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Inhibiting the m6A Reader IGF2BP3 Suppresses Ovarian 
Cancer Cell Growth via Regulating PLAGL2  

mRNA Stabilization
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Abstract

Background: The oncogene IGF2 mRNA binding protein 3 (IGF2BP3) 
could function as an m6A reader in stabilizing many tumor-associated 
genes’ mRNAs. However, the relevant oncogenic mechanism by which 
IGF2BP3 promotes ovarian cancer growth is largely unknown.

Methods: The IGF2BP3 expression in ovarian cancer was identified 
by retrieving the datasets from The Cancer Genome Atlas (TCGA). 
GEO datasets evaluated the relevant signaling pathways in IGF2BP3 
knockdown in ovarian cancer cells. IGF2BP3 positive correlation 
gene in TCGA was calculated. MTS proliferation assay was identified 
in IGF2BP3 knockdown and rescued by PLAG1 like zinc finger 2 
(PLAGL2) overexpression in ES-2 and SKOV3 cells. Bioinformatic 
analysis and RIP-qPCR were predicted and identified the IGF2BP3 
binding site and PLAGL2 mRNA stability. The animal experiment 
identified IGF2BP3 proliferation inhibition.

Results: IGF2BP3 was upregulated in ovarian cancer tissue and 
cells. The depletion of IGF2BP3 in ovarian cancer cells leads to an 
enhancement of the pathway involved in cellular proliferation and 
mRNA stability. IGF2BP3 positive correlation suppressed pro-pro-
liferation gene PLAGL2. IGF2BP3 knockdown suppressed ovarian 

cancer cell proliferation and was rescued by PLAGL2 overexpres-
sion. Luciferase reporter assay confirmed that IGF2BP3 could bind 
to 3'-UTR of PLAGL2 to maintain the mRNA stability. Further, in in 
vivo experiments, IGF2BP3 knockdown suppressed ovarian cancer 
cell proliferation via inhibiting PLAGL2 expression.

Conclusion: All of these indicate that PLAGL2 mediates the main 
function of IGF2BP3 knockdown on ovarian cancer proliferation in-
hibition through mRNA stability regulation.

Keywords: Ovarian cancer; IGF2BP3; mRNA stability; m6A meth-
ylation; PLAGL2

Introduction

N6-methyladenosine (m6A) is the predominant modification 
found in RNA and plays a crucial role in regulating diverse post-
transcriptional processes, including mRNA stability, transloca-
tion, and protein translation efficiency. As a result, it exerts a sig-
nificant influence on numerous biological processes, such as cell 
proliferation, tumorigenesis, and interactions between RNA and 
proteins [1]. These processes involve the participation of m6A 
methyltransferases (“writers”), demethylases (“erasers”), and 
RNA-binding proteins (“readers”) in dynamic regulation of m6A 
modifications. The insulin-like growth factor 2 mRNA-binding 
protein family (IGF2BPs), among other readers, are capable of 
recognizing m6A-mediated physiological behavior and exerting 
an influence on RNA function [2]. Meanwhile, methyltransferas-
es, such as methyltransferase like protein 3 (METTL3) or MET-
TL14, can complex various scaffold proteins to form writers to 
regulate RNA methylation [3]. Aside from this, ovarian cancer 
(OC) is the leading cause of death from all gynecologic malig-
nancies [4]. Recently, abnormally expressed m6A regulators have 
been linked to OC initiation and progression [3]. Therefore, un-
derstanding the role of m6A modification in ovarian tumorigen-
esis is urgent for diagnosis and therapy development.

The RNA-binding protein, IGF2BP3, plays a role in the 
regulation of mRNA stability during carcinogenesis [1]. There is, 
however, little information about their paralogue-specific func-
tions in tumor cells [5]. IGF2BP3 has recently been identified as 
a reader of m6A modification, exhibiting a preference for bind-
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ing to N6-methyladenosine-modified target mRNAs [1]. Mean-
while, IGF2BPs were shown to regulate the mRNA stability and 
modulate neural stem cell proliferation [6]. However, the biolog-
ical role of IGF2BP3 during OC development remains unclear.

