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Abstract: The growth of abnormal cells in the brain causes human brain tumors. Identifying the
type of tumor is crucial for the prognosis and treatment of the patient. Data from cancer microarrays
typically include fewer samples with many gene expression levels as features, reflecting the curse of
dimensionality and making classifying data from microarrays challenging. In most of the examined
studies, cancer classification (Malignant and benign) accuracy was examined without disclosing
biological information related to the classification process. A new approach was proposed to bridge
the gap between cancer classification and the interpretation of the biological studies of the genes
implicated in cancer. This study aims to develop a new hybrid model for cancer classification (by
using feature selection mRMRe as a key step to improve the performance of classification methods
and a distributed hyperparameter optimization for gradient boosting ensemble methods). To evaluate
the proposed method, NB, RF, and SVM classifiers have been chosen. In terms of the AUC, sensitivity,
and specificity, the optimized CatBoost classifier performed better than the optimized XGBoost in
cross-validation 5, 6, 8, and 10. With an accuracy of 0.91± 0.12, the optimized CatBoost classifier
is more accurate than the CatBoost classifier without optimization, which is 0.81± 0.24. By using
hybrid algorithms, SVM, RF, and NB automatically become more accurate. Furthermore, in terms of
accuracy, SVM and RF (0.97± 0.08) achieve equivalent and higher classification accuracy than NB
(0.91± 0.12). The findings of relevant biomedical studies confirm the findings of the selected genes.

Keywords: gene expression data; brain cancer; classification; ensemble methods; hyperparameter
optimization; feature selection; gene selection

1. Introduction

Brain cancer is the leading cause of death in women under the age of 20 and men
under 40 [1,2]. Moreover, the prevalence of malignant brain tumors is rising [3], severely
impacting society and human health [4]. Primary brain tumors arise from the brain cells
themselves, while secondary brain tumors arise from malignant cells outside of the brain
and spread there [5]. According to studies, brain tumors are extremely heterogeneous,
posing a major challenge for classification, segmentation, diagnosis, and prognosis [6].
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Microarray-based gene expression profiling has proven useful for cancer detection,
prognosis, and treatment [7]. In addition, in recent years, DNA microarray technology has
significantly impacted the information that we have bout what causes cancer [8,9].

Cancer microarray data typically contain a small number of samples with many
gene expression levels as features, which leads to the curse of dimensionality, making the
classification of microarray data a difficult task. The bioinformatics community uses a
variety of approaches to classify microarray data using machine learning systems. Most
of the examined studies on cancer classification using microarray data sets take cancer
classification accuracy into account without disclosing any biological information of the
cancer classification process. Few studies have investigated the biological interpretation of
microarray data sets in addition to the model classification accuracy. This research aims to
bridge the gap between cancer classification and biological interpretation by improving
accuracy performance, and the selected significant genes agree with the findings of relevant
biomedical studies.

This paper proposes a hybrid model based on three different machine learning tech-
niques, including the commonly used ensemble classification methods of gradient boost-
ing [10], an extremely efficient ML algorithm that produces a strong learner in the form of
an ensemble of weak learners/models. Furthermore, to optimize the hyperparameters of
machine learning algorithms, distributed hyperparameter optimization [11] is one of the
most efficient methods (per function evaluation) that is utilized for parameter optimization.
Furthermore, minimum redundancy maximum relevance (mrmr) [12] is a particularly fast
feature selection method that can be used to find a set of relevant and complementary fea-
tures. Our model was assessed using three different machine learning classifiers: random
forest (RF), naive Bayes (NB), and support vector machines (SVM).

The experiments show that the proposed model substantially reduces the number
of genes required for classification and improves classifier accuracy. Additionally, the
proposed hybrid model’s selected genes (features) are biologically interpreted, and the
biological interpretation coincides with the findings of relevant biomedical studies.

The main contributions of this work are:

1. The proposal of a novel ensemble classifier to ensure that the genes selected in our
model are biologically interpreted. On top of that, the results are also satisfactory and
in line with pertinent biomedical studies.

2. The identification of relevant and non-redundant genes for the biological context by
ensemble mRMRs, allowing for enhanced biological interpretations.

3. The analysis of a brain cancer microarray dataset on high-dimensional data using
Catboost and XGboost.

4. The optimization of the hyperparameters of the two classifiers using the hyperboot
optimizer.

5. The outperformance of Catboost compared to XGboost with regard to the AUC,
sensitivity, specificity, and accuracy.

The remainder of the paper is structured as follows: Section 2 briefly reviews related
work, while Section 3 reviews some background research that was used in the proposed
methodology. Section 4 explains the proposed model, while Section 5 discusses the experi-
mental design, findings, and discussion. Finally, Section 6 concludes the whole paper by
summarizing the contributions of the paper.

