Biochemical analysis
Plasma urea was measured using standardized clinical diagnostic protocols of the Academical Medi-

cal Center Amsterdam. Albumin (Bethyl Laboratories, Montgomery, TX) was measured in urines col-

lected for 24 hr in metabolic cages and was analyzed by following the manufacturer’s instructions.

High-frequency ultrasound and PET/CT scan analyses
All the imaging procedures were performed with mice under general anesthesia. Anesthesia was

produced in an induction chamber, saturated with 5% isoflurane (Iso-Vet 1000 mg/g Inhalation

Vapor, Piramal Healthcare UK Ltd., Northumberland, UK) in oxygen (2 L/min) and subsequently

maintained during all procedures with a conenose delivering isoflurane at 1.5% in oxygen at 2 L/min.

For High-frequency ultrasound, each mouse was placed in dorsal recumbency on a dedicated,

heated, small animal table (VEVO Imaging Station 2, FUJIFILM VisualSonics, Inc., Toronto, Ontario,

Canada) and hairs were removed with a small clipper and then with the application of a depilatory

cream, and a pre-warmed ultrasound-coupling gel was applied to the skin to improve ultrasound

transmission and reduce contact artefacts. A 40 MHz transducer (MS 550 D, FUJIFILM VisualSonics,

Inc., Toronto, Ontario, Canada) was mounted on the dedicated stand of the imaging station, and

B-mode and Color-Doppler mode images were obtained on the ultrasound equipment (VEVO 2100,

FUJIFILM VisualSonics, Inc., Toronto, Ontario, Canada).

Positron emission tomography (PET) coupled with computed tomography (CT) was performed

with a dedicated small animals PET/CT scanner (eXplore Vista, GE Healthcare), with a trans-axial field

of view of 6.7 cm and an axial field of view of 4.8 cm. Animals, fasted overnight, were injected under

general anesthesia in the lateral caudal vein with 300 mCi of [18F]-fluorodeoxyglucose (FDG). Mice

were left to recover from anesthesia under a heating lamp and PET/CT acquisitions were started

after 90 min of biodistribution. Static emission scans of 30 min with energy window of 250–700 keV

were acquired. The PET datasets were reconstructed by 2D FORE/3D OSEM algorithm and cor-

rected for random coincidences, scatter, physical decay to the time of injection (voxel size: 0.3875 �
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0.3875 � 0.775 mm3). The mean specific uptake value (SUV) was obtained for each region of interest

using the visualization and analysis software of the scanner (version 4.11 Build 701, MMWKS Image

Software: Laboratorio de Imagen, HGUGM, Madrid, Spain).

Survival analysis
Survival curves were calculated for a period of 8 months on a total of 15 Cdh16Cre::Tfebfs mice, 10

Cdh16CreErt2::Tfebfs mice (tam P12), 12 Cdh16CreErt2 mice (tam P14) and 12 Cdh16CreErt2::Tfebfs mice

(tam P30) grown in the same animal facility, all in same background (C57BL/6). Values were plotted

by the product-limit method of Kaplan and Meier; statistical analyses were carried out applying the

Log Rank (Mantel-Cox) test.

Quantitative real-time PCR
Total RNA was isolated from frozen samples lysed in Trizol (Life Technologies) using a TissueLyser

(Qiagen) and following the recommended manufacturer’s protocol. Reverse transcription was per-

formed using QuantiTect Rev Transcription Kit (Qiagen). Finally, real-time PCR was performed using

SYBR Green (Roche Diagnostics) and performing the reaction in the LightCycler System 2.0 (Roche

Applied Science). The parameters of real-time PCR amplification were defined according to Roche

recommendations. To quantify gene expression, Gapdh mRNA expression was used as an internal

reference. All the values are shown as fold activation respect to w-type levels. Data are representa-

tive of three independent experiments and statistical significance was determined using Student’s t-

test. p<0.05 was considered as significant.

