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A B S T R A C T   

Currently, the Internet of Things (IoT) generates a huge amount of traffic data in communication 
and information technology. The diversification and integration of IoT applications and terminals 
make IoT vulnerable to intrusion attacks. Therefore, it is necessary to develop an efficient 
Intrusion Detection System (IDS) that guarantees the reliability, integrity, and security of IoT 
systems. The detection of intrusion is considered a challenging task because of inappropriate 
features existing in the input data and the slow training process. In order to address these issues, 
an effective meta heuristic based feature selection and deep learning techniques are developed for 
enhancing the IDS. The Osprey Optimization Algorithm (OOA) based feature selection is proposed 
for selecting the highly informative features from the input which leads to an effective differ
entiation among the normal and attack traffic of network. Moreover, the traditional sigmoid and 
tangent activation functions are replaced with the Exponential Linear Unit (ELU) activation 
function to propose the modified Bi-directional Long Short Term Memory (Bi-LSTM). The 
modified Bi-LSTM is used for classifying the types of intrusion attacks. The ELU activation 
function makes gradients extremely large during back-propagation and leads to faster learning. 
This research is analysed in three different datasets such as N-BaIoT, Canadian Institute for 
Cybersecurity Intrusion Detection Dataset 2017 (CICIDS-2017), and ToN-IoT datasets. The 
empirical investigation states that the proposed framework obtains impressive detection accuracy 
of 99.98 %, 99.97 % and 99.88 % on the N-BaIoT, CICIDS-2017, and ToN-IoT datasets, respec
tively. Compared to peer frameworks, this framework obtains high detection accuracy with better 
interpretability and reduced processing time.  
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1. Introduction 

In the present scenario, IoT is extensively utilized in several industries such as energy management, water management, smart 
agriculture, environmental monitoring, retail, smart home automation, etc. [1–3]. IoT devices pose a severe threat from cyber-attacks 
like data leakage, spoofing, Distributed Denial-of-Service (DDoS) etc. These attacks affect one or more IoT devices which are used as 
‘platforms’ or ‘resources’ [4,5]. As an outcome, it is vital to safeguard data and secure IoT devices by developing intrusion-resistant IoT 
systems [6]. An efficient IDS is developed for identifying intrusions in IoT systems and securing device communication. Several IDSs 
are developed in recent periods for securing internet communication [7,8]. The IDS precisely monitors IoT systems and alerts ad
ministrators while malicious behaviors are detected in the system. IoT devices are becoming more portable and compact, but are 
limited in battery capacity and size [9]. Additionally, IoT devices communicate with each other using light-weighted protocols; 
therefore require an energy efficient and light-weighted attack detection technology [10]. 

Developing an efficient framework accurately detects intrusion attacks in real time scenarios, but it is challenging while dealing 
with a vast amount of IoT data [11,12]. By reviewing existing literature, it is evident that most IDSs detect only specific attacks, 
because these systems are trained only on specific attack types [13,14]. IoT devices with limited battery resources, memory, and 
computing ability are not able to perform computational tasks, because they generate a vast communication and computation load. 
Therefore, it is necessary to develop an efficient security tool to strike a balance between performance and security [15]. Recently, 
deep learning models have gained increased attention from researchers across several domains to overcome diverse problems [16,17]. 
Moreover, the data from IoT is highly challenging because of large amount of information. A large amount of feature makes the 
evaluation and attack detection a complex task [18]. Hence, the feature selection i.e., part of dimension reduction risk is essential in 
selecting the optimum feature subset to depict the overall dataset [19]. The feature reduction using the metaheuristic algorithm 
provides improved results because it offers the best optimum results [20]. 

The primary motivation of this paper is to develop a modified version of a deep learning model for precise intrusion detection in IoT 
systems with limited processing time. 

The contributions of this paper are illustrated below:  

• The OOA is chosen for feature selection due to its ability of avoiding the local optima risk and obtaining the global optimum 
solution that helps to discover the highly informative features. The OOA selects the dominant and discriminative features from the 
normalized IoT data which leads to ensure an effective differentiation among normal and attack traffic.  

• The Bi-LSTM is modified by incorporating the ELU activation function for performing effective detection. Specifically, the Bi-LSTM 
is chosen because it is goof at obtaining the long-term dependencies. In the modified Bi-LSTM, an ELU activation function is 
incorporated with the conventional Bi-LSTM network to prevent vanishing gradients and overfitting problems by efficiently 
recognizing the sequences and patterns of IoT system traffic. 

This paper is prepared in this manner: A literature review related to the topic “intrusion detection” is conducted in section 2. 
Theoretical and mathematical explanations about the proposed framework, OOA based modified Bi-LSTM network are presented in 
section 3. The empirical investigation and the conclusion of the proposed IDS are outlined in sections 4 and 5, respectively. 

2. Literature survey 

Keshk et al. [21] developed an efficient IDS for IoT systems based on the LSTM network. This LSTM uses a different set of input 
features (partial dependence plot, individual conditional expectation, permutation feature importance, and Shapley additive expla
nations) for identifying cyberattacks. The results demonstrated that the developed IDS obtained higher interpretability, processing 
time, and detection accuracy than the peer systems. The developed IDS had the potential in assisting decision makers and adminis
trators to understand the behaviour of attacks. However, generating traffic data as sequences by the LSTM was a time consuming and 
complex process. 

Altunay and Albayrak [22] presented a hybrid IDS for ensuring security in Industrial IoT (IIoT) systems. The presented IDS inte
grated LSTM with Convolutional Neural Network (CNN) for effective identification of intrusion attacks in IIoT systems. The integration 
of LSTM and CNN offered several benefits in intrusion detection such as, the extraction of useful temporal and spatial patterns in IIoT 
system’s traffic data. In contrast, the hybrid model (LSTM + CNN) was computationally intensive, because it required high memory 
and processing power. Furthermore, the integration of LSTM and CNN resulted in a complex network structure, therefore, expertise 
was needed to fine tune and manage complex models. 

Gebretsadik et al. [23] introduced an Enhanced Bloom Filter (EBF) for precise detection of intrusions in IoT systems. The exper
iment conducted on a real time intrusion dataset revealed that the EBF was accurate, faster, and memory efficient compared to other 
filters like the cuckoo filter and the traditional bloom filter. However, the sub-optimal use of hash functions in the EBF increased the 
false positives during intrusion detection. 