2. Literature Review

In recent years, multiple pieces of research have used a wide range of machine learning
methods for the classification, diagnosis, and treatment of cancer disease. BU-Net was
developed by Rehman [13] and others to segment and classify brain tumor regions. Their
model with a modified encoder–decoder architecture was proposed for segmenting brain
tumors. Tests of the proposed BU-Net architecture were conducted on BraTS 2017 and
2018. BU-Net proved to be a significant improvement over the baseline U-Net architecture
and other existing segmentation models. Radiology mMRI imaging sub-regions can affect
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tumor localization, so researchers suggested a deep learning method [14] that considers the
uncertainty of the tumor location. Then, they classified the tumor segments into subtypes
using a conventional 3D convolutional neural network (CNN). Performance was measured
by widely used measures such as the dice score coefficient, the Hausdorff distance at
percentile 95 (HD95), classification accuracy, and mean square error. According to the
findings, the suggested method can accurately segment tumors and predict survival rates.

Bashir et al. [15] used a fusion of five classifiers: naive Bayes, decision tree using
Gini index, decision tree using information gain, support vector machines, and memory-
based learner, to diagnose breast cancer. The weighted vote-based ensemble technique
was then used to make the final prediction. Several preprocessing and feature selection
methods were also used on four breast cancer datasets to improve the prediction accuracy.
The proposed ensemble classifiers achieved remarkable results, with average accuracy,
precision, and recall of 85.23%, 86.18%, and 76.68%. However, small datasets were used
to test the performance of the model. Applying the proposed ensemble on a large dataset
with many features may lead to computational instability.

To overcome the dimensionality problem, Kumar et al. [16] introduced the ANOVA,
Kruskal–Wallis, and Friedman tests as examples of statistical methods (tests) based on
MapReduce to select relevant features. The MapReduce-based proximal support vector
machine (mrPSVM) classifier was also applied to classify the microarray data after feature
selection. The Hadoop framework was used to implement these algorithms. Using the
microarray datasets of different dimensions, a comparative study of these feature selection
methodologies was performed. The experimental results showed that an ensemble of
the mrPSVM classifier and various feature selection methods produced higher accuracy
than other models. Thus, the proposed model successfully handled big data, but it could
only interpret biological microarray data. Finally, a two-phase hybrid model for cancer
classification was proposed (iBPSO) by Jain et al. [17] that consisted of correlation-based
feature selection (CFS) and improved-binary particle swarm optimization. The proposed
model uses the naive Bayes classifier to select a low-dimensional collection of prognostic
genes to identify biological samples of binary and multi-class cancers. The model was
evaluated and tested on eleven benchmark microarray datasets. The findings of the
experiments showed that the model outperformed several well-known approaches in
terms of classification accuracy and the number of selected genes.

Pradana et al. [18] introduce an approach that used binary particle swarm optimization
(BPSO) as a feature selection and C4.5 decision tree as a classifier to investigate cancer
diagnosis based on microarray data. The decision tree rule model requires discretization,
which is accomplished by the use of K-Means. Applying BPSO and decision tree showed
that the model could successfully find the most significant features and increase the
accuracy. The model achieved accuracies of 54% and 99%, respectively, for C4.5 and BPSO.
Shukla et al. [19] also proposed a new filter-based gene selection approachto identify highly
important genes in microarray gene expression datasets. The proposed approach was
evaluated using well-known classification techniques such as support vector machine,
naive Bayes, k-nearest neighbor, and decision tree on the diffuse large B cell lymphoma
(DLBCL) dataset. Experiments confirmed that the proposed model could successfully
compete, with excellent predictions concerning the accuracy, precision, sensitivity, F-
measure, and ROC value.

Sampathkumar et al. [20] developed a novel cuckoo search with a crossover algorithm
that could accurately classify a variety of cancer subtypes. The model was tested on
benchmark cancer gene expression, and the results show that CSC outperformed CS and
other well-known methods. Kilicarslan et al. [21] used the relief algorithm for dimension
reduction and feature ranking. The most important features were then used by support
vector machines (SVM) and convolutional neural networks (CNN) [22] for prediction. The
experimental results show that the proposed approach could improve the accuracy of SVM
and CNN classification methods. Finally, Lee et al. [23] suggested a novel multivariate
feature ranking approach to increase gene selection efficiency in microarray data. The
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proposed method created a new feature ranking method by embedding the formal concept
of relevance into a Markov blanket (MB). The results show that the model performs well in
high-dimensional microarray data classification.

Given all that has been mentioned so far, all of the algorithms listed above address
two major issues: brain cancer classifiers and the curse of dimensionality. However, there
is no biological interpretation of the microarray data set discussed in the literature. To the
best of our knowledge, this paper is the first paper to provide a consolidated biological
interpretation of the results of the proposed work. Table 1 summarizes some of the previous
research methods for microarray cancer classification to conclude and review related work.

Table 1. Review of previous studies on the cancer microarray data classification.

Author Method Remark Limitations Dataset

Bashir, S., Qamar, U., and
Khan, F. H. (2015) [15].

(Naïve
Bayes,

DT-Gini,
DT-IG, MBL
and SVM)

- A weighted vote-
based ensemble
fusion of heteroge-
neous classifiers was
introduced for dy-
namic breast cancer
diagnosis.

- Small datasets
were used to
test the perfor-
mance of the
model.

- A small set of
features are
used to test
the proposed
model.