The following primers were used in this study: Gapdh; forward (fw) tgcaccaccaactgcttagc, reverse

(rev) tcttctgggtggcagtgatg; Tfeb; fw gcagaagaaagacaatcacaa, rev gccttggggatcagcatt; Ccnd1; fw

ccttgactgccgagaagttgtg, rev gttccacttgagcttgttcacca; Axin2; fw gatgcatcgcagtgtgaagg, rev ggttcca-

caggcgtcatctc; Myc; fw ccagcagcgactctgaagaa, rev acctcttggcaggggtttg; Fzd3; fw gcatctgggaga-

caacatgg, rev caggtctggacgactcatctg; Rnf146; fw agcggaggagaaaagactgc, rev

acatagccctttctcggtccg; Kdm6a; fw tgacagcggaggagagggag, rev ccttcatcctggcgccatct; Cdkn1a; fw

gtctgagcggcctgaagatt, rev caatctgcgcttggagtgat; HbEgf; fw tccacaaaccagctgctacc, rev

ccttgtggcttggaggagaa; Pak1; fw ttcctgaaccgctgtcttga, rev tcaggctagagaggggcttg; Areg; fw tattgg-

catcggcatcgtta, rev tgcacagtcccgttttcttg; Crk; fw cgcgtctcccactacatcat, rev tctcctattcggagcctgga;

Tgfa; fw agtgcccagattcccacact, rev cgtacccagagtggcagaca; Gpnmb, fw tggctacttcagagccacca, rev

ggcatggggacatctgctat.

Microarray hybridization
Total RNA (3 mg) was reverse transcribed to single-stranded cDNA with a special oligo (dT) 24

primer containing a T7 RNA promoter site, added 3’ to the poly-T tract, prior to second strand syn-

thesis (One Cycle cDNA Synthesis Kit by Affymetrix, Fremont, CA). Biotinylated cRNAs were then

generated, using the GeneChip IVT Labeling Kit (Affymetrix). Twenty microgram of biotinylated

cRNA was fragmented and 10 mg hybridized to the Affymetrix GeneChip Mouse 430A_2 microarrays

for 16 hr at 45˚C using an Affymetrix GeneChip Fluidics Station 450 according to the manufacturer’s

standard protocols.

For the analysis at P0, the total RNA was extracted from the kidney of three Cdh16Cre::Tfebfs

mice and of two control Cdh16Cre mice. For the analysis at P14, total RNA was extracted from the

kidney of three Cdh16Cre::Tfebfs P14 mice and three control Cdh16Cre P14 mice.

Microarray data processing
The data discussed in this publication have been deposited in NCBIs Gene Expression Omnibus

(GEO) (Edgar et al., 2002) and are accessible through GEO Series accession number GSE62977

(KSP_P0 dataset) and GSE63376 (KSP_P14 dataset) (KSP, Kidney specific). Low-level analysis to con-

vert probe level data to gene level expression was performed using Robust Multiarray Average

(RMA) implemented using the RMA function of the Bioconductor project (Gentleman et al., 2004).

Statistical analysis of differential gene expression
For each gene, a Bayesian t-test (Cyber-t) (Baldi and Long, 2001) was used on RNA normalized data

to determine if there was a significant difference in expression between Cdh16Cre::Tfebfs mice versus
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Cdh16Cre mice both at P0 (GSE62977-KSP_P0 dataset) and at P14 (GSE63376- KSP_P14 dataset).

p-Value adjustment for multiple comparisons was done with the False Discovery Rate (FDR) of Benja-

mini-Hochberg (Klipper-Aurbach et al., 1995). The threshold for statistical significance chosen was

FDR�0.05. In the KSP_P0 dataset, we selected 361 probe-sets corresponding to 294 significantly

induced genes (GSE62977). In the KSP_P14 dataset, we selected 729 probe-set corresponding to

628 genes (GSE63376).

(Immuno-) histological analysis
Formalin-fixed, paraffin-embedded kidney sections (4 mm) were analyzed using standard hematoxylin

and eosin (HE) staining, periodic acid Schiff (PAS) staining, or Sirius Red (SR) staining. For immuno-

histochemistry procedures, sections were subjected to heat-mediated antigen retrieval procedure

(10 mM citrate buffer pH 6.0) followed by 1 hr preincubation with normal goat serum (1:200; Dako-

Cytomation, Glostrup, Denmark). After blocking of endogenous peroxidase activity for 15 min

in 0.1% H2O2 in water, sections were incubated with primary antibodies diluted in 1% BSA in PBS.

Following incubation with secondary antibody, immune reactions were revealed using NovaRed or

diaminobenzidine chromogen and counterstained with hematoxylin, dehydrated, and mounted.