Alsirhani et al. [24] designed an intelligent IDS by integrating feature-based and deep learning-based techniques. Initially, a 
min-max normalization technique was applied for transforming the numeric datasets into a predefined range of zero to one. Secondly, 
the features, namely, autoregressive data, data percentiles, correlation coefficient, mutual information, information gain, standard 
deviation, mode, median, and mean were extracted from the rescaled datasets. Thirdly, discriminative features were selected by 
employing the African vulture optimization algorithm. Finally, these discriminative features were passed into a hybrid model (LSTM +
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Deep Belief Network (DBN)) to categorize the attack and normal packets. The outcomes obtained on real time intrusion datasets 
revealed that the presented framework had a reliable potential in cybersecurity applications. The integration of LSTM and DBN offered 
enhanced performance in intrusion detection by capturing complex patterns in IoT data, but it also faced challenges related to 
interpretability, computational cost, and complexity. 

Keserwani et al. [25] initially integrated the Particle Swarm Optimization (PSO) algorithm and the Grey Wolf Optimization (GWO) 
algorithm to eliminate inappropriate, irrelevant, and unnecessary features in intrusion datasets that resulted in high accuracy and low 
detection time. Furthermore, the obtained features were input into the random forest for categorizing intrusion attacks. Similarly, 

Table 1 
Literature table.  

Author Methodology Strength Research gap 

Keshk et al. [21] LSTM network was developed for enhancing 
the IDS. 

This LSTM based IDS had the capacity in 
supporting the decision makers and 
administrators for knowing the attack 
behaviour. 

The generation of traffic as sequences 
using LSTM was a time consuming and 
complex process. 

Altunay and 
Albayrak [22] 

The combination of LSTM and CNN was 
developed for detecting the attacks in IIoT. 

The LSTM + CNN extracted beneficial 
temporal and spatial patterns. 

The developed LSTM + CNN required 
high memory and processing power as 
well as, resulted in complex architecture. 

Gebretsadik et al. 
[23] 

The EBF was developed for precise 
identification of intrusion. 

This EBF performed accurate, memory 
efficient and faster prediction in real time 
intrusion dataset. 

The sub-optimal utilization of hash 
functions in the EBF increased the false 
positives 

Alsirhani et al. 
[24] 

The African vulture optimization was used to 
choose the discriminative features. Next, a 
hybrid LSTM + DBN was used for 
classification. 

The acquisition of complex patterns was 
used to enhance the detection using LSTM 
with DBN. 

The developed LSTM with DBN faced 
challenges of interpretability, 
computational cost, and complexity 
during the detection. 

Keserwani et al. 
[25] 

The combination of PSO and GWO was used to 
choose the relevant features. 

The elimination of inappropriate, 
irrelevant, and unnecessary features was 
used to enhance the accuracy and minimize 
the detection time. 

The developed work was mainly 
concentrated on developing the feature 
selection approach. 

Hassan et al. [26] The random forest was integrated with MRFO 
for developing an IDS. 

The MRFO was used to remove the 
irrelevant features from the overall feature. 

The random forest was ineffective in 
handling imbalanced data which caused 
biased predictions. 

Anushiya and 
Lavanya [27] 

The AFSA was developed for discovering the 
important properties in the data. Next, the 
faster recurrent CNN with genetic algorithm 
was used for classification. 

The AFSA based important characteristic 
discovery was used to enhance prediction. 

The integration of multiple convolutional 
and recurrent layers increased the 
model’s complexity. 

Alweshah et al. 
[28] 

The EPC optimization was developed for 
selecting the features to enhance the 
classification using KNN. 

The selection of appropriate features using 
EPC was used to enhance the IDS. 

The KNN was sensitive to outliers and 
data points that superiorly affected the 
classification. 

Alweshah et al. 
[29] 

The features were selected using SSOA and 
KNN based classification was done for 
improving the prediction. 

The SSOA based feature selection was used 
to remove the irrelevant features. 

The KNN based classification was 
affected, because it was sensitive to 
outliers and data points. 

Li et al. [30] The ANN was used to detect the normal and 
abnormal behaviour of medical IoT. Here, the 
BOA was used to select the discriminative 
features. 

The selection of discriminative features 
helped to enhance the accuracy of ANN. 

However, the developed deep ANN was 
prone to overfitting problems. 

Kumar et al. [31] The IBRO was used to ensure an optimum 
feature selection for IDS. Next, the recurrent 
kernel CNN with MMBO was used for 
detection. 

The IBRO based optimum feature selection 
was used to minimize the complexity of 
IDS. 

The complex patterns among the patterns 
were required to be considered during 
the prediction. 

Dahou et al. [32] A modified RSA with CNN was developed for 
IDS. 

Highly relevant and informative features 
were chosen by modified RSA in IDS. 

The developed recurrent kernel CNN 
required huge amount of computations 
in detection. 

Li and Yi [33] The Bi-LSTM was integrated with CNN for 
performing IDS in IIoT. 

The training was enhanced by using the 
batch normalization. 

The integration of two deep learning 
models i.e., Bi-LSTM with CNN increased 
the complexity. 

Elsayed et al. [34] The improved LSTM was developed for 
differentiating the benign and attack traffics. 

The improved LSTM based secured 
automatic two level IDS designed for 
improving classification. 

The transformation of intrusion data into 
sequences using improved LSTM was a 
time consuming and complex process. 

Elaziz et al. [35] The CapSA and CNN were developed for 
selecting features and attack detection in IDS. 

The accuracy was improved based on the 
chosen features from CapSA. 

The contextual and temporal 
dependencies from the features were 
required to be considered for further 
improving the IDS. 

Gharehchopogh 
et al. [37] 

An influential feature was discovered by using 
the MODHHO. 

The detection of influential feature was 
used to avoid misclassification. 

This work was mainly concentrated on 
the feature selection, but an effective 
classifier was required for enhancing the 
prediction. 

Asgharzadeh et al. 
[38] 

The CNN and BMECapSA were used in IDS for 
enhancing the detection. 

The local and global features were 
extracted by CNN with hybrid layers for 
enhancing the detection. 

The complex patterns among the features 
were required to be considered by the 
classifier for further enhancing the IDS.  
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Hassan et al. [26] integrated random forest with an improved Manta Ray Foraging Optimization (MRFO) algorithm for accurate 
classification of intrusion attacks. However, compared to other advanced classification models, random forest was ineffective in 
handling imbalanced intrusion data that led to biased predictions. 