- UCI [24]
- Wisconsin Clinical

[25]

Kumar, M., and Rath, S. K.
(2015) [16]. (MrPSVM)

- Data on microarrays
are classified using
proximal support
vector machines
(mrPSVMs) based on
MapReduce.

- Large-scale results
were managed using
Hadoop.

- No biological
interpreta-
tion of the
microarray
data set was
discussed.

- Kent Ridge Bio-
medical Data Set
Repository [26]

- National center of
Biotechnology Infor-
mation (NCBI GEO)
[27]

Jain, I., Jain, V. K., and Jain, R.
(2018) [17]

(CFS) and
(iBPSO)

- Hybrid feature se-
lection is proposed
for gene selection
and cancer classifica-
tion that combines
correlation-based and
binary particle swarm
optimization.

- Tested on eleven
benchmark microar-
ray datasets

Biological
information on the

cancer classification
process is not

discussed.

- Kent Ridge Bio-
medical Data Set
Repository [28]

Pradana, A. C., and Aditsania,
A. (2019, March) [18]

(BPSO)
Decision

Tree C4.5)

- Introduced binary
particle swarm op-
timization and C4.
5 decision tree for
cancer detection
based on microarray
data classification.

- Used Random Forest
Ranking (RFR) as fil-
tering methods to or-
der genes

By using filtering
methods, some

important features
may not be

included.
There is no

interpretation of the
results.

- Kent Ridge Bio-
medical Data Set
Repository [29]
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Table 1. Cont.

Author Method Remark Limitations Dataset

Shukla, A. K., and Tripathi, D.
(2020) [19]

Spearman’s
Correlation

(SC) and
distributed

FS

- Introduced a new
filter-based method
for gene selection
that can select the
highly relevant genes
for distinguishing
tissues from the gene
expression dataset

- Biological
informa-
tion is not
addressed.

- DLBCL [30,31]

3. Materials and Methods

This section discusses ensemble classification and how to set the hyperparameter
values and the minimum redundancy maximum relevance (mRMR) feature selection. The
three main components of the proposed method are ensemble classification, hyperpa-
rameter optimization, and minimum redundancy maximum relevance (mRMR). First,
the ensemble methods use multiple learning algorithms to achieve better predictive per-
formance than if they were used by themselves. Secondly, we have hyperparameter
optimization, in which the parameters of the classifier are tuned to find the optimal setting.
The third one is minimum redundancy maximum relevance (mRMR), which is a filter-type
feature selection method that obtains the best feature set by minimizing the similarities
between features and classified variables and by maximizing their correlations

3.1. Ensemble Classification

Ensemble learning methods use multiple machine learning algorithms to generate
weak predictive results based on the features extracted from various data projections.
Following this, the results are fused with various voting mechanisms to achieve better
results than any constituent algorithm alone [32,33]. Figure 1 depicts the basic concept of
a typical ensemble classification model [34], which consists of two steps: (1) generating
classification results using multiple weak classifiers and (2) integrating multiple results
into a consistency function to obtain the results with voting schemes.

Figure 1. The ensemble classification framework.

The gradient boosting method, which constructs the solution stagewise and solves
the overfitting problem by optimizing the loss functions, is one of the most commonly
used ensemble classification methods. The main concept of a gradient boosting model is
depicted in Figure 2.
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Figure 2. The gradient boosting framework.

XGBoost is an efficient gradient-boosted decision tree algorithm [35]. Gradient boost-
ing is a technique introduced by XGB. The new models are fitted to residuals from previous
models, and the combined results are minimized using gradient descent. Yandex released
CatBoost [36] in 2017 and demonstrated that it was faster in terms of prediction making,
that it was more accurate, and that it was easier to use for categorical data across a series of
GBDT tasks based on their benchmark. As a better gradient boosting algorithm, Catboost
introduces ordered boosting. Table 2 illustrates the two gradient boosting algorithms.

Table 2. XGBoost and CatBoost classifiers.

Base
Classifiers

Ways to Prevent
Overfitting

The Loss Function for Binary
Classification

XGBoost Regression trees

n Row Subsampling
n Shrinkage parameter
n Column subsampling
n Regularization term in the

objective function

L = y log (p(x)) +
(1− y) log (1− p(x)),p(x) =

1
1+exp (−F(x))

CatBoost Classification trees

n Row Subsampling
n Shrinkage parameter
n Column subsampling

Li = −yi log p∧i (1− yi)log
(
1− p∧i

)

3.2. Hyperparameter Optimization

Hyperopt is a Python library that implements sequential model-based optimization
(SMBO) [9]. Hyperopt provides algorithms and software infrastructure to conduct hyper-
parameter optimization for machine learning algorithms. Hyperopt has an optimization
interface that separates a configuration space from an evaluation function that assigns
real-valued loss values to points in the configuration space. It works by treating the search
of hyperparameters as an optimization task.

Hyperparameter search spaces are typically large multi-dimensional spaces. Hyperopt
outperforms grid and random searches, particularly as the search space grows. Within
the framework of our proposed model, Hyperopt is used to optimize the settings for
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the XGBoost and CatBoost hyperparameters. It aims to identify the optimal genes for
microarray data analysis and to improve the classification of cancer microarrays.

