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Abstract
Indirubin-3′-monoxime is an effective inhibitor of cyclin-dependent protein kinases, and may play an obligate role in neuronal apopto-
sis in Alzheimer’s disease. Here, we found that indirubin-3′-monoxime improved the morphology and increased the survival rate of SH-
SY5Y cells exposed to amyloid-beta 25–35 (Aβ25–35), and also suppressed apoptosis by reducing tau phosphorylation at Ser199 and Thr205. 
Furthermore, indirubin-3′-monoxime inhibited phosphorylation of glycogen synthase kinase-3β (GSK-3β). Our results suggest that in-
dirubin-3′-monoxime reduced Aβ25–35-induced apoptosis by suppressing tau hyperphosphorylation via a GSK-3β-mediated mechanism. 
Indirubin-3′-monoxime is a promising drug candidate for Alzheimer’s disease.

Key Words: nerve regeneration; indirubin-3′-monoxime; amyloid-beta; Alzheimer’s disease; neuronal apoptosis; tau hyperphosphorylation; 
phosphorylated glycogen synthase kinase-3β; phosphorylated c-Jun N-terminal kinase; neural regeneration

Graphical Abstract

Indirubin-3′-monoxime suppresses β-amyloid-induced apoptosis by inhibiting tau hyperphosphorylation

Introduction
The recognition of pathologic features in patients with 
Alzheimer’s disease (AD) has provided clues to the mech-
anisms of neuronal apoptosis, and drawn attention to new 
prospects for AD therapy. A number of experimental mod-
els have shown that neuronal death occurs alongside the 
elicitation of proteins involved in the cell cycle (Lim and Qi, 
2003; Colacurcio et al., 2015). Damaged neurons, instead 
of continuing with the cell cycle after mitosis, initiate abor-
tive processes that result in apoptotic cell death (Xu et al., 
2008; Absalon et al., 2013). Cyclin-dependent kinase (CDK) 
is involved in such processes, and CDK inhibitors might 

reduce neuronal loss in AD (Zhang et al., 2004; Johnson et 
al., 2005). There is an urgent need to develop safe, effective, 
and selective CDK inhibitors that can pass the blood-brain 
barrier.

Indirubin is a selective CDK inhibitor, which suppresses 
the activities of CDK1, CDK2, and CDK5. However, it has 
poor water solubility and liposolubility (Absalon et al., 
2013). Indirubin-3′-monoxime (IMX), also a CDK inhib-
itor, has a low molecular weight and better solubility than 
indirubin (Zahler et al., 2010; Liao and Leung, 2013). It is 
nontoxic and acts by competition with adenosine triphos-
phate at the catalytic site of CDKs (Shelton et al., 2004). 

SH-SY5Y cells

Indirubin-3′-monoxime

Aβ25–35

• Cell viability assay
• Flow cytometry 
• Western blot assay

– Suppression of the apoptosis by 
reducing the elevated level of the tau 
phosphorylation at Ser199 and Thr205
– Decrease of tau hyperphosphorylation 
by inhibiting GSK-3β phosphorylation
– Inhibition of the toxicity induced by 
Aβ25–35
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The compound was found to suppress tau phosphorylation 
in Sf9 cells expressing human tau 23 (Leclerc et al., 2001) 
and, in cerebellar granular neurons, it reduced apoptosis ini-
tiated by withdrawal of potassium (Xie et al., 2004). Systemic 
administration of IMX (20 mg/kg; 3 times per week for 2 
months) in APP transgenic mice attenuated spatial memory 
deficits and decreased presenilin 1 (PS1) mutations in sever-
al AD-like phenotypes (Ding et al., 2010).  

The aim of the present study was to investigate the neuro-
protective effect of IMX against amyloid-beta (Aβ)-induced 
apoptosis in cultured SH-SY5Y neuroblastoma cells. In addi-
tion, we explored the effect of IMX on tau hyperphosphory-
lation and putative related mechanisms. 

