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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the global pandemic
of coronavirus disease 2019 (COVID-19) and particularly exhibits severe symptoms and mortality
in elderly individuals. Mounting evidence shows that the characteristics of the age-related clinical
severity of COVID-19 are attributed to insufficient antiviral immune function and excessive self-
damaging immune reaction, involving T cell immunity and associated with pre-existing basal
inflammation in the elderly. Age-related changes to T cell immunosenescence is characterized by not
only restricted T cell receptor (TCR) repertoire diversity, accumulation of exhausted and/or senescent
memory T cells, but also by increased self-reactive T cell- and innate immune cell-induced chronic
inflammation, and accumulated and functionally enhanced polyclonal regulatory T (Treg) cells.
Many of these changes can be traced back to age-related thymic involution/degeneration. How these
changes contribute to differences in COVID-19 disease severity between young and aged patients
is an urgent area of investigation. Therefore, we attempt to connect various clues in this field by
reviewing and discussing recent research on the role of the thymus and T cells in COVID-19 immunity
during aging (a synergistic effect of diminished responses to pathogens and enhanced responses to
self) impacting age-related clinical severity of COVID-19. We also address potential combinational
strategies to rejuvenate multiple aging-impacted immune system checkpoints by revival of aged
thymic function, boosting peripheral T cell responses, and alleviating chronic, basal inflammation to
improve the efficiency of anti-SARS-CoV-2 immunity and vaccination in the elderly.

Keywords: aged COVID-19 patients; aged thymus; thymic involution; role of T cells; immunopathology

1. Introduction

Currently, the global pandemic of coronavirus disease 2019 (COVID-19), caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a greater threat to
elderly people than to children and young adults, as shown by a higher frequency of severe
symptoms and mortality in elderly patients, while children and young adults usually
present with mild disease [1,2]. Differences in clinical severity are likely associated with
immune system age [3]. Both the innate and adaptive immune systems are involved in
antiviral responses. Although the innate immune system responds early, adaptive antiviral
immunity is specific and robust, lasting longer in combating viral infection and generating
immune memory. Adaptive antiviral immunity primarily includes neutralization antibod-
ies (Ab) [4] associated with B cells, and cellular (mostly T cell)-mediated anti-SARS-CoV-2
immunity [5–8]. Although specific Abs are important for an immunoprotective barrier
by blocking free viral particles from entering host cells, T cells and NK (nature killer, con-
taining both innate and adaptive immune features) cells are more powerful because they
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destroy virally infected cells, thereby terminating viral replication. Generally, T cell priming
is a key factor for effective immunity and vaccination, since T cells act not only as killer
cells, but also as helper cells. For example, CD8+ T cells with cytotoxic T lymphocyte (CTL)
function conduct killing of virally infected cells. Mild COVID-19 patients exhibit more
CD8+ CTL cells [7,8], while patients with severe disease have predominantly increased
SARS-CoV-2-specific CD4+ T cells in their recovery-stage of the disease [7,8]. These differ-
ences imply that different T cell subsets have different roles in disease severity and outcome.
CD4+ T helper cells support the B cell-mediated antibody-producing humoral response.
Additionally, some act as regulatory cells either via cytokine secretion, such as CD4+ Th1
(T-helper 1) cells, which primarily produce interferon-γ (IFN-γ), tumor necrosis factor-α
(TNF-α), etc., and Th2 cells, which primarily produce interleukin-(IL)-4, IL-10, etc., and
Th17 cells (producing IL-17), or facilitate immunosuppression (via multiple mechanisms,
including inhibitory cytokines), such as CD4+FoxP3+ regulatory T (Treg) cells. Th1-biased
cellular immune responses typically direct the killing of the virus, while Th2-biased re-
sponses are usually associated with lung allergy in respiratory infections [9]. The roles
of Treg cells reported during COVID-19 are thus far contradictory, either reportedly de-
creased [10,11] or relatively increased in COVID-19 patients with severe disease or/and
lymphopenia [6,12,13]. The roles of Treg cells in COVID-19 patients should perhaps be
assessed based on their physiological localization and disease stage. If increased Treg cells
are in the lung during an inflammatory cytokine storm, this will probably be beneficial
for the alleviation of the excessive immune response [14,15], but if increased Treg cells
are present early in the disease, it could be detrimental to the establishment of effective
antiviral immunity.

