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Abstract: Possible improvement of the performance characteristics, reliability and selectivity of
solid-contact nitrate ion-selective electrodes (ISE) (SC/NO3

−-ISE) is attained by the application of a
nitron-nitrate (Nit+/NO3

−) ion association complex and inserting multi-walled carbon nanotubes
(MWCNTs) as an ion-to-electron transducer between the ion sensing membrane (ISM) and the
electronic conductor glassy carbon (GC) substrate. The potentiometric performance of the proposed
electrode revealed a Nernstian slope −55.1 ± 2.1 (r2 = 0.997) mV/decade in the range from
8.0 × 10−8–1 × 10−2 M with a detection limit of 2.8 × 10−8 (1.7 ng/mL). Selectivity, repeatability
and reproducibility of the proposed sensors were considerably improved as compared to the coated
disc electrode (GC/NO3

−-ISE) without insertion of a MWCNT layer. Short-term potential stability
and capacitance of the proposed sensors were tested using a current-reversal chronopotentiometric
technique. The potential drift in presence of a MWCNT layer decreased from 167µVs−1 (i.e., in absence
of MWCNTs) to 16.6 µVs−1. In addition, the capacitance was enhanced from 5.99 µF (in absence
of MWCNTs) to 60.3 µF (in the presence of MWCNTs). The presented electrodes were successfully
applied for nitrate determination in real samples with good accuracy.

Keywords: nitrate; solid-contact ISEs; SWCNTs; potentiometric sensors; gun powder; wastewater;
fertilizer analysis

1. Introduction

Nitrates are widely used in different industries such as fertilizer production, drugs, explosives and
many other products. These industries significantly contribute to the high concentration of nitrate in
sewage [1]. Surface and ground water resources are easily contaminated by nitrate ions, and this causes
a serious problem around the world. So, removal of nitrate and detecting its concentration is of great
concern. Contamination of water resources with nitrate causes disturbances in the ecological balance
which is a hazard to human health. In addition, high nitrate levels cause eutrophication in water
bodies, which is manifested through uncontrolled growth of algae [2]. Nitrate can be found naturally
in surface water at a level <1 mg/L, but this level is greatly disturbed as a result of the intensive use of
fertilizers. The World Health Organization (WHO) has established the maximum allowable nitrate
level at 10 mg/L [3,4]. High nitrate concentrations in drinking water is carcinogenic and causes other
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health problems, such as blue baby syndrome in infants [5]. So, it is of great necessity to present
a reliable, selective, sensitive and accurate method for the assessment of trace level concentrations
of nitrate.

There are different analytical methodologies for the determination of nitrate that have been reported
in the literature such as spectrophotometry [6,7], ion chromatography [8,9], capillary electrophoresis [10],
amperometry [11], polarography [12], voltammetry [13], gasometry [14,15], fluorometry [16,17] and
atomic absorption spectrometry (AAS) [18,19]. Most of these reported methods are time consuming,
need reaction conditions control, complex equipment are required, they suffer from severe interference
and are not applicable for samples with a complex matrix [20]. Ion-selective electrodes (ISEs) offer
different excellent features, such as miniaturization, ease of measurement and application, rapid analysis
with a short response time, simple and cost-effective instrumentation, no sample pre-treatment is
required and time-efficiency. In addition, the method is non-destructive and can be applied to turbid
and colored samples. Ion-selective electrodes have been widely introduced for the assessment of both
inorganic and organic analytes in industrial [21,22], environmental [23,24] and clinical analysis [25,26].
Conventional ISEs that contain an internal solution suffer from difficulties in miniaturization and limited
applications. In addition, lower detection limits have been restricted by zero-current trans-membrane
ion fluxes [27].