Anushiya and Lavanya [27] introduced a novel algorithm named the assimilated Artificial Fish Swarm Algorithm (AFSA) to find 
important properties in IoT based intrusion datasets related to the problem statement. After gathering important properties of the 
datasets, classification was accomplished by combining a faster recurrent CNN model with a genetic algorithm. In this context, the 
faster recurrent CNN model integrated numerous convolutional and recurrent layers that significantly increased the model’s 
complexity, and required longer training time and more computational resources. 

Alweshah et al. [28] and Alweshah et al. [29] integrated the Emperor Penguin Colony (EPC) optimization algorithm and the 
Shuffled Shepherd Optimization Algorithm (SSOA) with a K-Nearest Neighbor (KNN) classifier for accurate classification of intrusion 
attacks in IoT systems. The traditional KNN classifier was sensitive to outliers and data points that superiorly affected the classification 
performance. Additionally, Li et al. [30] used an Artificial Neural Network (ANN) for detecting normal and abnormal behaviors in 
medical IoT systems. However, the detection accuracy of ANN depended completely on the selected features, so the selection of 
discriminative and important features from the traffic data was vital in this literature. In the developed framework, the Butterfly 
Optimization Algorithm (BOA) was applied for selecting discriminative features. The developed framework, BOA-ANN obtained 
higher results in intrusion detection, but the deep ANN was prone to overfitting problems. 

Kumar et al. [31] presented an automated IDS for identifying attacks in IoT systems. The presented automated IDS included three 
phases: (i) data preprocessing using the min-max normalization technique, (ii) optimal feature selection using the Improved Battle 
Royale Optimization (IBRO) algorithm, and (iii) intrusion attack detection by a recurrent kernel CNN model with the Modified 
Monarch Butterfly Optimization (MMBO) algorithm. Firstly, the min-max normalization technique improved the data quality by 
decreasing the introduced noise, while IBRO selected the most optimal features that reduced the computational complexity of this IDS. 
Furthermore, the incorporation of the MMBO algorithm with the recurrent kernel CNN model reduced overfitting problems and 
improved the performance of the classifier. Additionally, Dahou et al. [32] combined the modified Reptile Search Algorithm (RSA) 
with a CNN model for intrusion detection in IoT systems. This framework obtained competitive classification performance related to 
other well-known frameworks. However, while dealing with large intrusion datasets, the recurrent kernel CNN and traditional CNN 
models proved to be computationally intensive. 

Li and Yi [33] integrated the Bi-LSTM network with a CNN model for intrusion detection in IoT systems. As discussed in the 
literature above, the integration of two deep learning models maximized the complexity of the classifier and needed more compu
tational resources. Elsayed et al. [34] introduced an improved LSTM network for identifying attack categories, differentiating between 
benign and attack traffics, and defining sub-attack types. The improved LSTM network was trained and validated using two realistic 
datasets for proving its effectiveness over other IDSs. The transformation of intrusion data into sequences by the improved LSTM 
network was a time consuming and complex process. 

Fig. 1. Workflow of the OOA based modified Bi-LSTM network.  
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Elaziz et al. [35] presented the combination of swarm intelligence algorithm and CNN for developing an effective IDS for IoT-cloud. 
Initially, a CNN was used to acquire an optimal feature from the data. Next, a Capuchin Search Algorithm (CapSA) was used to obtain 
optimum features for enhancing the accuracy. However, the contextual and temporal dependencies from the features were required to 
be considered during the detection. Yi et al. [36] categorized the IDS approaches developed in fog environment. Gharehchopogh et al. 
[37] developed the Multi-Objective Dynamic Harris Howks Optimization (MODHHO) for discovering the influential features while 
performing Botnet detection in the IoT data. Next, the classifiers of Decision Tree (DT), Support Vector Machine (SVM), K-Nearest 
Neighbor (KNN) and Multilayer Perceptron (MLP) were used for precise detection. This work was mainly concentrated on the 
MODHHO based selecting features, but an effective classifier was required for improving the IDS. 

Asgharzadeh et al. [38] presented the CNN and Binary Multi-objective Enhanced CapSA (BMECapSA) for improving the IDS. The 
local and global features were extracted by using the CNN with hybrid layers and BMECapSA was used to select the features. This work 
was mainly concentrated on feature selection, but the complex patterns among the feature were additionally needed to be considered 
during classification. 

The strengths and research gaps of the existing researches are given in the below Table 1. 
Generally, transforming intrusion data as sequences by the improved LSTM [34] is a time consuming and complex process. 

Moreover, irrelevant features existing in the data affect the process of classification. To highlight the afore-stated concerns and 
enhance the performance of intrusion detection in IoT systems, a novel framework, OOA based modified Bi-LSTM network is proposed 
in this paper. The OOA based feature selection is developed for selecting the optimum features to perform an effective differentiation 
during the detection. 

3. Methods 

In the context of intrusion detection, the proposed framework comprises four phases. In the initial phase, IoT data is collected from 
the N-BaIoT, CICIDS-2017, and ToN-IoT datasets. Secondly, data preprocessing is conducted utilizing the min-max normalization 
technique, and thirdly, significant features are chosen by implementing OOA. In the final phase, a modified Bi-LSTM network is 
designed to classify the normal and attack types. The workflow of the OOA based modified Bi-LSTM network is depicted in Fig. 1. 

3.1. Dataset description 

The proposed framework, OOA based modified Bi-LSTM network performance is tested on three online benchmark datasets. The N- 
BaIoT, CICIDS-2017, and ToN-IoT datasets include real world IoT data obtained from various sources confirming the IDS is trained and 
tested on realistic data which represents the authentic IoT behaviour. Moreover, these datasets include a comprehensive set of features 
comprising characteristics of network traffic, communication protocols and device communications. These features support in eval
uating and displaying the behaviour of IoT network that leads to the design of precise IDS. N-BaIoT dataset is one of the multivariate 
and sequential datasets, comprising 115 real attributes, two attacks (Bashlite and Mirai), and a total of 7,062,606 instances. This 
dataset contains traffic data acquired from nine IoT devices, which are infected by Bashlite and Mirai attacks [39]. The nine IoT devices 
are as follows: Samsung SNH 1011 N web camera, simple home XCS7-1002-WHT security camera, simple home XCS7-1003-WHT 
security camera, Philips B120 N/10 baby monitor, ecobee thermostat, provision PT-737E security camera, provision PT-838 secu
rity camera, ennio doorbell, and danmini doorbell [40]. 