Materials and Methods
SH-SY5Y cell culture 
SH-SY5Y cells (Beijing Union Medical College Cell Center, Bei-
jing, China) were grown on RPMI 1640 medium (Gibco BRL, 
Gaithersburg, MD, USA) supplemented with 15% (v/v) fetal 
bovine serum (Gibco BRL), 2 mM L-glutamine, 100 µg/mL 
streptomycin (Sigma, St. Louis, MO, USA), and 100 U/mL 
penicillin (Sigma) in a humidified atmosphere at 5% CO2 
and 37°C. The medium was replaced every 2 days; cells were 
passaged every 3–4 days. 

Cell viability assay
Aβ peptide fragment 25–35 (Aβ25–35; Sigma) was dissolved 
in sterile deionized water and stored at −20°C. IMX (Sigma) 
was dissolved in dimethyl sulfoxide to 10 mM, stored in al-
iquots at −20°C, and diluted in medium as necessary. The 
cells were divided into five groups in a 96-well plate: control 
(untreated); Aβ (20 µM Aβ25–35); IMX0.2 (0.2 µM IMX + 
Aβ25–35); IMX0.5 (0.5 µM IMX + Aβ25–35); and IMX1 (1.0 
µM IMX + Aβ25–35). Cells in the Aβ groups were incubated 
with Aβ25–35 at 37°C for 7 days. Cells in the IMX groups were 
incubated at 37°C for 2 days. We used 2-(2-methoxy-4-
nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H 
tetrazolium (WST-8, Cell Counting Kit-8; Dojindo, Kuma-
moto, Japan; Tsukatani et al., 2011) to examine the effect 
of IMX on Aβ25–35-induced changes in SH-SY5Y cells. After 
treatment, the medium was replaced by Dulbecco’s modified 
Eagle’s medium to stop the effects of IMX and Aβ25–35. WST-
8 (10 µL) was added to each well, and the plate was incubat-
ed for 4 hours. Absorbance was measured at 450 nm using a 
Dynatech MR5000 reader (BMG Labtech, Offenburg, Ger-
many) with a reference wavelength of 630 nm. 

Flow cytometry 
To determine the effect of IMX on early and late apoptosis 
and necrosis triggered by Aβ25–35, we examined SH-SY5Y 
cells using flow cytometry. The cells were transferred into 
six-well plates and incubated with IMX (0, 0.5, and 1.0 µM) 
for 24 hours. Aβ25–35 (20 µM) was then added and mixed. 
Forty-eight hours later, the cells that remained fixed to the 
plates were collected in phosphate buffered saline (PBS) and 
combined with the floating dead cells. Cells (approximately 
1 × 106) were washed twice with cold PBS and resuspended 

in 200 µL cold 1× binding buffer. Annexin V–FITC (10 µL) 
and propidium iodide (PI; 5 µL) were admixed and incubat-
ed in the dark at room temperature for 15 minutes, then 300 
µL binding buffer was added. Cells were quantified instantly 
in a flow cytometer (FACSCalibur, Becton Dickinson Immu-
nocytometry Systems, San Jose, CA, USA), using emission 
filters at 525 and 575 nm. Cells negative for both annexin V 
and PI (V−/PI−) were considered normal, whereas a V+/PI− 
result was considered a criterion of early apoptosis, and V+/
PI+ was assumed to indicate late apoptotic-like cell death and 
necrosis. A minimum of 10,000 cells per experiment were 
assayed in the three separate trials. 