Solid-contact potentiometric ISEs can eliminate the inner filling solution. They are characterized
by their convenient storage and maintenance, ease of miniaturization and lower detection limit because
of diminished ion fluxes [28,29]. When the metal conductor is directly coated by the sensing membrane
(i.e., coated-wire electrodes (CWEs)), the applications of these types of ISEs are very limited because of
the lack of long-term potential stability [30]. The addition of an ion-to-electron transducer between the
ion-sensing membrane and the electronic conductor increases the potential stability of such sensors.
One of these ion-to-electron transducers are carbon nanomaterials. These compounds have attracted
a lot of attention due to their unique mechanical, chemical and electrical properties [31], and also
have a wide range of applications as an intermediate layer in solid-contact ion-selective electrodes
(SC-ISEs); these compounds include graphene, carbon nanotubes, fullrene or carbon black [28,32].
Alhough the usage of nanomaterials improves the analytical parameters of sensors (the potential
stability and capacity and the reduction of the resistance of electrodes), they only have a slight effect on
the selectivity of the electrodes, which is still comparable to coated-disc electrodes [2].

In this work, we present the analytical parameters of solid-contact nitrate ISEs based on
nitron+/NO3

− ion association as a sensory material and multi-walled carbon nanotubes (MWCNTs)
as a transducing solid-contact material coated to a glassy carbon (GC) substrate. The introduction
of nitron+/NO3

− and MWCNTs significantly improves and enhances the selectivity of the proposed
sensors toward NO3

− ions. The proposed ISE is used for nitrate determination in pharmaceutical
formulations, wastewater and fertilizer samples.

2. Experimental

2.1. Materials

“Nitron (1,4-diphenyl-endoanilino-dihydrotriazole), o-nitrophenyl octyl ether (o,NPOE),
high molecular weight poly(vinyl chloride) (PVC), tetradodecylammonium tetrakis (4-chlorophenyl)
borate (ETH 500) and tetrahydrofuran (THF) were the selectophore reagents obtained from Fluka AG
(Buchs, Switzerland). MWCNTs were purchased from XFnano Materials Tech Co., Ltd. (Nanjing,
China). All other chemicals used in this work were of analytical-reagent grade. De-ionized bi-distilled
water was used to prepare all aqueous solutions. The GC electrode consists of GC rods (2 mm diameter)
enveloped in polyetheretherketone (PEEK) polymer bodies and was purchased from Metrohom
Instruments (Herisau, Switzerland).”
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2.2. Electrode Fabrication

“The GC disc was polished at first with 0.3 µm and 0.05 µm Al2O3 powder, then washed with
water and subsequently cleaned by ultrasonication with water and methanol. The resulting glassy
carbon electrode (GCE) was placed into a piece of matched PVC tubing at its distal end. A mixture
of 20 mg ETH 500 and 2 mg SWCNTs were spread onto the GC electrode surface and heated by an
infrared lamp for 10 s until complete melting of the ETH 500 was achieved. The composite was then
left to cool, resulting in a uniform layer attached to the electrode surface. The membrane solution was
prepared by dissolving 100 mg of the membrane components in 2 mL THF: nitron+/NO3

− (2 wt %),
o,NPOE (49 wt %) and PVC (49 wt %). The membrane cocktail (100 µL) was drop-casted onto the
transducer layer and left to dry for 2 h. The GC/NO3

−-ISEs without MWCNTs were prepared in the
same way. All nitrate electrodes were firstly conditioned in 1 × 10−3 M nitrate solution for 1 day and
then in 1 × 10−7 M NO3

− for another day”.

2.3. Potentiometric and Chronopotentiometric Measurements

“The potentials were measured with the use of an Orion-SA 720 pH meter (Massachusetts, USA).
The reference electrode was a double junction, Ag/AgCl filled with 3 M KCl in the inner compartment
and 0.1 M LiOAc solution as a bridge electrolyte (type 6.0729.100 Ω, Metrohm, Switzerland).
The chronopotentiometry measurements were carried out using a Metrohom potentiostat/galvanostat
(Autolab, model 204) purchased from Metrohom Instruments (Herisau, Switzerland) connected to
a conventional, three-electrode cell. An Ag/AgCl/3 M KCl/0.1 M LiOAc was the reference electrode,
a Pt rod was used as the auxiliary electrode and the SC-ISE was connected as a working electrode.
All measurements were performed at 25 ± 1 ◦C using all solid-state potential ISEs”.