In the present study, online databases profile was analyzed 
and found an up-regulation of IGF2BP3 associated with poor 
progression-free survival (PFS). Further mechanistic study 
demonstrated that IGF2BP3 regulates OC cell proliferation 
via modulating the mRNA stability of the downstream gene 
PLAGL2.

Materials and Methods

Specimens and cell culture

The cancerous and normal ovarian specimens were procured 
from patients who received treatment at the Department of 
Oncology of Xijing Hospital during the period from March to 
December 2022. All participants included in the study were his-
tologically confirmed to have serous ovarian cancer (n = 14), 
mucinous ovarian cancer (n = 1), endometrioid ovarian cancer 
(n = 3), and clear cell ovarian cancer (n = 2). Tissue samples 
were promptly obtained following resection and subsequently 
divided into three segments to facilitate RNA isolation, protein 
extraction, and storage in liquid nitrogen for subsequent analy-
ses. Cells used in this research were obtained from the American 
Type Culture Collection (ATCC, USA). The study protocol re-
ceived ethical approval from the Fourth Military Medical Uni-
versity affiliated Xijing Hospital’s ethics committee (registra-
tion number: KY20173012-1). The ES-2 and SKOV3 ovarian 
cancer cells were grown at 37 °C in incubators with 5% CO2 in 
RPMI-1640 medium supplemented with 10% fetal bovine se-
rum, 1% penicillin/streptomycin, and 10% fetal bovine serum.

Bioinformatics analysis

In order to measure the expression levels of IGF2BP3 and 
PLAGL2, the RNA-sequence transcriptome data and relative 
clinicopathological characteristics for 419 OC tissues and 88 
adjacent tissues were obtained from the TCGA database[7]. 
The datasets for analyzing the effects of IGF2BP3 knockdown 
in OC cells on expression profiling were obtained from the 
GEO database (GSE109604). Data of IGF2BP3 expression in 
ovarian cancer tissues were obtained from the GEO database 
GSE154600 (single-cell sequencing) and GSE14407 (micro-
array). The Human Protein Atlas database was used to verify 
the protein level of IGF2BP3 [8]. Exploring the PLAGL2 en-
richment data in m6A modification profiling sequencing of 
OC tissues was obtained from the GEO dataset (GSE119168). 
Enrichment bio-pathways were characterized using the Clue-
GO (version 2.4.1) and CluePedia (version 1.4.2) plugins in 
Cytoscape [3]. IGF2BP3 binding motifs were obtained from 
the RBPmap website [9]. IGF2BP3 m6A RNA methylation site 
on PLAGL2 3'-UTR was predicted in the online tool m6AVar 
website [10]. Kaplan-Meier survival curves were drawn in the 
online tool KMplot program website [11].

Immunohistochemistry (IHC)

IHC was performed following the previously described proto-
col [12]. Paraformaldehyde was used to fix the tissue samples, 
followed by embedding them in paraffin. Antigen retrieval for 
IHC analysis was achieved through heat-induced treatment 
with ethylenediaminetetraacetic acid (EDTA) buffer. To in-
hibit endogenous peroxidase activity, 3% H2O2 was utilized. 
The sections were then blocked with 5% goat serum for a du-
ration of 1 h, followed by incubation with antibodies targeting 
IGF2BP3 (ab179807, 1:200, Abcam, MA, USA) or PLAGL2 
(ab139509, 1:200, Abcam). Following this, the sections were 
subjected to a 1-h incubation period with the secondary anti-
body (BA1054, 1:1,500, Boster, China). Afterwards, the sec-
tions underwent processing using an ABC HRP kit and a DAB 
substrate kit (Zhongshan Jinqiao Biotechnology Co., Ltd, 
China). Nuclei were counterstained with hematoxylin. Sub-
sequently, the sections were washed with water to eliminate 
any excess substrate, dehydrated, and finally covered with a 
mounting medium. The evaluation of images was performed 
using the IHC profiler plugin in ImageJ (NIH, USA).