Age-related changes to the T cell immune system include three main characteristics:
(1) immunosenescence: low immune response, due to restriction of the TCR repertoire di-
versity, coupled with an increased oligoclonal expansion of peripheral memory/senescent
T cells; (2) established chronic inflammation in the elderly, termed inflammaging, which is
partially due to increased self-reactive T cell-induced chronic self-tissue damage, in ad-
dition to pro-inflammatory somatic cellular senescence-associated secretory phenotype
(SASP); (3) enhanced polyclonal Treg cell generation in the aged, atrophied thymus and
Treg accumulation in the aged peripheral secondary lymphoid organs. Evidence shows
that all these changes are mainly attributed to age-related thymic involution [16].

Immunosenescence and inflammaging are high risk factors for severe COVID-19 in
the elderly [1,2,17,18]. As age-related thymic involution contributes to immunosenescence
and inflammaging (Figure 1A, Table 1 third column) [16], thymic function should also be
considered as a potential player in aged populations versus young [19,20], and may also
impact vaccination efficiency in the elderly. One indication that thymic function partici-
pates in COVID-19 disease severity has been reported, in which thymosin alpha-1 (T α 1,
a synthetic thymic peptide) reduced the mortality of patients with severe COVID-19 [21],
and a clinical trial with T α 1 to treat COVID-19 infection in elderly patients was approved
(https://clinicaltrials.gov/ct2/show/NCT04428008 (12 January 2021)). Therefore, rejuve-
nation of aged thymic function in combination with an improvement in the pre-existing
aged peripheral T cell microenvironment and inflammaging could improve protective
immunity and efficient vaccination against viruses, including SARS-CoV-2, in the elderly.

In this review paper, we raise the hypothesis that thymic aging plays a potential role in
clinical severity of aged COVID-19 patients based on aged T cell immune system features
and the observed symptom disparities between children and young adults compared to
elderly COVID-19 patients. Then, we address which components of the aged T cell system
potentially contribute to COVID-19 pathophysiology in the elderly. Finally, we suggest
several promising strategies for rejuvenating thymic function and reducing the peripheral
basal inflammatory environment in order to boost antiviral immunity and vaccination
efficacy in the elderly. Together, we provide an immunological perspective outlining
possible implications of the thymus in SARS-CoV-2 infection in the elderly and provide
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insights into the potential contribution of the thymus to the clinical severity of COVID-19
pathology in young and aged patients.
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Figure 1. How the aged thymus is involved in viral infection and a proposed comprehensive
rejuvenation strategy for enhanced antiviral immunity and vaccination efficiency. (A) Left panels
show the T cell pathway from the thymus to the lung during respiratory viral infection, such as
SARS-CoV-2, using arrows. Middle panels show how immunosenescence and inflammaging are
detrimental to antiviral immunity. (B) Right panels (red boxes) are proposed rejuvenation checkpoints
where the dotted red lines are inhibition or blockade and the solid red lines with arrows are promotion
or enhancement.
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Table 1. Contributions of aged thymus to viral infection and potential rejuvenation therapeutics.

Normal Thymus Maintains
Homeostasis and Immunity

Age-related Thymic Changes Contribute
to Viral Infection Potential Rejuvenation Strategies

Thymus

1. Sufficient naïve T cell generation with
highly diverse TCR repertoire

2. Minimal self-reactive T cell generation
3. tTreg generation balanced with tTcon

generation

1. Reduced functional naïve T cells
2. Increased self-reactive T cells

3. Enhanced tTreg generation in proportion
to tTcon output

Thymic rejuvenation via:
1. Injecting reprogrammed FoxN1

over-expressing fibroblasts
2. Providing exogenous factors such as

growth hormone, IL-7, etc.