3.3. Minimum Redundancy Maximum Relevance (mRMR) for Feature Selection

Minimum redundancy maximum relevance (mRMR) is a filter-type feature selection
method that obtains the best feature set by maximizing the correlation between the features
and the classified variables and by minimizing the correlation between features. The classic
function enables the collection of appropriate and non-redundant features with ease [37].
In set S, the maximally important and minimally redundant gene i∗ is given by:

i∗ = argmaXi ∈ S
RS

QS,i
(1)

Ensemble (mRMR) feature selection implements two ensemble approaches: exhaustive
and bootstrap ensemble mRMR. The exhaustive variant of the mRMR heuristic extends it
by starting multiple feature selection procedures, with the k > 1 being the most relevant
feature. Following that, k mRMR solutions are generated in parallel, with the first selected
feature being guaranteed to be different. The bootstrap variant resamples the original
dataset (with replacement) to generate k bootstraps. Finally, classical mRMR feature
selection is performed in parallel for each bootstrapped dataset, resulting in k mRMR
solutions.

4. The Proposed Hybrid Model

This section describes the model (as shown in Figure 3) used for brain cancer classi-
fication. The Hyperopt optimizer is used to estimate the optimal values of the CatBoost
hyperparameters.

The main process of the model can be defined as:

(i) Preprocessing the dataset (brain cancer microarray). This step is vital to

a. Avoid features in greater numeric ranges dominating those in smaller ranges;
b. Avoid numerical difficulties during calculation;
c. Ensure that each feature is scaled to the range [0, 1].

(ii) The data were partitioned into two sets: The training set is used for the training. The
testing set is used to test final model 3, initializing CatBoost with specific solution
parameters. Table 3 describes the parameter initialization of the classifiers

(iii) CatBoost is used as a feature selector with 8-fold cross-validations (8 cross-validations
of different levels of importance for every gene index). CatBoost calculates the means
for each fold.

(iv) By setting a threshold, irrelevant features are then removed. Suppose the score of
a gene is above the threshold. In that case, the gene will be selected (as seen in
Appendix A, the optimal threshold that offers the maximum accuracy is: 0.84). The
genes are shuffled, and unique genes are kept.

(v) The importance value of each gene is registered using a voting process. For example,
the gene with index 1 in fold 0 receives an importance value of 1 if the same gene
is present in the next fold; then, the gene importance is +1, and so on, for all of the
8-fold cross-validations. After this was applied, voting is conducted 50 genes (six of
the filtered genes are genes with an importance >8.
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Figure 3. The proposed hybrid model.

Table 3. Parameter initialization.

XGBoost Classifier CatBoost Classifier

Hyperparameters Range Hyperparameters Range

iterations [1, 500] n_estimators [50, 900]

depth [1, 16] max_depth [1, 12]

subsample [0.5, 1] m_child_weight [1, 6]

rsm [0.75, 1.0] gamma [0.5, 1]

learning_rate [−3.0, −0.7] subsample [0.5, 1]

l2_leaf_reg [1, 10] learning_rate [log(0.001), log(0.3)]

random_strength [1 × 10−9, 10] colsample_bytree [0.5, 1]

bagging_temperature [0.0, 1.0]

scale_pos_weight [0.01, 1.0]

5. Results and Discussion

In this section, we present the findings of the various experiments to judge the per-
formance of the proposed hybrid model. A PC with the following features was used to
test the proposed hybrid model: Intel(R) Core (TM) i5-7500 CPU with a 32-bit operating
system, 4 GB RAM, and the Windows 7 operating system as well as the NumPy, SciPy,
Pandas, Keras, and Matplotlib frameworks and Python 2.7 programming language.
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5.1. Datasets

Molecular profiles from 28 patient samples were analyzed (data set A: medulloblas-
tomas, CNS AT/RTs, renal and extrarenal rhabdoid tumors, supratentorial PNETs, and
normal human cerebella). In addition, an analysis of frozen specimen RNA with oligonu-
cleotide microarrays containing probes for 1070 genes was conducted. Gene expression
data are available in the Supplementary Information [30].

k-fold tests were used in the majority of previous experiments. k-fold verification
works to find crossed validity by randomly dividing data into k subsets of (approximately)
equal size and k-times. As a result, it will run several times, with one subset serving as a
test group and the other subset, k-1, serving as a training group (see Figure 3). The mean of
the k-fold results can then be averaged to present a single evaluation. In our experiments,
we used eight-fold cross-validation to evaluate the outcomes of the proposed hybrid model,
and the results are represented as an average standard deviation. Furthermore, the total
number of iterations in all of the experiments was 30. In our experiments, we used three
evaluation methods [38]: specificity (Spec.), sensitivity (Sen.), and area under the curve
(AUC) (AUC).

Sensitivity, as calculated by S = TP/(TP + FN), is the likelihood that a diseased
person is recognized as diseased through the test, where TN is the true negatives number,
and TP is the true positives number, and N is the false negative. Specificity is the likelihood
that a person without the illness is defined by the ((TEST) as non-diseased (or healthy). It
is described as TNR = (TN)/ (TN + FP), where FP implies the number of false positives,
and TN is the number of true negatives. The AUC shows the area under the receiver
operating characteristics (ROC) curve, calculated as AUC = (1 + TPR− FPR)/2.