CellTiter 96 AQueous one-solution cell proliferation assay 
(MTS)

ES-2 and SKOV3 cells were initially plated at a density of 5,000 
cells per well in a 96-well plate and maintained in a standard 
growth medium for the designated time periods. This was fol-
lowed by an evaluation of cell proliferation using the CellTiter 
96 aqueous one-solution cell proliferation assay kit from Pro-
mega (MTS assay), according to manufacturer’s instructions. In 
order to maintain uniformity, the MTS signal values for each 
cell line were adjusted to account for the time elapsed since the 
cells were sub-cultured, approximately 5 or 24 h prior [13].

Plasmid construction and lentivirus packaging

The coding sequences of IGF2BP3 and PLAGL2 were am-
plified from cDNA extracted from SKOV3 cells and were 
constructed into the pCDNA3.0 vector (Invitrogen). The 
PLAGL2 untranslated region (3'-UTR) containing wildtype 
or mutated m6A modification site was amplified from ES-
2-derived cDNA, and the resulting products were engineered 
into the luciferase reporter pGL3-basic plasmid (Promega). 
All gene modifications were validated by sequencing. The 
shRNA sequences and scramble sequence were designed and 
synthesized, followed by their cloning into pLKO.1 (Ad-
dgene, Cambridge, MA, USA; Plasmid 30323). Subsequently, 
lentivirus packaging was carried out in 293T cells. The virus 
present in the culture medium was obtained by collecting 
the supernatant and utilized for infecting the OC cells. Af-
ter a transduction period of 48 h, the cells were subjected to 
selection using 5 mg/L Blasticidin S (Sigma, St. Louis, MO, 
USA) in order to establish stable cell lines. Primers used for 
plasmid construction and lentivirus packaging are as fol-
lows: IGF2BP3 ORF (F: 5'-ATGAACAAACTGTATATCG-
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GAAAC-3', R: 5'-TTACTTCCGTCTTGACTGAGGTG-3'), 
PLAGL2 ORF (F: 5'-CATGACCACATTTTTCACCAG-3', 
R: 5'-TACTGGAATGCTTGATGGAAAC-3'), PLAGL2 3'-
UTR (F:5'-CATCTTCCATGACTGCATTTG-3', R: 5'-CTTC-
CTCCTTTGCTATCCACAC-3'), PLAGL2 3'-UTR mut (F: 
5'-CTCATCCTTCTCTTGAACTGGA-3', R: 5'-TTCTTCCC-
CTCTCCAGATCAAGA-3'), shIGF2BP3-1 sequence (5'-GC-
CTCATTCTTATTTCAAGAT-3'), shIGF2BP3-2 sequence (5'- 
CGGTGAATGAACTTCAGAATT-3'), shMETTL3 (5'-GCCT 
TAACATTGCCCACTGAT-3'), shMETTL14(5'-CCATGTAC 
TTACAAGCCGATA-3'), and scramble (as control) (5'-TTC 
TCCGAACGTGTCACGT-3').

5-ethynyl-2′-deoxyuridine (EdU) incorporation assay

ES-2 and SKOV3 cells, which had been transduced with lenti-
virus, were seeded at a density of 4 × 103 cells/well into 96-well 
plates prior to treatment. Following the designated treatment, 
the cells were subjected to a 30-min pulse with EdU (Click-iT 
EdU imaging kits, Invitrogen, Paris, France) at room tempera-
ture, while being shielded from light. Following fixation in 2% 
paraformaldehyde, the cells were detected for EdU according to 
the manufacturer’s protocol [14]. DAPI was then used to stain 
the nuclei of the OC cells. For each dish, six fields were random-
ly selected using an imaging system microscope (Evos FL Auto 
2, Invitrogen). The cells were counted using ImageJ software.