2.4. Sandwich Membrane Experiments

“Binding constants of the charged ionophore nitron–nitrate (Nit+/NO3
−) ion association complex

with nitrate ions were calculated using sandwich membrane experiments [33,34]. In this method,
two membranes were prepared individually. One of them had the charged ionophore, PVC and
plasticizer, while the other had the same membrane composition but without the charged ionophore.
The two membranes were conditioned in 0.01 M NO3

− solution and each was measured individually
in symmetric cell with 0.01 M inner filling and sample solutions. A sandwich membrane was
made by pressing the two individual membranes previously prepared together after blotting them
individually dry with tissue paper to avoid any aqueous film being present between the two membrane
segments. The resulting sandwich membrane was then mounted in the electrode body with the
ionophore-containing segment facing the sample solution. The potential difference between the
sandwich membrane and the single membrane was used for the stability constant calculation”.

2.5. Nitrate Assessment in Wastewater, Fertilizers and Gun Powders

“For nitrate determination in industrial wastewater, 1 L of the sample solution was collected,
mixed well and filtered off. A 1 mL portion of the filtrate was mixed with a 9 mL aliquot of 30 mM
phosphate buffered solution and the mixture was shaken well”.

“For fertilizer samples, 0.1 g of the nitrate fertilizer was placed in a 100 mL conical flask and
mixed with 20 mL 0.1 M K2S2O8 and 5.0 mL 2 M NaOH. The mixture was autoclaved at 120 ◦C for
30 min as previously described [35]. After sample digestion, the solution was transferred to a 50 mL
measuring flask and filled to the top with distilled water. The filtrate was adjusted to pH 5 with a few
drops of concentrated H2SO4. In a 25 mL beaker, a 1 mL aliquot of the sample solution was mixed
with 30 mM PBS”.

“Different gun powder samples were accurately weighted, dissolved in 30 mM PBS and filled to
the top in a 100 mL volumetric flask. A 1 mL portion of the clear supernatant was diluted to 50 mL with
PBS. The proposed electrode was inserted in conjunction with the reference electrode in the above final
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working solutions and the measured potential was then recorded and compared with the calibration
graph”.

3. Results and Discussion

3.1. Potentiometric Characteristics

Solid-contact nitrate sensors based on nitron+/NO3
− ion-association that were plasticized in

o-nitrophenyloctyl ether (NPOE) were prepared and characterized. The composition of the sensor
membrane was: plasticizer = 49 wt %, nitron+/NO3

− = 2.0 wt %, and PVC = 49.0 wt %. The potential of
the developed ISEs was recorded over the concentration range 1× 10−8–1× 10−2 M KNO3. The potential
readings versus log aNO3− are presented in Figure 1. The slopes calculated from the linear range
of the calibration plots of the nitrate-selective electrodes with/without MWCNTs were −55.1 ± 2.1
(r2 = 0.9973) and −53.1 ± 1.4 (r2 = 0.9995) mV/decade over the linear range of 8.0 × 10−8–1 × 10−2 and
1.0 × 10−7–1 × 10−2 M, respectively. The detection limits of these sensors were 2.8 × 10−8 (1.7 ng/mL)
and 4.7× 10−8 (2.9 ng/mL), respectively. All potentiometric characteristics for all investigated electrodes
are presented in Table 1. A stable response was obtained over the pH range 3.5–10. So, phosphate
buffer solution (30 mM, pH 5) was chosen for all nitrate measurements. From the presented results,
it can be demonstrated that the insertion of a MWCNT layer as an ion-to-electron transducer has
no effect on the potential performance characteristics of the solid-contact ISE. As shown in Figure 2,
the reversibility test of the studied ISEs is presented. GC/MWCNTs/NO3

−-ISE showed enhanced
potential reversibility towards NO3

− ions. The response time of the GC/MWCNTs/NO3
−-ISE was very

short (<5 s). It can be deduced that the removal of the inner filling solution favors the response time of
the solid-contact electrode.