5.2. Experiment 1: Comparing Performance of Optimized (CatBoost and XGBoost) with the
Proposed Hybrid Model

This experiment compares optimized (CatBoost and XGBoost) classifiers in the pro-
posed hybrid model to achieve the best hyperparameter of the two classifiers. The Hyperopt
optimizer is used. Table 3 lists the hyperparameters settings values of XGBoost and Cat-
Boost and the range of each parameter. The experimental results are shown in Table 4 and
Figures 4 and 5. The most striking results are better results for the optimized CatBoost
classifier than the optimized XGBoost with cross-validation 5, 6, 8, and 10 in the AUC, Sen,
and Spec results.

Table 4. Comparing performance of optimized (XGboost and Catboost) in terms of AUC, Sen., and Spec.

Cross
Validation

(CV)

XGBoost Classifier CatBoost Classifier
AUC Sen Spec AUC Sen Spec

Cv = 5 0.80 ±
0.16

0.80 ±
0.16 0.80 ± 0.16 0.87 ± 0.07 0.80 ± 0.16 0.93 ± 0.13

Cv = 6 0.83 ±
0.13

0.75 ±
0.26 0.93 ± 0.19 0.89 ± 0.11 0.86 ± 0.20 0.92 ± 0.19

Cv = 8 0.81 ±
0.16

0.81 ±
0.24 0.81 ± 0.24 0.91 ± 0.12 0.88± 0.21 0.93 ± 0.16

Cv = 10 0.75 ±
0.29

0.75 ±
0.33 0.75 ± 0.40 0.88 ± 0.17 0.85 ± 0.23 0.90 ± 0.03

From the data in Figures 4 and 5, it is apparent that CatBoost classifier has the best
accuracy, 0.97 ± 0.08, with 8-fold cross-validation and the best AUC = 0.97 ± 0.08,
Sen = 0.94 ± 0.17, and Spec = 1.00 ± 0.00 compared to the XGBoost classifier, which had
an accuracy of 0.80 ± 0.21, and where the AUC = 0.80 ± 0.21, Sen = 0.80 ± 0.21, and
Spec = 0.80 ± 0.21. All in all, these results point to CatBoost having a higher performance
than XGBoost in the hybrid model we developed. Table 5 shows the training vs. testing
performance with 8-fold cross-validation in 28 samples.
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Figure 4. Accuracy curve obtained using the hybrid model with optimized CatBoost classifier.

Figure 5. Accuracy curve obtained using the hybrid model with optimized XGBoost classifier.

Table 5. Training vs. testing performance of optimized Catboost with 8-fold cross-validation.

Fold Number
Optimized CatBoost Classifier

Train Accuracy Test Accuracy

1 1.00 0.750
2 1.00 1.00
3 1.00 0.750
4 1.00 1.00
5 1.00 1.00
6 1.00 1.00
7 1.00 1.00
8 1.00 1.00
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5.3. Experiment 2: Comparing Performance of CatBoost and Optimized CatBoost Classifier

In this experiment, CatBoost and optimized CatBoost were compared with the original
brain cancer microarray data (1070 feature, 28 samples). Table 6 and Figures 6 and 7 show
the classification report of the CatBoost and optimized CatBoost classifier with the brain
cancer microarray data. The threshold value was 0.84, which is the threshold value with
the highest accuracy (see Appendix A) with the final optimal genes (features) selected
with our proposed hybrid model. The number of genes selected in each stage of feature
selection is as follows:

• Number of non-zero genes importance (every fold).
• (588, 576, 590, 599, 594, 579, 585, 584).
• The number of genes selected by embedded SVM (with Redundant), 980 genes.
• The number of genes selected by embedded SVM (Unique), 671 genes.
• The final number of genes after we applied voting was 50 genes.

Table 6. Classification report for CatBoost and optimized CatBoost.

Brain Cancer
Dataset

CatBoost Optimized CatBoost

Precision Recall f1-Score Support Precision Recall f1-Score Support

0.0 0.85 0.79 0.81 14 0.92 0.79 0.85 14

1.0 0.80 0.86 0.83 14 0.81 0.93 0.87 14

accuracy 0.82 14 0.82 14

Macro avg 0.82 0.82 0.82 28 0.82 0.82 0.82 28

Weighted avg 0.82 0.82 0.82 28 0.82 0.82 0.82 28

Figure 6. Accuracy curve obtained using the hybrid model with CatBoost classifier.
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Figure 7. Accuracy curve obtained using the hybrid model with optimized CatBoost classifier.

Based on the performance metrics in Table 6, optimized CatBoost had higher perfor-
mance than the CatBoost classifier without optimization. Figures 6 and 7 show the accuracy
curve of CatBoost and the optimized CatBoost classifier. The optimized CatBoost classifier
had an accuracy of 0.91 ± 0.12, which is higher than that of the CatBoost classifier without
optimization, which had an accuracy of 0.81 ± 0.24.