Western blot assay
To evaluate the effects of Aβ25–35 and IMX on the phosphor-
ylation of tau, glycogen synthase kinase 3β (GSK-3β) and 
c-Jun N-terminal kinase (JNK) in SH-SY5Y cells, the cells 
were incubated with a mixture of 20 µM Aβ25–35 and 0.5 µM 
IMX for 6 hours. They were then washed twice with cold 
PBS, and lysed in cell lysis buffer for 30 minutes on ice. The 
soluble portion was produced by centrifugation (15,000 
× g for 15 minutes at 4°C). Protein concentrations were 
established using the bicinchoninic acid method (Yalamati 
et al., 2015) (Pierce Biotechnology, Rockford, IL, USA). Ali-
quots of total protein were boiled for 10 minutes in loading 
buffer and subsequently separated in 10% sodium dodecyl 
sulfate-polyacrylamide gel. Next, the proteins were trans-
ferred onto nitrocellulose membranes by electroporation 
(Immobilon TMP, Millipore Corp., Bedford, MA, USA) 
using a Trans-Blot system (Bio-Rad, New York, NY, USA). 
The membranes were then blocked with 5% nonfat milk 
in Tris-buffered saline with Tween-20 (TTBS; 10 mM Tris-
HCl, 150 mM NaCl, 0.2% Tween-20) for 1 hour at room 
temperature. Samples were incubated with monoclonal pri-
mary antibodies (β-actin, 1:10,000, Sigma; polyclonal an-
ti-tau pS199, 1:1,000, BioSource Int., Camarillo, CA, USA; 
anti-tau pT205, 1:1,000, Bioworld Technology (St. Louis 
Park, MN, USA); Ser-9-phosphorylated GSK-3β (p-GSK-3β 
Ser9), phosphorylated JNK (p-JNK), and JNK, all 1:1,000; 
Cell Signaling Technology, Beverly, MA, USA) at 4°C over-
night. The membranes were washed twice with TTBS, and 
incubated with the secondary antibody (anti-rabbit-horse-
radish peroxidase, 1:5,000; Cell Signaling Technology) at 
room temperature for 1 hour. Proteins were then visualized 
using the ECL Advanced Western Blotting Detection kit 
(Amersham Biosciences Ltd., Amersham, UK), and the 
mean optical density of each band was calculated using a 
Fluor-S MultiImager (Bio-Rad Laboratories (Shanghai) 
Co., Ltd., Shanghai, China) with Quantity One software 
(Bio-Rad Laboratories (Shanghai) Co., Ltd.). 

Statistical analysis
The data, presented as the mean ± SEM, were analyzed using 
SPSS 11.0 software (SPSS Inc., Chicago, IL, USA). Means 
were compared by one-way analysis of variance and the least 
significant difference post hoc test. P < 0.05 was considered 
statistically significant. 
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Figure 1 Effect of IMX on viability of SH-SY5Y cells exposed to 
Aβ25–35. 
(A) Cell morphology (× 100). Control SH-SY5Y cells were fusiform or 
elliptic in shape; cells in the Aβ group were small and speckled, with 
dark cytoplasm and large vacuoles; axons were absent. Morphology of 
SH-SY5Y cells after Aβ25–35 exposure was markedly improved by pre-
treatment with different concentrations of IMX. (B) Survival rate of 
SH-SY5Y cells (Cell Counting Kit-8). Data are expressed as the mean ± 
SEM from five experiments. #P < 0.01, vs. control group; *P < 0.01, vs. 
Aβ group. Control: Untreated cells; Aβ: 20 µM Aβ25–35; IMX0.5: 0.5 µM 
IMX + Aβ25–35; IMX1: 1.0 µM IMX + Aβ25–35; Aβ: amyloid-beta; IMX: 
indirubin-3′-monoxime. 

Figure 2 Apoptosis triggered by Aβ25–35 was suppressed by IMX (flow 
cytometry).
The results are displayed as the mean ± SEM of five experiments. #P 
< 0.01, vs. control group; *P < 0.01, vs. Aβ group. Control: Untreated 
cells; Aβ: 20 µM Aβ25–35; IMX1: 1.0 µM IMX + Aβ25–35; Aβ: amyloid-beta; 
IMX: indirubin-3′-monoxime. 

Results
IMX enhanced the viability of SH-SY5Y cells exposed to 
Aβ25–35

Under an inverted phase contrast microscope (Olympus Op-
tical Co., Ltd., Tokyo, Japan), SH-SY5Y cells in the control 
group appeared well-formed than those in the Aβ group. 
Pretreatment with different concentrations of IMX markedly 
improved morphology after Aβ25–35 exposure (Figure 1A). 