Peripheral lymphoid tissues
and circulating blood

1. T cells with normal TCR repertoire →
a broad recognition of foreign antigens

2. Potent T cell immune response to
foreign antigens and homeostatic

clearance of senescent somatic cells
3. pTreg cells balanced with pTcon cells
→ maintenance of immune tolerance

and antiviral immunity.

1. Immunosenescence:
Restricted TCR repertoire diversity →
compromised viral antigen recognition

Accumulated exhausted T cells →
compromised anti-viral immune response

and senescent somatic cell clearance →
inflammaging

Accumulated pTreg → suppress normal
antiviral immune responses

2. Inflammaging:
Self-reactive T cell induced tissue damage

→ chronic basal inflammation →
inhibition of T and B cell activation for

antiviral responses

1. Enhance peripheral T cell function via:
a. TGF-β blockade to inhibit iTreg cells

b. PD-1 blockade
2. Reduce chronic inflammatory
conditions via low-dose mTOR

inhibitors, aspirin, etc.

Lung

1. Sufficient cellular and humoral
antiviral immunity

2. Timely clearance of virus by
appropriate pro-inflammatory responses

1. Reduced antiviral function by T cells
and plasma cells

2. Inflammatory cytokine storm facilitated
by inflammaging

3. Lung tissue fibrosis after inflammation

TGF-β blockade to reduce fibrosis

Abbreviations: IL-7: interleukin-7; iTreg: induced T regulatory cells; TCR: T cell receptor; TGF-β: Transforming growth factor-β; tTcon:
thymic conventional T cells; tTreg: thymic regulatory T cells; mTOR: mammalian target of rapamycin; PD-1: Programmed cell death protein-1.

2. Does Thymic Aging Play a Role in the Severity of Aged COVID-19 Patents?

Based on currently available evidence from the current COVID-19 pandemic, most cases
present with mild respiratory distress symptoms, with only a few of cases having severe
pneumonia [22]. Among the severe cases, the majority are adults with underlying health
conditions and elderly individuals. Children and young adults exhibit less susceptibility to the
disease than the elderly [19,23,24]. Although it is proposed that one reason for the reduced
clinical severity in children is due to reduced expression of angiotensin-converting enzyme
2 (ACE-2) receptors, which is the key receptor needed for SARS-CoV-2 infection of epithelial
cells of the host respiratory tract [25], the overall robustness of the immune system is also a
key distinction between young and old individuals. Studying the unique characteristics of the
immune system in children and young adults, including innate and adaptive components,
will likely reveal the potential mechanisms needed to understand efficient antiviral immunity
and vaccination in the elderly.

Changes in the aged immune system [26–28] result in anti-infection immune insuf-
ficiency (immunosenescence) and self/auto-immune enhancement (partially contribut-
ing to age-related chronic inflammation, i.e., inflammaging). One of the most obvious
age-associated alterations in the aged immune system is the involution/atrophy of the
thymus [16,29]. The thymus plays a key role in cellular immune function and it contin-
uously develops undifferentiated thymocytes into functional naïve T cells throughout
the lifetime to facilitate adaptive immunity. However, the thymus undergoes progressive
physiological involution with age [30]. The involuted thymus exhibits reduced naïve T
cell output, contributing to a restricted TCR repertoire with reduced ability to recognize
neo-antigens, which results in increased susceptibility to infection. Meanwhile, the in-
voluted thymus exhibits increased self-reactive T cell output due to defective negative
selection, which results in increased self-reactivity associated with autoimmune proneness
and inflammaging [16]. Additionally, as various types of coronaviruses are able to induce
thymic involution, SARS-CoV-2 could also possibly damage thymus [20], which further
deteriorate the functionality of aged thymus in T cell generation. Thus, we can assume
that the decline in T cell immunity via thymic involution is potentially involved in the
increased morbidity and mortality of COVID-19 in the elderly.