5.4. Experiment 3: Comparison of Hybrid Proposed Model Performance by Different Classification

The classic learning algorithms random forest (RF), naive Bayes (NB), and support
vector machines (SVM) were used to assess the gene classification accuracy of selected
optimal genes by the proposed hybrid model. These learning algorithms were applied to
the newly collected dataset, which only included the best genes, and the overall accuracy
was calculated. In Figures 8–10, the learning accuracy of three classifiers is illustrated using
the newly generated gene (feature) set. The proposed hybrid model increased the accuracy
of the SVM, RF, and NB classifiers while the accuracy is weighted on brain data set; on
the other hand, SVM and RF, with accuracies of (0.97 ± 0.08), achieve equal and higher
classification accuracy than the NB (0.91 ± 0.12) classifier.

5.5. Biological Interpretation

A subset of genes (features) from the brain cancer data set was biologically interpreted
to demonstrate the proposed model’s efficacy in improving critical items such as classifica-
tion accuracy and for selecting genes with important biological backgrounds. A few classes
of important genes derived from microarray technologies were used to diagnose and to
provide the prognostic purposes of brain cancer after using the proposed hybrid model’s
biological portrait.

The proposed hybrid model aims to determine crucial gene subsets with the maximum
amount of accuracy needed to treat a brain cancer patient. In this segment, the selected
group of probe sets could be studied by using the web tool DAVID (Database for Annota-
tion, Integrated Discovery, and Visualization) https://david.ncifcrf.gov/list.jsp (accessed
on 18 June 2020) [31,39]. Table 7 shows the gene name and gene ID from the Entrez probe

https://david.ncifcrf.gov/list.jsp
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set. GO Research Tools: http://www.geneontology.org/GO.tools.microarray, (accessed on
18 June 2020) are generally considered to be the most inclusive and fastest-growing public
repository for grouping functionally related genes. Following that, it can be shown that the
proposed approach is the most effective way to pick a large group of genes for brain cancer
pathway detection and prognosis.

Figure 8. Accuracy curve of random forest classifier.

Figure 9. Accuracy curve of SVM classifier.

http://www.geneontology.org/GO.tools.microarray
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Figure 10. Accuracy curve of NB classifier.

Table 7. Gene accession number and gene description of the selected genes of brain cancer by the proposed hybrid model.

Prob set Gene ID Gene Name Diagnostic
Marker

Prognostic
Marker Overexpression Down

Expression

1860_at 1860 Tumor protein p53 binding
protein 2(TP53BP2) Unfavorable +

286_at 286 Histone cluster 2 H2A family
member a4(HIST2H2AA4) Yes +

31667_r_at 31667_r Nuclear receptor subfamily 2
group E member 3(NR2E3) Yes +

33242_at 33242 TSR2, ribosome maturation
factor(TSR2) Yes +

34088_at 34088 Neurexophilin 4(NXPH4) Unfavorable +

37055_at 37055 ETS variant 1(ETV1) Unfavorable +

37701_at 37701 Regulator of G-protein signaling
2(RGS2) Unfavorable +

40388_at 40388 DLG associated protein
1(DLGAP1) Unfavorable

41098_at 41098 Dishevelled associated activator of
morphogenesis 2(DAAM2) +

1972_s_at 1972_s Microtubule associated protein
2(MAP2) Unfavorable +

32647_at 32647
Vesicle transport through

interaction with t-SNAREs
1B(VTI1B)

Yes +

36073_at 36073 Necdin, MAGE family
member(NDN) Unfavorable +
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Table 7. Cont.

Prob set Gene ID Gene Name Diagnostic
Marker

Prognostic
Marker Overexpression Down

Expression

37360_at 37360 Lymphocyte antigen 6 complex,
locus E(LY6E) Yes +

38420_at 38420 Collagen type V alpha 2
chain(COL5A2) Unfavorable +

39673_i_at 39673_i Extracellular matrix protein
2(ECM2) Unfavorable +

41387_r_at 41387_r Lysine demethylase 6B(KDM6B) Unfavorable +

41407_at 41407 MicroRNA 1236(MIR1236) Unfavorable +

41725_at 41725 Casein kinase 1 gamma
2(CSNK1G2) Unfavorable +

41732_at 41732 BolA family member 2(BOLA2) Favorable +

103_at 103 Thrombospondin 4(THBS4) Unfavorable +

1230_g_at 1230_g Myotubularin related protein
11(MTMR11) Yes +

1396_at 1396 Insulin like growth factor binding
protein 5(IGFBP5) Unfavorable +

32988_at 32988 Chloride voltage-gated channel
Ka(CLCNKA) Unfavorable +

33854_at 33854 ATPase H+ transporting V1
subunit D(ATP6V1D) Unfavorable +

37209_g_at 37209_g Phosphoserine
phosphatase(PSPH) Unfavorable +

35297_at 35297
NADH:ubiquinone

oxidoreductase subunit
AB1(NDUFAB1)

Unfavorable +

36155_at 36155
SPARC/osteonectin, cwcv and

kazal-like domains proteoglycan
2(SPOCK2)