Cell viability after Aβ25–35 exposure was significantly lower 
than in control cells (P < 0.001). However, pretreatment 
with IMX (0.5 µM and 1.0 µM) increased cell viability in a 
concentration-dependent manner (P < 0.01; Figure 1B).

IMX reduced neuronal apoptosis triggered by Aβ25–35 in 
SH-SY5Y cells 
Flow cytometry showed that there were more apoptotic cells 
after exposure to 20 µM Aβ25–35 than in the control group 
(P < 0.01), but significantly fewer in the IMX group (12.4 ± 
1.82%) than in the Aβ group (20.33 ± 2.02%; P < 0.01). This 
indicates that IMX protected cells against Aβ-induced apop-
tosis (Figure 2). 

IMX decreased tau phosphorylation caused by Aβ25–35

Western blot assay revealed significantly more tau phosphor-
ylation at Ser199 and Thr205 in the Aβ group than in the 
control group (P < 0.05). This effect was markedly reduced 
by co-treatment with IMX at 0.5 μM and 1.0 μM (P < 0.05; 
Figure 3).

Effects of IMX on p-GSK-3β expression 
p-GSK-3β (Ser9) expression was lower after Aβ25–35 exposure 
than in control cells, indicating that GSK-3β activity was 
increased. However, p-GSK-3β (Ser9) was markedly overex-
pressed after pretreatment with IMX (P < 0.05; Figure 4A). 
These results suggest that GSK-3β is involved in the effect of 
IMX on Aβ-induced tau phosphorylation.

IMX treatment did not affect p-JNK expression
The expression of p-JNK in the Aβ group was markedly 
higher than that in the control group (P < 0.05). However, 
there were no significant changes after IMX treatment (Fig-
ure 4B), indicating that p-JNK is not involved in the effect of 
IMX on Aβ-induced tau phosphorylation.

Discussion
SH-SY5Y neuroblastoma cells are a well-characterized hu-
man cell model for investigating the pharmacological effects 
of IMX. In the present study, we exposed the cells to 20 µM 
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Figure 3 IMX decreased Aβ25–35-induced tau phosphorylation at Ser (A) and Thr205 (B).
Phosphorylated tau expression was measured as the optical density of the bands normalized to β-actin. Data are presented as the mean ± SEM of 
three experiments. #P < 0.01, vs. control group; *P < 0.01, vs. Aβ group. Control: Untreated cells; Aβ: 20 µM Aβ25–35; IMX0.5: 0.5 µM IMX + Aβ25–35; 
IMX1: 1.0 µM IMX + Aβ25–35; IMX: indirubin-3′-monoxime; Aβ: amyloid-beta.

Figure 4 Effect of IMX on p-GSK-3β (A) and p-JNK (B) expression in the presence of Aβ25–35.
p-GSK-3β (Ser9) and p-JNK expression levels were measured as the optical density of the bands normalized to β-actin and JNK, respectively. Data 
are expressed as the mean ± SEM of three experiments. *P < 0.05, vs. Aβ group. Control: Untreated cells; Aβ: 20 µM Aβ25–35; IMX0.5: 0.5 µM IMX 
+ Aβ25–35; IMX1: 1.0 µM IMX + Aβ25–35; (p-)GSK-3β: (phosphorylated) glycogen synthase kinase-3β; (p-)JNK: (phosphorylated) c-Jun N-terminal 
kinase; IMX: indirubin-3′-monoxime; Aβ: amyloid-beta. 

Aβ25–35, which showed a low level of neurotoxicity. Aggregat-
ed Aβ25–35 reduced cell viability and initiated apoptosis. No-
tably, our results provide evidence for the dose-dependent 
protective effect of IMX against Aβ-induced cell death, con-
sistent with the findings of our previous investigation (Zhang 
et al., 2009). 