Primary antibodies: rabbit polyclonal anti-megalin (1:750, Pathology LUMC, Leiden, the Nether-

lands), goat polyclonal anti-uromodulin (1:4000, Organon Teknika-Cappel,Turnhout, Belgium), rabbit

polyclonal anti-aquaporin-2 (1:4000 Calbiochem, Amsterdam, The Netherlands), rabbit polyclonal

anti-b-catenin (1:500, Santa Cruz sc-7199, RRID:AB_634603), rabbit monoclonal anti-active b-catenin

(1:800, Cell Signaling #8814, RRID:AB_11127203), rabbit polyclonal anti-cadherin16 (1:300, Novus

NBP159248, RRID:AB_11046440), rabbit polyclonal anti-ATG7 (1:300, Santa Cruz sc-33211, RRID:

AB_2062165), rabbit monoclonal anti-Ki67 (ABCAM ab16667, clone SP6, RRID:AB_302459, 1:200), a

rabbit polyclonal anti-PAX8 antibody (Proteintech, 10336-1-AP, RRID:AB_2236705, 1:1000) and a

mouse monoclonal anti-Cytokeratin 7 (Abcam, ab9021, RRID:AB_306947, 1:500). Secondary anti-

bodies: anti-rabbit envision HRP (DakoCytomation, Glostrup, Denmark), rabbit-anti-goat HRP

(1:100), power rabbit poly-HRP (Biocare Medical, M4U534L). For staining with Sirius Red, de-paraffi-

nized sections were incubated in 0.2% phosphomolybdic acid hydrate for 5 min and 0.1% Sirius red

for 90 min. Subsequently, sections were incubated for 1 min in saturated picric acid and then placed

in 70% ethanol, dehydrated and mounted.

Quantitative histology
Histomorphometric analysis were conducted on PAS and Ki67-stained sections. For the cyst charac-

terization, cyst number and area was calculated on PAS sections from three animals per genotype

and group. Cysts were hand-annotated and measured in the outer and inner cortex, and the outer

and inner medulla. Finally, they were sub-divided according to their size.

For the analyses performed on the drug- and vehicle-treated animals, the analysis was conducted

on Ki67-stained sections. The number and size of the cysts were defined within the areas identified

by the pathologist using ImageScope (Leica-Biosystems Nussloch GmbH).

Using the same method, the number of papillae was counted and the proportion of Ki-67 positive

nuclei on the total number of nuclei within the papillae was calculated. For these analyses, a total of

six Cdh16Cre::Tfebfs vehicle (DMSO)-treated and six Cdh16Cre::Tfebfs drug (PKF118-310)-treated ani-

mals were evaluated.

Antibodies and western blotting
Tissues were microdissected and disrupted using a TissueLyser (Qiagen). Cells or tissues were lysed

by solubilisation in lysis buffer (50 mM Tris at pH 7.9, 1% Triton X-100, 0,1% Tween 20, 150 mM

NaCl, 5 mMMgCl2, 10% glycerol) containing phosphatase (Roche) and protease (Sigma) inhibitors.

Protein concentration was measured by the Bradford method. Samples were mixed with Laemmli

lysis buffer, boiled and resolved by SDS-PAGE. Thereafter, proteins were blotted onto polyvinyli-

dene fluoride (PVDF) membranes and blocked for 1 hr with non-fat 5% milk or 5% BSA diluted in 1X

TBS, 0,1% Tween 20, according to the primary antibody protocol. Membranes were incubated with

primary antibodies overnight. Visualization was made by incubation with corresponding HRP-labeled

secondary antibodies (Calbiochem) followed by enhanced chemiluminescence (ECL) (Perkin Elmer,

Waltham, MA). Membranes were developed using a Chemidoc UVP imaging system (Ultra-Violet
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Products Ltd) and densitometric quantification was performed in unsaturated images using ImageJ

(NIH).

For Western blots, the following antibodies were used: anti-FLAG M2-HRP (Sigma, cat. A8592,

RRID:AB_439702, 1:1000), anti-actin (Sigma, cat. A2066, RRID:AB_476693, 1:5000), anti-btubulin

(Sigma, cat. T8328, RRID:AB_1844090 1:1000), anti-Human/Mouse/Rat Pan-Akt (R&D, cat.