Furthermore, CICIDS-2017 dataset comprises real-time network data recorded at various periods. This dataset includes several 
types of attacks like portscan, infiltration, Bot, heartbleed, golden-eye, etc., where these attacks are not found in other datasets [41]. 
The features of the CICIDS-2017 dataset are categorized into different types by means of their reliable and realistic benchmarking. 
Eleven criteria are used for benchmarking to ensure the evaluation’s reliability [42]. The summary of the CICIDS-2017 dataset is 
provided in Table 2, which includes details about the types of classes, file names, and the number of records in each class. 

Additionally, in the ToN-IoT dataset, data records are acquired from various sources such as records of windows operating systems, 

Table 2 
Summary of the CICIDS-2017 dataset.  

Files Classes Records 

Friday-DDoS.pcap_ISCX.csv DDoS and benign 128,027 and 97,718 
Friday-portscan.pcap_ISCX. 

csv 
Portscan and benign 158,930 and 127,537 

Friday-pcap_ISCX.csv Bot and benign 1966 and 189,067 
Thursday-infilteration. 

pcap_.csv 
Infiltration and benign 36 and 288,566 

Thursday-webattacks. 
pcap_ISCX.csv 

Web attack-Cross Site Scripting (XSS), web attack-Structured Query Language (SQL) 
injection, web attack-brute force, and benign 

652, 21, 1,507, and 168,186 

Wednesday-pcap_ISCX.csv Heartbleed, DoS slow-loris, DoS slow-http-test, DoS-hulk, golden-eye, and benign 11, 5,796, 5,499, 231,073, 10,293, 
and 440,031 

Tuesday-hours.pcap_ISCX. 
csv 

File Transfer Protocol (FTP)-patator, benign, and Secure Shell (SSH)-patator 7,938, 432,074, and 5897 

Monday-hours.pcap_ISCX. 
csv 

Benign states normal human activities 529,918  
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records of Linux operating systems, telemetry data records from different connected devices, network traffic records from Industrial 
IoT (IIoT) systems, and more [43]. This dataset is available in Comma-Separated Values (CSV) format and includes a label column that 
represents normal or attack behavior. The subtypes of the attack category are as follows: Man in the Middle (MITM), XSS, back door, 
data injection, DDoS, DoS, scanning, password attack, and ransomware. These nine types of attacks are collected from IIoT networks 
using various IIoT and IoT sensors [44]. This dataset comprises 300,000 normal records and 161,043 attack records. 

3.2. Data pre-processing 

After acquiring IoT based intrusion data from N-BaIoT, CICIDS-2017, and ToN-IoT datasets, data pre-processing is performed by 
eliminating errors such as inconsistent, incomplete and missing value. Furthermore, data rescaling is carried out utilizing the min-max 
normalization technique, which converts intrusion data into a particular range (0–1). This process preserves the order and relation
ships of values within every feature [45,46]. Additionally, in the context of intrusion detection, the min-max normalization technique 
is more robust to variations and outliers present in the intrusion data. The classification model becomes less sensitive to extreme values 
by constraining features to a particular range (0–1). This technique ensures that all features have the same scale and is very crucial in 
intrusion detection, because features have different measurement scales and units. This min-max normalization helps to prevent the 
impact of outliers during the detection by normalizing the data to the particular range. The formula utilized to compute this technique 
is presented in equation (1). 

yscale =
y − ymin

ymax − ymin
(1)  

where, yscale indicates the mapped value of the attribute, ymax represents the maximum value of the attribute, ymin states the minimum 
value of the attribute, and y specifies the current value of the attribute. The output of min-max normalization technique is normalized/ 
rescaled values ranging between 0 and 1 that reflect the relative position of every data point in the range of the original intrusion data. 
The rescaled data are passed into the feature selection technique for selecting the information features on the N-BaIoT, CICIDS-2017, 
and ToN-IoT datasets. 

3.3. Feature selection 

The normalized IoT data of N-BaIoT, CICIDS-2017, and ToN-IoT datasets are passed into the OOA for informative feature selection. 
The OOA mimics the intelligent natural behaviors of hunting and carrying of fish to a suited location to eat. Currently, OOA is one of 
the efficient population based optimization algorithms, which provides an appropriate solution based on the problem statement. The 
capacity of discarding the local optima risk and achieving the global optimum solution of OOA is utilized for discovering the most 
discriminative features. In this optimization algorithm, every osprey is a candidate solution which is modelled using a matrix X [47, 
48]. The position of every osprey xi,j is randomly initialized in the search space at the beginning of OOA implementation using equation 
(2). 

xi,j = lbj + rij ×
(
ubj − lbj

)
, i= 1, 2,…..,N, j= 1, 2,….m (2)  

where, lbj represents the lower bound of the jth variable, rij states the random number which ranges between the interval of zero to one, 
ubj represents the upper bound of the jth variable, m denotes the number of variables, and N indicates the number of ospreys. 

In this scenario, the objective function is evaluated based on osprey because every osprey is a candidate solution, and it is rep
resented in a vector format V. The quality of the candidate solution is a main criterion to evaluate the values for the objective function. 
The best candidate solution represents that the best value is achieved for the objective function. Respectively, the worst candidate 
solution indicates that the worst value is obtained for the objective function. The best candidate solution is updated in every iteration 
by considering the maximum accuracy in the search space. The objective function considered for OOA based feature selection is 
accuracy that helps to discover highly relevant features which contributes to an effective intrusion detection by filtering redundant 
features. Therefore, the consideration of accuracy as selection criteria in OOA helps to improve the generalization and enhance the 
adaptability to the different datasets. The OOA terminates after reaching the maximum number of iterations. 

3.3.1. Exploration phase (Identification of position and hunting of fish) 
Generally, the osprey has strong eyesight, so it easily finds the fish position. It attacks and hunts the fish after finding the fish 

position. The identification of optimal search area is improved by increasing the exploration power of OOA and it helps this algorithm 
escape from the local optima problem. For every osprey, the other ospreys with better value of objective function are considered as the 
under-water fishes. The set of under-water fish for every osprey is mathematically determined in equation (3). 