Figure 1. Potentiometric response curves of: (a) glassy carbon (GC)/multi-walled carbon nanotubes
(MWCNTs)/NO3

− ion-selective electrode (ISE); and (b) GC/NO3
−- ISE in 50 mM phosphate buffer

solution, pH 3.5.

Figure 2. The reversibility test of GC/MWCNTs/NO3
−-ISE.
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Table 1. Potentiometric response characteristics of the proposed nitrate ISEs in 30 mM phosphate buffer
solution, pH 5.

Parameter GC/MWCNTs/NO3−-ISE GC/NO3−-ISE

Slope, (mV/decade) * −55.1 ± 2.1 −53.1 ± 1.4
Correlation coefficient, (r2) 0.9973 0.9995
Linear range, (M) 8.0 × 10−8–1.0 × 10−2 1.0 × 10−7–1.0 × 10−2

Detection limit, (M) 2.8 × 10−8 4.7 × 10−8

Working range, pH 3.5–10 3.5–10
Response time, (s) <10 <10
Life span, (weeks) 8 8
Standard deviation, (mV) 1.3 1.7
Accuracy, (%) 99.3 98.7
Precision, CVw, (%) 1.1 0.9

* Average of five measurements.

3.2. Selectivity

The selectivity coefficients of the proposed SC/ISEs were calculated using the modified separate
solution method (MSSM) [36]. All anions used in this study were in their sodium or potassium form
and the selectivity coefficient values are listed in Table 2. Measurements were carried out in the
concentration range of 1×10−5 M to 1×10−2 M solutions of interfering anions. The plots and Nernstian
slopes for the measured ions are shown in Figure S1. It is clear that the nitrate-selective membrane
using nitron+/NO3

− as an ion-carrier shows excellent selectivity towards NO3
− over other anions such

as Cl−, SO4
2−, S2−, F−, CH3COO−, PO4

3−and NO2
−. The proposed ISE revealed high discrimination

against these tested anions and allows it to be used to measure nitrate in the presence of a high
interference background.

Table 2. Potentiometric selectivity coefficients (KPot
NO3,B) of the proposed SC/ISEs.

Interferent, B log KPot
NO3,B

GC/MWCNTs/NO3−-ISE GC /NO3−-ISE

Cl− −5.10 ± 0.4 −5.08 ± 0.2
SO4

2− −6.50 ± 0.7 −6.60 ± 0.3
S2− −4.70 ± 0.3 −4.64 ± 0.4
F− −6.80 ± 0.9 −6.92 ± 0.1
CH3COO− −3.30 ± 0.3 −3.22 ± 0.6
PO4

3− −7.10 ± 0.2 −7.01 ± 0.2
NO2

−
−4.10 ± 0.3 −4.07 ± 0.6

3.3. Chronopotentiometry

Reversed-current chronopotentiometry was utilized to study and evaluate the short-term
potential stability of the GC/MWCNTs/NO3

−-ISE [37]. Typical chronopotentiograms for both
GC/MWCNTs/NO3

−-ISE and GC/NO3
−-ISE are shown in Figure 3. From the slope (∆E/∆t), the

potential drift for GC/MWCNTs/NO3
−-ISE was calculated to be 20.33 µV/s, which is much lower than

that of the GC/NO3
−-ISE (143.22 µV/s). From these results, it was indicated that the potential stability

of the nitrate sensor is enhanced and improved after using MWCNTs as a solid-contact transducer.
The low-frequency capacitance for GC/MWCNTs/NO3

−-ISE and GC/NO3
−-ISE is calculated from the

equation ∆E/∆t = I/C [37] and found to be 49.2 ± 1.3 µF and 6.9 ± 0.8 µF, respectively. From the
mentioned results, it was noticed that the nitrate-ISE modified with MWNTs showed significantly
lower potential drift and higher capacity in comparison to the coated disc electrode developed under
similar conditions. These results confirm the results reported for the successful use of MWCNTS as a
transducer material and in anion sensor design [38–41].
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Figure 3. Chronopotentiometry for nitrate-ISEs (a) with and (b) without MWCNTs as a
solid-contact material.