MAB2055, RRID:AB_2224581, 1:500), Phospho-Akt (Ser473) (D9E) Cell Signaling, cat. #4060, RRID:

AB_2315049, 1:1000), anti-human, mouse, and rat ERK1/ERK2 (R&D, cat.216703, RRID:AB_2140121,

1:2000), anti-Human/Mouse/Rat Phospho- ERK1(T202/Y204)/ERK2 (T185/Y187) (R&D, cat. AF1018,

RRID:AB_354539 1:1000), anti-b-catenin (BD, cat. 610154, RRID:AB_397555 1:500), anti-active b-cat-

enin (Cell Signaling, cat. #8814, RRID:AB_11127203 1:1000), anti-Cyclin D1 (Cell Signaling, cat.

#2978, RRID:AB_10692801 1:1000), anti-LRP6 (Cell Signaling, cat. #3395, RRID:AB_1950408 1:1000),

anti-phospho-LRP6 (Ser1490) (Cell Signaling, cat. #2568, RRID:AB_2139327 1:1000), anti-GSK3b

(Cell Signaling, cat. #9315, RRID:AB_490890 1:1000), anti-phospho-GSK3b (Ser9) (Cell Signaling, cat.

#9323, RRID:AB_2115201 1:1000), anti MYC (Cell Signaling, cat. #5605, RRID:AB_1903938 1:1000).

Statistical analysis
GraphPad Prism (GraphPad Software, San Diego, CA) was used for all statistical analysis. Statistical

analyses of data were performed using Student’s t-test. One-way ANOVA and Tukey’s post-hoc tests

were performed when comparing more than two groups relative to a single factor (time or treat-

ment/genotype). Two-way and three-way ANOVA and Tukey’s post-hoc tests were performed when

comparing more than two groups relative to two or more factors. Mantel-Cox test was used for the

survival analysis. p<0.05 was considered significant.

Acknowledgements
We thank A De Matteis, D Bagley and G Diez-Roux for critical reading of the manuscript, L D’Orsi, D

Ricca, C Luise, G Jodice and A C Salzano for technical support, R Andolfi for animal handling, A Car-

issimo for statistical analysis, L Auletta for imaging analyses and M Plateroti for the b-catenin and

TCF4 plasmids. This work was supported by grants from the Italian Telethon Foundation

(TGM11CB6), the European Research Council Advanced Investigator grant no. 250154 (CLEAR) (AB);

US National Institutes of Health (R01-NS078072) (AB), the Associazione Italiana per la Ricerca sul

Cancro (AIRC) (AB) (IG 2015 Id 17639), the Associazione Italiana per la Ricerca sul Cancro (AIRC - IG

11904 to SP; 14404 to PPDF; and MCO 10.000 to PPDF and SP), MIUR (the Italian Ministry of Univer-

sity and Scientific Research), the Italian Ministry of Health to SP and PPDF and the Monzino Founda-

tion to PPDF.

Additional information

Funding

Funder Grant reference number Author

Fondazione Telethon TGM11CB6 Andrea Ballabio

European Research Council 250154 Andrea Ballabio

National Institutes of Health R01-NS078072 Andrea Ballabio

Associazione Italiana per la
Ricerca sul Cancro

IG 2015 Id 17639 Andrea Ballabio

Associazione Italiana per la
Ricerca sul Cancro

IG 11904 Salvatore Pece

Associazione Italiana per la
Ricerca sul Cancro

14404 Pier Paolo Di Fiore

Associazione Italiana per la
Ricerca sul Cancro

MCO 10.000 Salvatore Pece
Pier Paolo Di Fiore

Ministero della Salute Salvatore Pece
Pier Paolo Di Fiore

Calcagnı̀ et al. eLife 2016;5:e17047. DOI: 10.7554/eLife.17047 21 of 26

Research article Cancer Biology Human Biology and Medicine

https://scicrunch.org/resolver/AB_439702
https://scicrunch.org/resolver/AB_476693
https://scicrunch.org/resolver/AB_1844090
https://scicrunch.org/resolver/AB_2224581
https://scicrunch.org/resolver/AB_2315049
https://scicrunch.org/resolver/AB_2140121
https://scicrunch.org/resolver/AB_354539
https://scicrunch.org/resolver/AB_397555
https://scicrunch.org/resolver/AB_11127203
https://scicrunch.org/resolver/AB_10692801
https://scicrunch.org/resolver/AB_1950408
https://scicrunch.org/resolver/AB_2139327
https://scicrunch.org/resolver/AB_490890
https://scicrunch.org/resolver/AB_2115201
https://scicrunch.org/resolver/AB_1903938
http://dx.doi.org/10.7554/eLife.17047


Fondazione Antonio Carlo
Monzino

Pier Paolo Di Fiore

The funders had no role in study design, data collection and interpretation, or the decision to
submit the work for publication.