VPi ={Xk|kϵ{1, 2, 3,….,N}
Vk <Vi} ∪ {Xbest} (3)  

where, Xbest represents the best osprey (best candidate solution), VPi denotes the positions of the set of under-water fish for ith osprey, 
and X indicates the matrix. The new position of the osprey is computed using equations (4) and (5) based on the ospreys movement 
towards the fish. Further, the osprey position is replaced based on equation (6), when the obtained new position enhances the value of 
objective function. 
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xP1
i,j = xi,j + ri,j ×

(
SVi,j − Zi,j × xi,j

)
(4)  

xP1
i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xP1
i,j , lbj ≤ xP1

i,j ≤ ubj

lbj, xP1
i,j < lbj

ubj, xP1
i,j > ubj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5)  

Xi =

{
XP1

i , VP1
i < Vi

Xi, else

}

(6)  

where, Zi,j represents the random number, which ranges the interval between one to two, SVi,j indicates the selected under-water fish 
for ith osprey and its jth dimension, VP1

i states the value of objective function, xP1
i,j denotes the new position of the ith osprey and its jth 

dimension, and XP1
i states the new position of the ith osprey in the exploration phase. 

3.3.2. Exploitation phase (Carrying the fish to the suited location) 
The osprey carries the fish to a suited location after hunting the fish. The exploitation power of the OOA is increased by modelling of 

carrying the fish to the suited location that results in faster convergence rate. Furthermore, a new position is computed utilizing 
equations (7) and (8), and the prior position is replaced with the new position if it achieves better objective function value, which is 
mathematically stated in equation (9). 

xP2
i,j = xi,j +

lbj + rij ×
(
ubj − lbj

)

iter
, i= 1, 2,…..,N, j= 1, 2,….m, iter = 1, 2,…..100 (7)  

xP2
i,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xP2
i,j , lbj ≤ xP2

i,j ≤ ubj

lbj, xP2
i,j < lbj

ubj, xP2
i,j > ubj

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(8)  

Xi =

{
XP2

i , VP2
i < Vi

Xi, else

}

(9)  

where, xP2
i,j states the new position of the ith osprey and its jth dimension in the exploitation phase, and iter denotes the number of 

iterations. In this context, 80 % of the informative features are selected from the N-BaIoT, CICIDS-2017, and ToN-IoT datasets using 
OAA, which are passed into the modified Bi-LSTM network for intrusion classification. The main parameters assumed in the OOA are 
denoted as follows: upper bound value is 0.8, lower bound value is 0.2, maximum iteration is 100, and the size of initial population 
(osprey) is 100. The OAA selects 80 real attributes of Bashlite and Mirai classes and 672,347 instances in the N-BaIoT dataset. 
Furthermore, in the ToN-IoT dataset, the OAA selects 193,480 normal records and 120,428 attack records for classifying nine attacks 
(MITM, XSS, back door, data injection, DDoS, DoS, scanning, password attack, and ransomware). The records selected by OAA on the 
CICIDS-2017 dataset are represented in Table 3. 

3.4. Intrusion attack classification 

The features selected by the OOA are input into the modified Bi-LSTM network for the categorization of intrusion attacks. The 
conventional sigmoid and tangent activation functions are prone to vanishing gradient issues. In order to overcome this, the activation 
function is changed with ELU to avoid the vanishing gradient issue by enhancing the linear characteristics and fastening the training 
process. The LSTM network is the updated version of Recurrent Neural Network (RNN), which prevents vanishing gradient problems 
by applying input gate it , forget gate ft, output gate ot and memory cells c [49,50]. These three gates assist LSTM network in capturing 

Table 3 
Records selected by OAA on the CICIDS-2017 dataset.  

Classes Records 

DDoS and benign 94,128 and 68,216 
Portscan and benign 108,755 and 97,005 
Bot and benign 1203 and 137,098 
Infiltration and benign 36 and 208,520 
Web attack-XSS, web attack-SQL injection, web attack-brute force, and benign 508, 20, 1,200, and 98,100 
Heartbleed, DoS slow-loris, DoS slow-http-test, DoS-hulk, golden-eye, and benign 10, 5,000, 4,823, 100,070, 7,200, and 200,000 
FTP-patator, benign, and SSH-patator 4,900, 230,000, and 3900 
Benign states normal human activities 320,900  
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both short-term and long-term dependencies, and control the flow of the feature information. Additionally, the memory cells c controls 
the flow of the new feature information. 

Particularly, the forget gate ft deletes the cell state information, and the output gate ot efficiently regulates the flow of the cell 
state’s internal memory. Furthermore, the Bi-LSTM network accesses both future and past feature information at every time step t, 
which is more beneficial for tasks like intrusion detection. In comparison to the LSTM network, the Bi-LSTM network effectively 
recognizes sequences and patterns of IoT system traffic. The Bi-LSTM network is capable of learning short-term and long-term de
pendencies in both directions (forward and backward). It is vital to find sophisticated and subtle attacks in IoT systems [51]. The 
formula used for computing the forget gate is defined in equation (10). 

ft = σ
(
Wf × [ht− 1, xt] + bf

)
(10)  

where, Wf denotes the weight matrix of the forget gate, bf denotes the bias value, σ states the ELU activation function, xt denotes the 
input units (selected features by the OOA), and ht− 1 specifies the hidden state. In this context, ELU activation function has fast 
convergence during data training related to conventional activation functions namely, hyperbolic tangent and sigmoid. The ELU 
activation function decreases the computational resources and running time of the Bi-LSTM network. On the test and validation 
datasets, ELU activation function enhances the generalization capacity of the Bi-LSTM network by reducing the risks of overfitting and 
providing a more robust and smoother gradient during training. Furthermore, the mathematical expression of the weight matrix of the 
forget gate is presented in equation (11) [52]. Furthermore, the input gate it is computed utilizing equation (12). 

[
Wf

]
[

ht− 1
xt

]

=
[
Wfh Wfx

]
[

ht− 1
xt

]

=Wfhht− 1 + Wfhxt (11)  

it = σ(Wi × [ht− 1, xt] + bi) (12)  

where, the weight matrix and bias value of the input gate it are represented as Wi and bi. The present cell memory status c,t is 
determined based on the last output and input gates, as depicted in equation (13). Correspondingly, the cell state ct is multiplied with 
forget and input gates in the element states ct− 1 and c,t as specified in equation (14). 

c,t = σ (Wc × [ht− 1, xt] + bc) (13)  

ct = ft × ct− 1 + it × c,t (14)  

where, the weight matrix and bias value of the cell state are indicated as Wc and bc. The new cell state ct is generated by integrating 
current cell memory c,t and long-term cell memory ct− 1. The formula utilized to compute the output gate ot is mathematically stated in 
equation (15). By inspecting equation (15), the weight matrix and bias value of the output gate ot are represented as Wo and bo. 

ot = σ(Wo × [ht− 1, xt] + bo], ht = ot × σ(ct) (15) 

The parameters considered in the modified LSTM network are presented as follows: number of hidden layers is 50, number of 
hidden units in each layer is 150, number of epochs is 100, learning rate is 0.0001, optimizer is Adam, L2 regularization is 0.5, 
minimum batch size is 64, gradient threshold and gradient decay factor is one. The architecture of Bi-LSTM network is presented in 
Fig. 2. The empirical results of the OOA based modified Bi-LSTM network are detailed in section 4. 