It is unclear how T cells are involved in SARS-CoV-2 infection [31]. However, lower pe-
ripheral blood T cell counts (lymphopenia) are observed in severe COVID-19 patients [6,13],
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with further reductions in those admitted to intensive care units (ICUs) and in those over
the age of 60 [32], whereas increased SARS-CoV-2-specific T cells are associated with disease
recovery [33–36]. There are three potential reasons for lymphopenia in severe COVID-19
patients. One is likely due to the SARS-CoV-2 spike proteins directly interacting with CD26
on T cells, leading to T cell apoptosis and immune dysfunction [37,38]. The second is due to
the relocation of T cells, assuming that a large number of T cells in the blood are recruited
to the lung [15,39]. Additionally, the third, seen in aged patients, is possibly attributed
to the aged patient’s low thymopoiesis [40,41], which in conjunction with immunosenes-
cence, reduces efficient peripheral T cell activation and differentiation for the necessary
anti-infection response [42].

The exact roles of the aged T cell system in the clinical severity of COVID-19 disease
remains unclear, but there are at least three considerations, which can all be traced back to
the aged, atrophied thymus, and the consequences of immunosenescence and inflammation.
First, immunosenescence (reduced immune responsiveness) in the T cell system is attributed
to both decreased output of functional naïve T cells and accumulated exhausted/senescent
memory T cells in the periphery, and restricts overall TCR diversity [43,44]. Second, im-
munosuppression from enhanced and accumulated polyclonal Treg cells, which serve the
vital function of suppressing excess immune responses mediated by effector T (Teff) cells
and other immune cells both with and without antigen-specificity (polyclonal Treg cells
can exert bystander suppressive effects), serves to maintain immunological self-tolerance.
In aged individuals, however, abnormally accumulated peripheral regulatory T (pTreg)
cells may negatively impact anti-infection responses and vaccination. Third, inflammag-
ing, which is partially attributed to increased self-reactive T cell output, could exacerbate
COVID-19 pathology and possibly inhibit T cell responses to vaccination [3].

In addition, many uninfected healthy people were reported to have pre-existing
SARS-CoV-2-specific T cells, possibly due to the cross-reactive memory T cells induced by
previous infection with coronaviruses of the common cold, and these individuals seem less
susceptible to SARS-CoV-2 infection [33–36]. This confirms the critical function of T cells in
anti-SARS-CoV-2 immunity. The pre-existing common cold-specific memory T cells in the
elderly could be exhausted and/or senescent, which is another reason that the aged people
cannot adapt to new infection. Thus, it is reasonable to speculate that for these reasons,
aged people are highly susceptible to severe SARS-CoV-2 cases with a poor prognosis,
and may experience lower efficacy with COVID-19 vaccines, compared to young adults.

3. How Does Age-Related Thymic Involution and Subsequent T-cell Alterations
Contribute to Severity of COVID-19 Pathophysiology in the Elderly?

Age-related thymic involution alters T cell profiles in ways that compromise immune
function exhibited by several obvious characteristics, the first of which is reduced output of
functional naïve T cells [30,45–47], which, coupled with accumulated exhausted/senescent
memory T cells, results in a restricted TCR repertoire diversity, and contributes to im-
munosenescence, i.e., cellular immune functional insufficiency [48]. The second is increased
output of self-reactive T cells, resulting in increased self-reactivity [49], involved in in-
flammaging, i.e., enhanced basal inflammation in the elderly [50–52]. Although seemingly
opposing functions, these two phenotypes are interconnected [16,53]. The third is relatively
enhanced polyclonal thymic regulatory T cell (tTreg) generation via an increased ratio of
newly generated tTreg cells to thymic T conventional (tTcon) cells [54], which potentially ex-
acerbates the age-related accumulation of pTreg cells [55–58]. The outcome of excess pTreg
cells in the elderly is likely a disruption of immune homeostasis or imbalanced responses
against foreign antigen and/or suppression of self-antigen-directed responses. Herein,
we suggest that the impacts of these alterations in the aged T cell system, associated with
age-related thymic involution, are potentially involved in the clinical severity of COVID-19
infection in elderly patients.