Favorable +

36534_at 36534 DIX domain containing
1(DIXDC1) Unfavorable +

36617_at 36617 Inhibitor of DNA binding 1, HLH
protein(ID1) Unfavorable +

38440_s_at 38440_s Armadillo repeat containing,
X-linked 6(ARMCX6) Unfavorable +

39315_at 39315 Angiopoietin 1(ANGPT1) Unfavorable +

39364_s_at 39364_s Protein phosphatase 1 regulatory
subunit 3C(PPP1R3C) Unfavorable

39512_s_at 39512_s
Inositol

polyphosphate-4-phosphatase
type I A(INPP4A)

+

39850_at 39850 Ankyrin 2(ANK2) Unfavorable +

755_at 755 Inositol 1,4,5-trisphosphate
receptor type 1(ITPR1)



Diagnostics 2021, 11, 1936 16 of 25

Table 7. Cont.

Prob set Gene ID Gene Name Diagnostic
Marker

Prognostic
Marker Overexpression Down

Expression

31386_at 31386
Immunoglobulin kappa variable

1/OR2-118 (IGKV1OR2-118)
(pseudogene)

Unfavorable +

33580_r_at 33580_r Galanin receptor 3(GALR3) +

34193_at 34193 Cell adhesion molecule L1
like(CHL1) Unfavorable +

35349_at 35349 COP9 signalosome subunit
3(COPS3) Unfavorable +

35719_at 35719
PH domain and leucine rich
repeat protein phosphatase

1(PHLPP1)
Unfavorable +

38967_at 38967 Chromosome 14 open reading
frame 2(C14orf2) Unfavorable +

39329_at 39329 Actinin alpha 1(ACTN1) yes Unfavorable +

41530_at 41530 Acetyl-CoA acyltransferase
2(ACAA2) Favorable +

38397_at 38397 DNA polymerase delta 4,
accessory subunit(POLD4) Unfavorable

39008_at 39008 Ceruloplasmin(CP)

40767_at 40767 Tissue factor pathway
inhibitor(TFPI) Unfavorable +

41214_at 41214 Ribosomal protein S4, Y-linked
1(RPS4Y1) Unfavorable +

31342_at 31342
Polypeptide N-

acetylgalactosaminyltransferase
2(GALNT2)

Unfavorable +

32109_at 32109 FXYD domain-containing ion
transport regulator 1(FXYD1) yes Unfavorable +

32458_f_at 32458_f Proline rich protein BstNI
subfamily 4(PRB4) Unfavorable +

In Figure 11, heat maps representing the frequency of selected features over the cross-
validation analysis are used to evaluate the consistency of the selected features over time
and to identify genes that are differentially expressed between the two disease classes
(cancer class and healthy class).

Figure 12 shows the correlation among the selected feature using our proposed model
with the Catboost classifier. The correlation coefficient has values between −1 to 1. A value
closer to 0 implies a weaker correlation (exact 0 implying no correlation). A value closer
to 1 implies a stronger positive correlation, and a value closer to −1 implies a stronger
negative correlation. We compared the correlation between features and removed one of
two features that correlate to >= 0.5, that correlate to =0.5 in the first threshold, and to
0.5 + 0.01 in the second fold of the threshold.



Diagnostics 2021, 11, 1936 17 of 25

Figure 11. Cont.
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Figure 11. (a) Hierarchical clustering dendrogram maps of the genes selected in the proposed hybrid model. (b) Heat maps
of the genes selected in the proposed hybrid model.
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Figure 12. The correlation among the selected genes with the proposed hybrid mode.

6. Conclusions

Brain disorders are becoming a major issue, particularly malignant brain tumors,
which significantly impact people’s lives. The brain cancer microarray data have proven
to be a complicated classification task due to the small number of samples that have a
large number of gene expression levels as features. As part of brain cancer microarray data
analysis, the present study proposed an effective and powerful technique for the selection
of significant and relevant genes with biomedical relevance. Three distinct techniques were
used for classification and prediction (feature selection, optimization, and classification).
We used the same dataset and three different algorithms to evaluate the performance of
the proposed model (NB, RF, and SVM). The experimental results demonstrate that the
proposed hybrid model significantly improves critical items such as classification accuracy
and that the selected genes have an important biological background.
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Furthermore, selecting optimal genes (features) with biological significance can assist
biological researchers in brain cancer treatment. The major contributions of this paper
are: (a) The application of Catboost and XGboost on high-dimensional microarray data to
create a cancer microarray dataset; (b) the use of the hyperboot optimizer to optimize the
hyperparameters of the two classifiers, and the outperformance of the Catboost on XGboost
in terms of AUC, Sen, Spec, and accuracy; (c) the selection of genes that are non-redundant
and relevant to the biological context using ensemble mRMR, which leads to more detailed
biological interpretations. Later, the output of the gene subset was combined with the
Catboost-selected features. Then, a voting process was applied to obtain unique, infor-
mative genes (features) with high relevance and minimum redundancy; (d) the selected
genes in our proposed model were biologically interpreted, and the results agree with the
findings of relevant biomedical studies. Developing robustness should be a priority for
future work.
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Appendix A