4. Results 

The proposed framework, OOA based modified Bi-LSTM network is simulated utilizing the Python 3.11.2 software environment. 

Fig. 2. Architectural diagram of the Bi-LSTM network.  
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Numerous software packages of the python libraries are used for analyzing intrusion data, namely Numpy, Pandas, Matplotlib, SciKit 
Learn, TensorFlow, and Keras. The OOA based modified Bi-LSTM network’s efficacy is validated on a computer with a memory of 128 
GB RAM and windows 10 pro (64-bit) operating system. This framework’s effectiveness is tested on three online benchmark datasets 
related to IoT systems (N-BaIoT, CICIDS-2017, and ToN-IoT), and analysed using five various performance measures where the 
training and testing ratio used for the evaluation is 80:20. The expressions utilized to compute f1-score, accuracy, specificity, recall, 
and fall-out are presented in equation 16–20. 

F1 − score=
2TP

2TP + FP + FN
× 100 (16)  

Accuracy=
TN + TP

TP + TN + FP + FN
× 100 (17)  

Specificity=
TN

TN + FP
× 100 (18)  

Recall=
TP

TP + FN
× 100 (19)  

Fall − out=
FP

FP + TN
× 100 (20)  

where, the terms FP, FN, TP, and TN are represented as False Positive, False Negative, True Positive, and True Negative. 

4.1. Quantitative analysis 

The quantitative results of the proposed framework (OOA based modified Bi-LSTM network) is analysed on three different 
benchmark datasets. These results are compared with other classifiers (LSTM, Gated Recurrent Unit (GRU), and Bi-LSTM) and opti
mizers (AFSA, BRO, and MBO). By inspecting Tables 4–6, it is evident that the proposed framework obtains significant classification 
results in comparison to other combinations. Particularly, in Table 4, the proposed framework achieves 99.89 % of f1-score, 99.98 % of 
accuracy, 99.90 % of specificity, 99.94 % of recall, and 99.95 % of fall-out on the N-BaIoT dataset. These obtained results are superior 
to other combinations of classifiers and optimizers. The OOA based modified Bi-LSTM network effectively classifies one class of 
‘benign’ and 10 classes of ‘attacks’. The accuracy comparison for the N-BaIoT dataset is mentioned in Fig. 3. The highly informative 
features are selected by avoiding the local optima risk and obtaining the global optimum solution during the feature subset selection. 
This helps to improve the detection. The parameters considered in the comparative optimizers are depicted as follows. 

AFSA: Congestion rate is 20, step size is 0.5, visual rate is 1.5, try number is 50, population size is 100, error rate is 0.01, and 
iteration number is 100. 

BRO: Lower and upper bound are 0.3 and 0.8 respectively, size of population is 100 and iteration number is 100. 
MBO: Attractiveness is 0.2, light absorption coefficient is one, exhaustiveness is four, adjusting rate of butterfly is 5/12, migration 

period is 1.2, migration ratio is 5/12, population size is 100, and iteration number is 100. 
Correspondingly in Table 5, the proposed framework obtains significant classification results with f1-score of 99.96 %, accuracy of 

99.97 %, specificity of 99.92 %, recall of 99.91 %, and fall-out of 99.94 %. These results are better than other classifiers (LSTM, GRU, 
and Bi-LSTM) and optimizers (AFSA, BRO, and MBO) on the CICIDS-2017 dataset. The OOA based modified Bi-LSTM network 

Table 4 
Results achieved on the N-BaIoT dataset.  

N-BaIoT dataset 

Classifier Optimizer F1-score (%) Accuracy (%) Specificity (%) Recall (%) Fall-out (%) 

LSTM AFSA 98.12 98.22 98.04 98.32 98.18 
GRU 98.29 98.35 98.13 98.54 98.67 
Bi-LSTM 98.74 98.78 98.65 98.80 97.98 
Modified Bi-LSTM 99.16 98.90 98.92 98.98 98.88 
LSTM BRO 98.60 97.86 97.90 98.28 97.34 
GRU 98.78 98.33 98.22 98.50 98.77 
Bi-LSTM 98.92 98.56 98.78 98.88 97.86 
Modified Bi-LSTM 99.04 99.08 99.14 99.44 99.22 
LSTM MBO 98.32 97.45 98.75 98.33 98.44 
GRU 98.56 98.37 98.90 98.92 98.68 
Bi-LSTM 99.02 98.80 99 99.04 99.20 
Modified Bi-LSTM 99.44 99.53 99.12 99.48 99.35 
LSTM OOA 98.78 98.87 98.92 98.56 98.67 
GRU 99.12 99.34 99.30 99.22 99.10 
Bi-LSTM 99.35 99.65 99.72 99.43 99.50 
Modified Bi-LSTM 99.89 99.98 99.90 99.94 99.95  
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significantly classifies the classes mentioned in Table 2. The common parameters considered in the existing classifiers (LSTM, GRU, and 
Bi-LSTM) are depicted as follows: number of epochs is 100, learning rate is 0.001, optimizer is Adam, gradient threshold and gradient 
decay factor is one, and minimum batch size is 64. The accuracy comparison for the CICIDS-2017 dataset is specified in Fig. 4. The 
detection performance is enhanced based on the OOA based informative feature selection, as well as an integration of ELU in Bi-LSTM 
supports in obtaining the complex and nonlinear relationships of data that additionally enhances the detection. 

On the ToN-IoT dataset, in comparison to other combinations, the proposed framework obtains improved results with f1-score of 
99.90 %, accuracy of 99.88 %, specificity of 99.92 %, recall of 99.89 %, and fall-out of 99.91 %, as depicted in Table 6. The accuracy 
comparison for the ToN-IoT dataset is mentioned in Fig. 5. The OOA based modified Bi-LSTM network efficiently classifies 10 classes 
(one normal class and nine attack classes (ransomware, password attack, scanning, DoS, DDoS, data injection, back door, XSS, and 
MITM)). 