Aβ induces and maintains the pathogenic changes in AD, 
but tau protein also has an important role in the progression 
of the disease (Iqbal et al., 2014). Aβ amyloidosis triggers the 
starting phase of tau accumulation and phosphorylation at 
Ser199, Thr231, and Ser396 in APP Sw mice (Tomidokoro et 
al., 2001; Stein et al., 2004). In cultured Neuro-2a cells (Hu 
et al., 2004; Jung et al., 2012; Huang et al., 2014; Nicole et al., 
2014; Deng et al., 2015; Zhang et al., 2015), SH-SY5Y cells, 
and hippocampal neurons (Lafay-Chebassier et al., 2005; Jin 
et al., 2011; Reifert et al., 2011; Doherty et al., 2013; Martins 

et al., 2013; Sui et al., 2015), Aβ markedly diminished cell 
viability, increased the number of apoptotic-like cells, and 
promoted tau phosphorylation. Inhibiting tau phosphory-
lation has become a viable approach to treating or even pre-
venting AD. Here, Aβ25–35 exposure elevated the rate of tau 
phosphorylation at pS199 and pT205 in serum-free cultured 
SH-SY5Y cells, supporting the findings of a previous study 
(Sun et al., 2008). We also found that IMX suppressed tau 
phosphorylation induced by Aβ25–35. This suggests that the 
effect of IMX on Aβ25–35-induced neurotoxicity may be via 
the inhibition of tau phosphorylation. 

GSK-3β, also called Tau Protein Kinase I, is a proline-di-
rected serine/threonine kinase, which phosphorylates tau at 
a number of AD-relevant epitopes in vitro and in transfected 
cells (Hanger et al., 1992; Ishiguro et al., 1992, 1993; Man-
delkow et al., 1992; Mulot et al., 1994; Sperbera et al., 1995; 
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Bass et al., 2015). GSK-3β may have a pivotal function in the 
relationship between Aβ peptides and phosphorylated tau, 
and triggers a pathogenic cycle in AD (Wang et al., 2006; 
Dobarro et al., 2013; Hoppe et al., 2013; Xian et al., 2014; 
Amin et al., 2015; Kim et al., 2015; Vossel et al., 2015), result-
ing in a more important effect than those caused by other 
kinases such as cdk/MAPK (Elyaman et al., 2002; Liu et al., 
2002). The activation of GSK-3β is reportedly related to its 
low rate of phosphorylation at residue Ser9 (Stambolic and 
Woodgett, 1994; Wang et al., 1994; Murai et al., 1996). In the 
present study, we used an antibody against p-GSK-3β Ser9 to 
investigate the activation of GSK-3β in SH-SY5Y cells. After 
exposure to Aβ25–35, p-GSK-3β (Ser9) expression was de-
creased, indicating that GSK-3β activity was elevated. How-
ever, pretreatment with IMX led to a considerable rise in the 
expression of p-GSK-3β (Ser9), which suggests that GSK-3β 
contributes critically to the action of IMX on Aβ-initiated 
tau phosphorylation.

The constituents of the mitogen-activated protein kinase 
(MAPK) family, including extracellular signal-regulated 
kinase, p38 MAPK, and JNK, are enzymes of major impor-
tance in the hyperphosphorylation of tau. Because the acti-
vation of JNK is critically involved in Aβ-induced cell death 
(Wei et al., 2002), we investigated the effects of IMX on JNK 
activation after Aβ25–35 exposure. Expression of p-JNK in the 
Aβ25–35-exposed cells was significantly higher than in control 
cells. However, there were no significant changes after IMX 
treatment, indicating that IMX did not influence JNK in our 
cell system. 

In summary, IMX exerted neuroprotective effects by pre-
venting Aβ-induced damage, via a mechanism that likely 
involves inhibition of tau phosphorylation. The suppression 
of GSK-3β signaling was the most important route by which 
IMX suppressed phosphorylation. Taking into consideration 
the important role of Aβ throughout the pathogenesis of AD, 
our results suggest that IMX is a promising drug candidate 
for the treatment of AD.
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