3.4. Binding Constants of the Charged Ionophore

The complex stability constant of the nitrate charged-ionophore was measured by the sandwich
membrane method. In this method, the membrane potential EM is determined by subtracting the
cell potential for a membrane without the charged ionophore from that of the sandwich membrane.
The stability constant (log β) is calculated from the following equation by assuming only one NO3

− ion
binds to one ionophore molecule (n = 1):

EM = RT/ZiF ln [βILn(LT-nRT/Zi)n]

where LT is the total concentration of the charged ionophore in the membrane segment, RT is the
concentration of lipophilic ionic site additives, n is the ion–ionophore complex stoichiometry and R, T,
and F are the gas constant, the absolute temperature and the Faraday constant, respectively. The ion I
carries a charge of ZI. The potential of the sandwich membrane was found to be −451 ± 6 mV, which
gives a stability constant (log β) of 8.21 ± 0.06.

3.5. Analytical Applications

For the demonstration of the feasibility of the proposed GC/MWCNTs/NO3
−-ISE for environmental

analysis, the nitrate content in real wastewater samples containing nitrate ions, commercial ammonium
nitrate fertilizers, and gun powders were analyzed by direct potentiometry. A comparison was also
made using the standard ion chromatography method [42]. The results obtained by the two methods
were in a good agreement within less than ±1.5% as shown in Tables 3 and 4. An F-test showed no
significant difference at the 95% confidence level between means and variances of the potentiometric
and chromatographic sets of results. The calculated F values (n = 5) were found to be in the range of
1.24–5.25 compared with the tabulated value (6.39) at the 95% confidence limit.
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Table 3. Potentiometric determination of NO3
− in some wastewater samples.

Sample Source
Nitrate-N * (mg/L)

DifferenceProposed
Potentiometric Method

Ion Chromatography
Method [42]

Nitrate fertilizer factory,
outfall (I) 38.6 ± 0.3 39.9 ± 0.8 1.3

Nitrate fertilizer factory,
outfall (II) 40.3 ± 0.4 42.6 ± 0.3 2.3

Raw sewage plant inflow 110.3 ± 0.9 115.4 ± 0.7 5.1

Aerated lagoon effluent 23.2 ± 0.9 25.6 ± 0.3 2.4

* Average of six measurements.

Table 4. Potentiometric determination of nitrate in some fertilizers and gun powders.

Sample Source Labeled
(NO3-N)

Nitrate-N *, Recovery%

DifferenceProposed
Potentiometric

Method

Ion
Chromatography

Method [42]

Ammonium nitrate
fertilizer (Alex Fert.

Co.)

16.5–17.5%
(w/w) 98.3 ± 0.2 97.5 ± 0.6 0.8

Ammonium nitrate
fertilizer (El Naser

Fert. Co.)

16.5–17.5%
(w/w) 98.5 ± 0.6 97.8 ± 0.3 0.7

Gun powder 1 - 99.7 ± 0.3 99.5 ± 0.4 0.2

Gun powder 2 - 99.2 ± 0.5 99.6 ± 0.6 0.4

* Average of six measurements.

4. Conclusions

A new all-solid-state nitrate-ISE has been developed based on MWCNTs as an ion-to-electron
transducer. MWCNTs were revealed to have a large double layer capacitance, fast charge transfer,
and high hydrophobicity. The proposed ISE revealed a stable potential response in the linear range of
8.0 × 10−8–1.0 × 10−2 M with a slope of −55.1 ± 2.1 mV/decade and a detection limit of 2.8 × 10−8 M.
In addition, the sensor exhibited considerable potential stability and no water film is formed between
the sensing membrane and the GC substrate. The sensor is successfully applied for the determination
of nitrate in real environmental samples.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/18/3891/s1,
Figure S1: The plots and Nernstian slopes for the measured ions using (A) GC/MWCNTs/NO3

—ISE; and (B)
GC/NO3

—ISE.
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