In addition to the restricted TCR diversity, which limits the ability of the aged T cell
system to respond to novel pathogens, including SARS-CoV-2 [18], immunosenescence,
characterized by reduced T cell response in the elderly, is also a major defect in aged antivi-
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ral immunity. Specifically, elderly individuals have accumulated CD28neg- T cells, which
cannot receive the necessary secondary T cell activation signaling [59–61], and exhibit
multiple senescent markers, such as programmed cell death protein 1 (PD-1) [62,63] and
p16(INK4a) [64–66]. Therefore, these senescent T cells (CD28-neg and/or PD-1+ CD8SP and
CD4SP) dampen the normal T cell response to specific antigens. Importantly, these accumu-
lated senescent T cells can also express the nature killer receptor (NKR). NKR+ T cells act as
NK cells and can kill cells of various tissues that express NKR ligands during inflammation.
Accumulated senescent T cells can infiltrate into various tissues including the lung, in older
individuals. Therefore, if these aged T cells enter the lungs of older COVID-19 patients,
they can induce inflammation via NKR without prior antigen-specific priming.

Increased output of self-reactive T cells from the aged, atrophied thymus results from
perturbation of thymocyte negative selection [49,67]. These self-reactive T cells poten-
tially participate in inflammaging, by infiltrating into non-lymphoid tissues and inducing
self-tissue damage. This is concomitant with the previously defined chronic activation of
innate immune cells in the elderly, which in conjunction with somatic cellular senescence
produced SASP, results in increased circulating pro-inflammatory cytokines, characterized
by above baseline serum concentrations of C-reactive protein (CRP), TNF-α, IL-6, and IL-8,
in the elderly [68–70]. Inflammaging could exacerbate COVID-19 pathology and might
even inhibit T cell responses to SARS-CoV-2 vaccines [3], due to downregulating the ex-
pression of T cell co-stimulatory molecule CD28 [71,72]. This pre-existing inflammatory
condition may also initiate an inflammatory cascade that results in hyper-inflammatory
responses in the lung during SARS-CoV-2 infections in older patients [3]. We speculate that
the increased basal levels of pro-inflammatory signals and sub-clinical self-tissue damage
might predispose certain individuals to certain types of infections that merely exacerbate
the underlying immuno-reactive microenvironment in those tissues, such as the lung in
the case of COVID-19. Indeed, our investigations have shown that in mice with thymic
involution, there was increased lymphocyte infiltration into self-tissues, including the
lung [67]. Although there is increasing interest in the correlation between immunosenes-
cence and the increased risk of COVID-19 mortality in the elderly, more research is needed
to fully elucidate the role of pre-existing lung inflammation and infiltration of potentially
self-reactive T cells during COVID-19 pathogenesis [73–76].

Treg cells play a vital function in suppressing excessive immune responses mediated
by Teff cells and other immune cells (B, DCs, NK, etc.), both with and without antigen-
specificity, in order to maintain immunological self-tolerance [77,78]. However, it is also
well established that pTreg cells accumulate with age and this abnormal accumulation
has been implicated in immunosuppression of anti-infection and anti-tumor immunity,
and inhibition of vaccination efficacy in the elderly [56,57,79]. For example, (a) in chronic
Leishmania major infection, old mice had a higher percentage of pTreg cells and a lower
capacity to clear the infection, while Treg depletion in these old mice increased Teff func-
tion [80]. Thus, increased pTreg cells exhibit a blockade to effectively fighting infection [81];
(b) in anti-tumor immunity, tumor-infiltrating pTreg cells usually enhance the suppression
of CD8-mediated anti-tumor immunity to facilitate tumor cell survival [82]; (c) Treg cells
were shown to block immune responses to a DNA vaccine via suppression of NK cells
at the site of inoculation [83]; (d) transiently inhibiting FoxP3 impairs Treg activity and
enhances the immunogenicity of vaccines, which improves vaccination efficacy [84].