In the context of intrusion detection, the modified Bi-LSTM network (incorporation of ELU with the traditional Bi-LSTM network) 
efficiently handles noisy IoT data and learns a broader range of data representations by capturing negative and positive values. This 
process is useful to deal with the high-dimensional and complex network traffic data for precise detection of intrusions in IoT systems. 
In comparison to the traditional activation functions, ELU generates extremely large gradients that help in generalizing the Bi-LSTM 
network on the unseen IoT data. On the other hand, the inclusion of OOA within the modified Bi-LSTM network reduces its complexity 
and processing time by selecting the optimal set of features from the datasets. In IDS, the network latency is a communication pattern 
which is considers features to know about the traffic, protocol type, and frequency of communication. Relatively, the network latency 
is lower in IoT networks compared to the network with attack traffic. So, abnormal value of network latency represents the network has 
the attack traffic. Therefore, it is considered a crucial parameter of feature across all the datasets such as N-BaIoT, CICIDS-2017, and 
ToN-IoT for a precise identification of intrusion. 

The developed OOA based feature selection is used to discover the relevant features from the overall feature set. The ability of 

Table 5 
Results achieved on the CICIDS-2017 dataset.  

CICIDS-2017 dataset 

Classifier Optimizer F1-score (%) Accuracy (%) Specificity (%) Recall (%) Fall-out (%) 

LSTM AFSA 97.12 97.56 97.55 96.90 95.44 
GRU 97.46 97.90 97.80 97.77 97.39 
Bi-LSTM 98.84 98.44 98.33 97.94 97.97 
Modified Bi-LSTM 99.32 98.94 98.94 98.88 98.62 
LSTM BRO 97.84 96.43 96.95 97.54 97.38 
GRU 96.59 97.92 97.76 97.86 96.60 
Bi-LSTM 98.94 98.98 98.93 97.98 97.59 
Modified Bi-LSTM 99.40 99.25 99.40 98.55 98.36 
LSTM MBO 96.57 97.62 97.44 96.62 94.79 
GRU 97.82 97.89 97.89 97.87 96.28 
Bi-LSTM 98.09 98.66 98.86 97.90 98.50 
Modified Bi-LSTM 99.10 98.80 99.09 98.44 98.56 
LSTM OOA 98.34 98.32 98.43 97.55 97.30 
GRU 98.90 98.87 98.98 97.60 97.58 
Bi-LSTM 99.52 99.26 99.34 98.79 98.98 
Modified Bi-LSTM 99.96 99.97 99.92 99.91 99.94  

Table 6 
Results achieved on the ToN-IoT dataset.  

ToN-IoT dataset 

Classifier Optimizer F1-score (%) Accuracy (%) Specificity (%) Recall (%) Fall-out (%) 

LSTM AFSA 96.22 96.90 96.44 96.65 95.32 
GRU 97.39 97.40 95.70 96.90 96.93 
Bi-LSTM 98.88 97.88 96.38 97.44 97.74 
Modified Bi-LSTM 99.20 98.65 97.89 98.85 98.88 
LSTM BRO 97.54 96.77 96.65 96.54 96.55 
GRU 96.69 96.90 97.94 97.90 96.90 
Bi-LSTM 97.03 98.54 98.57 96.50 97.86 
Modified Bi-LSTM 98.04 98.59 98.79 98.94 98.84 
LSTM MBO 96.74 96.70 97.50 96.59 95.90 
GRU 97.80 97.68 97.69 97.28 97.94 
Bi-LSTM 98.57 97.74 98.24 98.94 97.97 
Modified Bi-LSTM 98.80 98.36 98.68 98.95 98.54 
LSTM OOA 98.40 98.80 98.87 97.37 97.75 
GRU 98.45 98.98 99.30 97.84 97.90 
Bi-LSTM 99.22 99.37 99.63 98.90 98.54 
Modified Bi-LSTM 99.90 99.88 99.92 99.89 99.91  
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avoiding the local optima risk and obtaining the global optimum solution of the OOA is used to discover the highly informative 
features. Therefore, the identification of highly informative features is used to differentiate the normal and attack traffic that helps to 
minimize the risk of FP and FN. The Bi-LSTM is efficient in acquiring the long-term dependencies in the IoT data i.e., network traffic 
patterns. The bidirectional processing of input sequences makes the Bi-LSTM efficiently obtain the contextual data and temporal 
dependencies which span over multiple time steps. This helps to discover hidden, time varying behavior of both normal and attack that 
leads to reduce the FP and FN. Moreover, the integration of ELU in Bi-LSTM supports for the learning of complex and nonlinear re
lationships among the input and target. The incorporated ELU preserves both the positive and negative values that are used to prevent 
saturation and ensure the network for learning highly informative depictions of input. This reliability in learning the complex patterns 
is used to enhance the differentiation among the normal and attack network traffic which supports in reducing FP and FN. 

Fig. 3. Accuracy comparison for the N-BaIoT dataset.  

Fig. 4. Accuracy comparison for the CICIDS-2017 dataset.  
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As shown in Table 7, the scientific contribution of OOA with modified Bi-LSTM network is evaluated by analyzing its results with 
different K-fold validations (K = 2, 3, 5, and 8). By viewing Table 7 and it is evident that the OOA based modified Bi-LSTM network 
obtains improved classification during five-fold cross validation (i.e., training data is 80 % and testing data is 20 %). Intrusion 
detection is one of the vital tasks in cybersecurity application, and K-fold cross validation is a standard technique used for ensuring that 
the OOA and modified Bi-LSTM network is capable, reliable, and robust in generalizing the unseen IoT data. Additionally, K-fold cross 
validation helps in detecting overfitting problems by analysing the OOA based modified Bi-LSTM network’s performance on various 
validation sets. The proposed framework has limited overfitting on the training data when it consistently performs well on dissimilar 
validation sets. Furthermore, the processing time of the modified Bi-LSTM network is reduced by choosing these discriminative and 
relevant features, as depicted in Table 8. The proposed framework consumes a short processing time of 8.02, 5.33, and 6.24 s on the N- 
BaIoT, CICIDS-2017, and ToN-IoT datasets, respectively. Therefore, it is superior in comparison to other classification models like 
LSTM, GRU, and Bi-LSTM. 