Author contributions

AC, PPDF, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article; Lkors, EV, RDC, NZ, EN, SC, GB, SP, GGM, EdH, MS, Conception and design,

Acquisition of data, Analysis and interpretation of data; CS, JCL, Conception and design, Acquisition

of data, Analysis and interpretation of data, Contributed unpublished essential data or reagents;

DJMP, AB, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article, Contributed unpublished essential data or reagents

Author ORCIDs

Andrea Ballabio, http://orcid.org/0000-0003-1381-4604

Ethics

Animal experimentation: Experiments were conducted in accordance with the guidelines of the Ani-

mal Care and Use Committee of Cardarelli Hospital in Naples and authorized by the Italian Ministry

of Health, approved protocol number: 75/2014-B.

Additional files

Major datasets

The following datasets were generated:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Rossella De Cegli
2016

Expression data from mice
overexpressing Tcfeb specifically in
P14 kidney

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE63376

Publicly available at
the NCBI Gene
Expression Omnibus
(accession no:
GSE63376)

Rossella De Cegli 2016 Expression data from mice
overexpressing Tcfeb specifically in
P0 kidney

http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?
acc=GSE62977

Publicly available at
the NCBI Gene
Expression Omnibus
(accession no:
GSE62977)

References
Aksan I, Goding CR. 1998. Targeting the microphthalmia basic helix-loop-helix-leucine zipper transcription factor
to a subset of E-box elements in vitro and in vivo. Molecular and Cellular Biology 18:6930–6938. doi: 10.1128/
MCB.18.12.6930

Amin MB, Amin MB, Tamboli P, Javidan J, Stricker H, Venturina MD-P, Deshpande A, Menon M, de-Peralta
Venturina M. 2002. Prognostic impact of histologic subtyping of adult renal epithelial neoplasms: an experience
of 405 cases. The American Journal of Surgical Pathology 26:281–291. doi: 10.1097/00000478-200203000-
00001

Argani P, Antonescu CR, Illei PB, Lui MY, Timmons CF, Newbury R, Reuter VE, Garvin AJ, Perez-Atayde AR,
Fletcher JA, Beckwith JB, Bridge JA, Ladanyi M. 2001. Primary renal neoplasms with the ASPL-TFE3 gene
fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas
of children and adolescents. The American Journal of Pathology 159:179–192. doi: 10.1016/S0002-9440(10)
61684-7

Argani P, Hicks J, De Marzo AM, Albadine R, Illei PB, Ladanyi M, Reuter VE, Netto GJ. 2010. Xp11 translocation
renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. The
American Journal of Surgical Pathology 34:1295–1303. doi: 10.1097/PAS.0b013e3181e8ce5b

Argani P, Ladanyi M. 2005. Translocation carcinomas of the kidney. Clinics in Laboratory Medicine 25:363–378.
doi: 10.1016/j.cll.2005.01.008

Calcagnı̀ et al. eLife 2016;5:e17047. DOI: 10.7554/eLife.17047 22 of 26

Research article Cancer Biology Human Biology and Medicine

http://orcid.org/0000-0003-1381-4604
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63376
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63376
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63376
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62977
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62977
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62977
http://dx.doi.org/10.1128/MCB.18.12.6930
http://dx.doi.org/10.1128/MCB.18.12.6930
http://dx.doi.org/10.1097/00000478-200203000-00001
http://dx.doi.org/10.1097/00000478-200203000-00001
http://dx.doi.org/10.1016/S0002-9440(10)61684-7
http://dx.doi.org/10.1016/S0002-9440(10)61684-7
http://dx.doi.org/10.1097/PAS.0b013e3181e8ce5b
http://dx.doi.org/10.1016/j.cll.2005.01.008
http://dx.doi.org/10.7554/eLife.17047
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