Studies on Treg cells in COVID-19 patients are insufficient, but some reports showed
that Treg cells within peripheral blood mononuclear cells (PBMCs) of COVID-19 patients
were decreased [10,11], while other reports found a relative increase in COVID-19 patients
with severe disease or/and lymphopenia [12,13]. If the decreased Treg cells in PBMCs are
due to the pulmonary recruitment of these cells along with Teff cells [15], which is one of
the potential reasons for lymphopenia in severe COVID-19 patients [6], perhaps we should
ask why aged patients do not have less lung inflammation compared to young COVID-19
patients, since those aged Treg cells have relatively enhanced suppression function [79].
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Another report also demonstrates that higher proportion of Treg cells might be related
to severe COVID-19 disease. When compared to adult patients, pediatric patients, who had
shorter length of illness and mild symptoms, had lower antigen-reactive (SARS-CoV-2 spike
protein) CD4+CD25+ T cells (Treg-enriched cells), but adult patients with severe disease
had a higher proportion of these Treg-enriched cells [85]. A different study did not support
either the observation of Treg cell reduction or increase in COVID-19 patients, since the
report showed that absolute Treg cell numbers were unchanged in COVID-19 patient
blood compared to healthy people, although the percentage of Treg cells was increased
in COVID-19 patients [86]. These inconsistent reports regarding Treg cells in COVID-19
patients are complicated by the fact that Treg cell data were collected from PBMCs, but not
from the lung, which is the critical site of strong inflammation during COVID-19 infection
and would therefore need Treg cells to suppress excessive immune reaction and control
severe COVID-19 symptoms [14]. In addition, currently, there are no reports outlining the
functional profiles of Treg cells in aged COVID-19 patients, who actually have age-related
accumulation of pTreg cells in the periphery prior to the infection.

4. How can We Sufficiently Restore Antiviral Immunity and Improve Vaccine
Efficiency in the Elderly?

Currently there are several proposed immune interventions for rebooting anti-COVID-
19 immunity mostly focused on enhancing T effector cell responses and ameliorating
immune cell-induced cytokine storm [15,87], which is more deadly in the elderly. Given that
there appears to be profound T cell dysfunction in severe, particularly in aged, COVID-19
cases [32,88,89], rebooting T cell function by restoring thymic function should be considered
as a potential holistic treatment for improving antiviral immunity and vaccination efficiency
and potentially improve COVID-19 prognosis [76]. Along with rejuvenation of aged
thymic function, refreshing the peripheral senescent T cell system, enhancing immune
homeostasis, and reducing chronic peripheral inflammation, is also important for boosting
antiviral immunity and vaccination efficiency [3,17,18]. Therefore, combination strategies
to rejuvenate multiple aging-impacted immune system checkpoints, including aged thymic
function and the peripheral T cell pool, as well as age-related basal inflammation, should be
more efficient for improving anti-SARS-CoV-2 immunity and vaccine efficacy in the elderly.

One of methods related to enhancing thymic function, which has been used in clinical
trials for the treatment of aged and severe COVID-19 patients, is Tα1. Although the
underlying mechanism of this treatment is unclear, Tα1 is a thymic epithelial cell (TEC)-
derived polypeptide hormone, which effectively supports T cell generation, maturation,
and survival [90–92]. A clinical trial demonstrated that Tα1 restored CD8+ and CD4+ T cell
numbers in severe COVID-19 patients with lymphopenia and reversed the PD-1 and Tim-3
expression on exhausted/senescent CD8+ T cells. Thereby, the mortality was decreased by
60% in severe COVID-19 patients [21].

Currently there are multiple strategies for thymic rejuvenation, not only via fostering
thymus regrowth, but also restoring thymic function to enhance negative selection and
rebalance Treg cell generation. Although these rejuvenation outcomes cannot have immedi-
ate impacts on patients suffering from acute infection, using these therapeutic strategies in
advance to holistically improve immune function in the elderly could significantly reduce
their mortality and morbidity in this pandemic, as well as improve their vaccination effi-
ciency. The most promising strategies for thymic rejuvenation include improvement of TEC
homeostasis via FOXN1 gene. FOXN1 is a master transcription regulator for the growth
and differentiation of TECs [93,94], and declined FOXN1 gene expression contributes to
age-related thymic atrophy [95,96]. Intrathymic injection of FOXN1 reprogrammed em-
bryonic fibroblasts cells significantly promoted regrowth of the aged, atrophied thymus
and ameliorated T cell senescence-induced inflammaging in a mouse model [97]. Thymus
transplantation is a compensatory strategy applied clinically to treat DiGeorge syndrome
patients born without a functional thymus to accomplish T cell generation [98,99]. However,
since the increased self-reactive T cells produced by the aged thymus cannot be inhibited,
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thymus transplantation cannot alleviate self-reactive T cell-induced inflammaging, which is
a potent predisposition for inflammatory cytokine storm in the elderly.