Threshold
(28: 1068)

SVM Random Forest Naive Bayes CatBoost

Accuracy Spec SEN AUC Accuracy Spec SEN AUC Accuracy Spec SEN AUC Accuracy Spec SEN AUC

0.5 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.51 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.52 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.91 ±
0.17

0.88 ±
0.33

0.94 ±
0.17

0.91 ±
0.17

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.53 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.54 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.55 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.93 ±
0.13

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.56 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.57 0.91 ±
0.17

1.00 ±
0.00

0.81 ±
0.35

0.91 ±
0.17

0.94 ±
0.11

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.58 0.93 ±
0.13

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.88 ±
0.12

0.94 ±
0.17

0.81 ±
0.24

0.88 ±
0.12

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.59 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.6 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.61 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.86 ±
0.19

0.88 ±
0.22

0.88 ±
0.22

0.88 ±
0.18

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.90 ±
0.14

1.00 ±
0.00

0.81 ±
0.24

0.91 ±
0.12

0.62 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.90 ±
0.14

1.00 ±
0.00

0.81 ±
0.24

0.91 ±
0.12

0.63 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.83 ±
0.18

0.88 ±
0.22

0.81 ±
0.24

0.84 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.64 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.65 0.94± 0.11 1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.66 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.67 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.94 ±
0.11
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Threshold
(28: 1068)

SVM Random Forest Naive Bayes CatBoost

Accuracy Spec SEN AUC Accuracy Spec SEN AUC Accuracy Spec SEN AUC Accuracy Spec SEN AUC

0.68 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.69 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.91 ±
0.17

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

1.00 ±
0.00

0.97 ±
0.08

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.7 0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.91 ±
0.17

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.17

0.91 ±
0.12

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.71 0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.91 ±
0.17

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.17

0.93 ±
0.13

0.88 ±
0.22

1.00 ±
0.00

0.94 ±
0.11

0.91 ±
0.12

0.94 ±
0.17

0.81 ±
0.24

0.91 ±
0.12

0.72 0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.88 ±
0.22

0.94 ±
0.17

0.91 ±
0.12

0.91 ±
0.12

1.00 ±
0.00

0.81 ±
0.24

0.91 ±
0.12

0.73 0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.90 ±
0.14

0.88 ±
0.22

0.94 ±
0.17

0.91 ±
0.12

0.91 ±
0.12

1.00 ±
0.00

0.81 ±
0.24

0.91 ±
0.12

0.74 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.91 ±
0.17

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.17

0.93 ±
0.13

0.88 ±
0.22

1.00 ±
0.00

0.94 ±
0.11

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.75 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.88 ±
0.22

0.94 ±
0.17

0.91 ±
0.12

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.76 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.17

0.80 ±
0.21

0.75 ±
0.35

0.88 ±
0.22

0.81 ±
0.21

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.77 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.80 ±
0.21

0.75 ±
0.35

0.88 ±
0.22

0.81 ±
0.21

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.78 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.86 ±
0.19

0.88 ±
0.22

0.88 ±
0.22

0.88 ±
0.18

0.83 ±
0.18

0.75 ±
0.35

0.94 ±
0.17

0.84 ±
0.17

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.79 1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.90 ±
0.19

0.88 ±
0.22

0.94 ±
0.17

0.91 ±
0.17

0.83 ±
0.18

0.75 ±
0.35

0.94 ±
0.17

0.84 ±
0.17

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.8 1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.86 ±
0.14

0.75 ±
0.35

0.94 ±
0.17

0.84 ±
0.17

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.81 1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.83 ±
0.19

0.81 ±
0.24

0.94 ±
0.17

0.88 ±
0.18

0.90 ±
0.14

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.82 1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.86 ±
0.19

0.81 ±
0.24

0.94 ±
0.17

0.88 ±
0.18

0.90 ±
0.14

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.83 1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.84 1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

1.00 ±
0.00

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.85 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.86 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.87 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11
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Threshold
(28: 1068)

SVM Random Forest Naive Bayes CatBoost

Accuracy Spec SEN AUC Accuracy Spec SEN AUC Accuracy Spec SEN AUC Accuracy Spec SEN AUC

0.88 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.89 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.94 ±
0.11

1.00 ±
0.00

0.88 ±
0.22

0.94 ±
0.11

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.9 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.91 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.90 ±
0.14

0.81 ±
0.24

1.00 ±
0.00

0.91 ±
0.12

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.92 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.93 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.90 ±
0.14

0.94 ±
0.17

0.88 ±
0.22

0.91 ±
0.12

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.94 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.95 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.96 0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.97 0.94 ±
0.11

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.93 ±
0.13

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.98 0.94 ±
0.11

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.99 0.94 ±
0.11

0.94 ±
0.17

0.94 ±
0.17

0.94 ±
0.11

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08

0.83 ±
0.18

0.69 ±
0.35

1.00 ±
0.00

0.84 ±
0.17

0.97 ±
0.08

1.00 ±
0.00

0.94 ±
0.17

0.97 ±
0.08
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