4.2. Comparative analysis 

The scientific contribution of the proposed framework, OOA based modified Bi-LSTM network is validated by evaluating its out
comes with existing frameworks designed by Keserwani et al. [25], Hassan et al. [26], Om Kumar et al. [31], and Elsayed et al. [34]. 
Keserwani et al. [25] combined PSO and GWO algorithms for eliminating irrelevant, unnecessary, and inappropriate features from the 
CICIDS-2017 dataset. The appropriate/relevant features were then passed into the random forest classifier for differentiating between 
normal and attack traffic. The developed framework, PSO-GWO-random forest achieves 99.88 % of detection accuracy on the 
CICIDS-2017 dataset. Correspondingly, Hassan et al. [26] used the random forest classifier with an improved MRFO algorithm for 
accurate identification of intrusion attacks. This framework achieves an impressive detection accuracy of 99.30 % on the CICIDS-2017 
dataset. 

Kumar et al. [31] employed the min-max normalization technique, IBRO algorithm, and a recurrent kernel CNN model with the 
MMBO algorithm for precise intrusion detection. The presented framework obtains 99.95 % and 99.96 % of detection accuracy on the 
CICIDS-2017 and N-BaIoT datasets. Furthermore, Elsayed et al. [34] developed an improved LSTM network for intrusion detection in 
software defined networks and IoT systems. The improved LSTM network obtains a detection accuracy of 96.35 % on the ToN-IoT 
dataset. In comparison to these four existing frameworks, the proposed framework, OOA based modified Bi-LSTM network ach
ieves higher detection accuracy on all four datasets, as depicted in Table 9. 

4.3. Discussion 

Feature selection and classification of intrusion attacks are crucial steps in this paper. Initially, IoT data acquired from N-BaIoT, 
CICIDS-2017, and ToN-IoT datasets is rescaled using the min-max normalization technique. The discriminative and relevant features 
are then selected from the pre-processed IoT data utilizing OOA, where it has a better convergence rate and searching ability in 
comparison to other algorithms such as AFSA, BRO, and MBO. The selected discriminative and relevant features are passed into the 

Fig. 5. Accuracy comparison for the ToN-IoT dataset.  
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modified Bi-LSTM network for intrusion classification. In the modified Bi-LSTM network, the typical activation functions (sigmoid and 
tangent) are changed with the ELU activation function. This process assists the conventional Bi-LSTM network in learning a wider 
range of data representations by capturing both negative and positive values in the datasets. The ELU activation function mitigates 
overfitting and vanishing gradient problems in the Bi-LSTM network with better detection accuracy. The efficiency of the OOA based 
modified Bi-LSTM network is stated in Tables 4–9. In the real time environment, the proposed OOA based modified Bi-LSTM network is 
suitable to be integrated with the existing security systems, network infrastructures, and hardware for efficient processing. Addi
tionally, monitoring and logging functionalities is suitable to be implemented for tracking the outcome of the proposed IDS in real time 
environments. It is vital to identify issues and ensure the reliability of the proposed IDS. 

5. Conclusion and future work 

In this paper, an efficient framework is proposed for intrusion detection in IoT systems. The proposed framework named OOA based 
modified Bi-LSTM network is implemented using the python programming language. It comprises three phases, namely preprocessing 
of IoT data, feature selection, and the classification of benign and attack traffics. After rescaling the acquired IoT data using min-max 
normalization technique, important/relevant features are selected utilizing OOA. The discriminative feature selection by OOA reduces 
the framework’s complexity and processing time. These selected discriminative features are then fed into the modified Bi-LSTM 
network for precise classification of benign and attack traffics. An integration of ELU in the Bi-LSTM enhances the generalization 
ability by minimizing the overfitting risk, avoiding vanishing gradient issue and fastening the training process. In comparison to 
existing frameworks, the proposed framework obtains an impressive detection accuracy of 99.98 %, 99.97 % and 99.88 % on the N- 
BaIoT, CICIDS-2017, and ToN-IoT datasets, respectively. Furthermore, the proposed framework consumes minimal processing time of 

Table 7 
Achieved results of the OOA-based modified Bi-LSTM network under various K-fold validations.  

Datasets Measures (%) K = 2 K = 3 K = 5 K = 8 

N-BaIoT F1-score 94.50 96.46 99.89 92.58 
Accuracy 94.12 94.40 99.98 94.06 
Specificity 96.28 95.96 99.90 94.96 
Recall 94.34 94.78 99.94 94.78 
Fall-out 95.70 94.58 99.95 95.92 

CICIDS-2017 F1-score 94.58 95.62 99.96 93.94 
Accuracy 95.68 94.26 99.97 94.64 
Specificity 94.03 94.16 99.92 95.35 
Recall 95.88 94.48 99.91 96.66 
Fall-out 95.79 94.32 99.94 94.58 

ToN-IoT F1-score 92.28 92.58 99.90 95.16 
Accuracy 93.68 93.32 99.88 94.44 
Specificity 92.58 92.18 99.92 95.66 
Recall 94.05 94.18 99.89 95.28 
Fall-out 93.36 95.72 99.91 96.86  

Table 8 
Processing time of different classifiers on all three datasets.  

Processing time (seconds) 

Classifiers N-BaIoT CICIDS-2017 ToN-IoT 

LSTM 11.20 10.34 11.24 
GRU 9.48 9.50 10.27 
Bi-LSTM 9.22 8.32 8.46 
Modified Bi-LSTM 8.02 5.33 6.24  

Table 9 
Achieved results of proposed and existing frameworks.  

Frameworks Dataset Detection accuracy (%) 

PSO-GWO-random forest [25] CICIDS-2017 99.88 
Improved MRFO-random forest [26] CICIDS-2017 99.30 
MMBO-recurrent kernel CNN [31] CICIDS-2017 99.95 

N-BaIoT 99.96 
Improved LSTM [34] ToN-IoT 96.35 
OOA-modified Bi-LSTM N-BaIoT 99.98 

CICIDS-2017 99.97 
ToN-IoT 99.88  
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8.02, 5.33, and 6.24 s on the N-BaIoT, CICIDS-2017, and ToN-IoT datasets, respectively. 
As a future extension, the proposed framework is suitable to be implemented in a real time learning environment for precise 

intrusion detection to protect IoT systems. An effective distillation method is also useable to develop network IDS for deployment in 
IoT devices. 

Dataset 

N-BaIoT dataset: https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset. 
CICIDS2017 dataset: https://www.kaggle.com/datasets/cicdataset/cicids2017. 
ToN-IoT dataset: https://www.kaggle.com/datasets/amaniabourida/ton-iot. 
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