Another, more clinically practical, approach for thymic rejuvenation is to use cytokines,
growth factors, hormones, and other blood-borne factors. For example, a developed fusion
protein that combined IL-7 and N-terminal extracellular domain of CCR9 to target the
thymus of aged animals, restored thymic architecture and thymopoiesis [100]. IL-7 is
a pleiotropic cytokine, essentially required for early thymocyte development [101,102]
and lymphocyte survival and expansion [103,104], but its expression declines in the aged
thymus [105]. IL-7 can also maintain the homeostasis of peripheral naive T cells and
memory T cells [106], as well as enhance the activation of follicular T helper cells (Tfh)
which interact with B cells in germinal centers for antibody production [107]. We noticed
that recombination IL-7 was used in treatment of severe COVID-19 patients [108,109].
The outcomes showed a return of CD4+ and CD8+ T cell levels to a reference level [108],
although the underlying mechanisms and clinical significance of this treatment are yet to
be determined. Growth hormone (GH) has a role in thymic rejuvenation and promotes
immune reconstitution by stimulating the production of insulin-like growth factor-1 (IGF-1),
which acts on thymic stromal cells and stimulates IL-7 production [100]. It has been
suggested to use GH to reduce the vulnerability of some at-risk groups of patients during
this COVID-19 pandemic [110].

Many strategies can be used for peripheral T cell functional restoration. For example,
senescent T cells have increased PD-1 expression, therefore, blocking PD-1 on CD4 and CD8
T cells with an anti-PD-1 antibody in aged individuals can partially restore the decreased
production of IFN-γ [111]. Since elderly individuals have chronic inflammatory conditions,
which can suppress immune responses and vaccination efficiency [112,113], reducing
long-term self-reactivity-induced inflammaging, via suppressing mTOR (the mammalian
target of rapamycin) is a promising strategy. The mTOR signaling pathway regulates
various aspects of the immune response including T cell subset differentiation, function,
and proliferation of Treg cells, and memory T cell generation [114]. Rapamycin, an mTOR
inhibitor, has been shown to augment cell memory after vaccination [115]. A low dose
combination of mTOR inhibitors RAD001 and BEZ235 enhanced antibody responses to
influenza vaccination and reduces respiratory infection incidence in the elderly [116],
which reveals a potential role of the mTOR signaling pathway in vaccination efficiency in
the elderly [117]. The dosage should be one of the key considerations because the mTOR
signaling activation is also involved in Th1 and Th17 subset differentiations [118–120].
Therefore, mTOR inhibitors are a potential immunoregulatory target during COVID-19
vaccination and treatment in the aged population.

The cytokine storm syndrome in COVID-19 patients is mainly characterized by the
IL-1 family, IL-6, and TNF-α [121–123], among which the serum TNF-α level is negatively
correlated with T cell function by downregulating the expression of co-stimulatory molecule
CD28 [71,72]. Inhibition of TNF- α with antibody or a TNF-α receptor inhibitor delays
the loss of CD28 expression on CD8 T cells during replicative senescence [124]. Likewise,
TNF- α suppresses B cell immune responses [125,126] and B cells in aged individuals
produce higher TNF- α than in young individuals [126]. Therefore, anti-inflammatory
drugs, such as aspirin, could potentially restore adaptive immune response to COVID-19
in the elderly. In addition, aspirin was able to enhance IFN-γ production by Th1 cells [127],
which may be favorable for antiviral immunity.

As discussed previously, accumulated CD4+Foxp3+ Treg cells during aging are prob-
ably a double-edged sword in SARS-CoV-2 infection. If there are too many Treg cells,
the antiviral immunity and vaccination efficiency mediated by effector T cells and B cells
may be suppressed, resulting in reduced inhibition of viral replication in the elderly;
whereas, if Treg cells are insufficient in the inflammatory lung, the excessive immune
reaction-induced tissue damage could be detrimental. Utilizing anti-CD25 to block Treg
cell function has been demonstrated to augment protective immune responses to influenza
virus-like particles in aged mice [128]. Induced Treg (iTreg) cells can be generated via
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transforming growth factor- β (TGF-β), while blocking TGF-β signaling impedes the con-
version of CD4 T cells into iTreg cells and thereby facilitates immune responses abrogated
by Treg suppression [129]. This explains the recent suggestion to use TGF-β blockade to
treat COVID-19 patients [130]. The underlying mechanism is likely related to inhibiting
iTreg generation and suppressing lung fibrosis induced by TGF-β during severe COVID-
19 cases [130].

Blood-borne extracellular vesicles (EVs) from young blood cells, containing exosomes
encapsulating many regulatory signaling molecules, such as mRNA, microRNA, DNA and
proteins, are another promising rejuvenation reagent to regulate the aged immune sys-
tem [131]. In our previous research, serum-derived EVs isolated from young mice and
administered to aged mice were able to partially restore thymocyte negative selection
and alleviated systemic inflammaging in the periphery of age mice [132]. Therefore, re-
juvenation of the aged immune system via young serum-derived EVs is an example of a
combinational rejuvenation strategy.

Comprehensive strategies to rejuvenate multiple aging-impacted immune system
checkpoints, not only the thymus, but also peripheral T cell profiles, are holistic and po-
tentially more effective than single treatments. Although comprehensive rejuvenation
strategies are at the early proposal stage, we speculate a promising strategy targeting multi-
ple aging-impacted immune system checkpoints (Figure 1B and Table 1 rightmost column),
based on our previous experience and current literature. In combination with aged thymus
rejuvenation, such as via reprogrammed FOXN1-expressing fibroblasts [97], the peripheral
rejuvenation should focus on reducing inflammation and restoring T cell homeostasis.

Taken together, based on current evidence, modulating the central and peripheral
T cell immune system is a promising therapeutic strategy for COVID-19 in the elderly.
However, comprehensive clinical trials remain to be performed to evaluate the effectiveness
and safety of these methods in the case of COVID-19.

5. Concluding Remarks

Although it has become increasingly clear that T cells play a central role in generating
powerful and long-term immunity and clearance of SARS-CoV-2 infection, the synergistic
effects of immunosenescence and inflammaging associated with thymic aging remain to
be elucidated. Mounting evidence shows that a proportion of pre-existing SARS-CoV-2-
specific T cells may have arisen from a previous infection with common cold coronaviruses,
which may play a protective role against SARS-CoV-2 infection-induced severe symp-
toms [33,34,36,133]. However, there is insufficient research about whether aged individuals
have the same proportion of these cross-reactive T cells as young individuals, and whether
these cross-reactive T cells can exert the same level of protection in the elderly, who have un-
derlying impacts of age-related thymic involution, immunosenescence, and inflammaging.
In addition, it is urgent to study which types of SARS-CoV-2 vaccines are more effective
in the elderly who have aged T cell immunity and reduced naïve T cells. There is a need
for a deeper understanding of how the aged thymus, and subsequently altered aged T cell
system, impacts SARS-CoV-2 infection in the elderly. Finally, investigating how to improve
these aspects of detrimental immune dysfunction in the elderly will reveal how to generate
more robust immunity to COVID-19 and reduce their high morbidity and mortality during
COVID-19 infection.
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Highlights: 1. COVID-19 exhibits severe symptoms and high mortality in elderly individuals. 2. T
cell immunity in COVID-19 plays an important role, while the aged T cell system contains both
immunosenescence and inflammaging. 3. These changes can be traced back to age-related thymic
involution, which is an obvious difference between aged and young individuals. 4. How the aged
thymus is involved in impacting viral infection and how a proposed comprehensive rejuvenation
strategy works in antiviral immunity and vaccination efficiency are addressed.
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