Dual luciferase reporter assays

An analysis of the interaction between PLAGL2 3'-UTR and 
IGF2BP3 or METTL14 was performed using the dual lucif-
erase reporter assay kit (Promega, USA) as previously outlined 
[3]. Briefly, ES-2 cells were co-transfected vectors encoding 
mutated or wildtype PLAGL2 3'-UTR and IGF2BP3 or MET-
TL14 using lipofectamine 2000. Meanwhile, plasmids express-
ing Renilla luciferase were transfected into each group of cells 
to normalize the transfection. After transfection, the cells were 
solubilized in the lysis buffer provided by the kit 48 h later, and 
luciferase activities from each group were determined using a 
multi-plate reader. An equation was developed to normalize 
relative activity to the activity of Renilla luciferase.

Quantitative real-time PCR analysis (RT-qPCR)

The cells were extracted from TRIzol reagent with Super-
Script II reverse transcriptase (Invitrogen, USA) prior to 
RNA extraction. A RT-qPCR analysis was conducted in OC 
cells to determine IGF2BP3 and PLAGL2 expression levels. 
For RT-qPCR analysis, the SYBR Premix Ex Taq II from Ta-
kara was employed. The gene expression levels being studied 
were normalized against the abundance of GAPDH mRNA 
[15]. Primers are as follows: IGF2BP3 (F: 5'-TATATCG-
GAAACCTCAGCGAGA-3'; R: 5'-GGACCGAGTGCTCAA 
CTTCT-3'); PLAGL2 (F: 5'- GAGTCAAGTGAAGTGCCAA 
TGT-3'; R: 5'-TGAGGGCAGCTATATGGTCTC-3'); METTL3  

(F: 5'- TTGTCTCCAACCTTCCGTAGT-3'; R: 5'-CCAG 
ATCAGAGAGGTGGTGTAG-3'); METTL14 (F: 5'-GAAC 
ACAGAGCTTAAATCCCCA-3'; R: 5'- TGTCAGCTAAAC-
CTACATCCCTG-3'); GAPDH (F: 5'- GGAGCGAGATCC-
CTCCAAAAT-3'; R: 5'-GGCTGTTGTCATACTTCTCATG 
G-3').

PLAGL2-specific m6A RT-qPCR analysis

The Magna MeRIP™ m6A Kit (17-10499, MERCK, USA) was 
used to determine the m6A modifications on PLAGL2, as previ-
ously described [2]. In brief, a total of 100 µg of RNA was sub-
jected to metal-ion-induced fragmentation and subsequent purifi-
cation. The resulting RNA was then subjected to incubation with 
either mouse IgG (ab190475, Abcam) or the antibody against 
m6A (ab284130, Abcam), followed by incubation with magnetic 
beads (ab214286, Abcam) at a temperature of 4 °C overnight. 
The immobilized methylated RNAs were subsequently precipi-
tated, eluted, and recovered using the RNeasy kit (Qiagen). The 
fragmented RNA was then utilized for the detection of PLAGL2-
specific m6A modification through RT-PCR, employing the fol-
lowing primers: F: 5'-TTCTCCAAGTACATTATGACC-3'; R: 
5'-AGGGGATGGGGAGGTGACGG-3'.

Western blotting analysis

Western blotting was conducted by using the following antibod-
ies: rabbit anti-IGF2BP3 (ab179807, 1:500, Abcam), rabbit an-
ti-PLAGL2 (ab139509, 3:1,000, Abcam), rabbit anti-METTL3 
(ab195352, 1:500, Abcam), rabbit anti-METTL14 (ab309096, 
1:400, Abcam), and rabbit anti-β-actin (ab8827, 1:1,000, Ab-
cam). The β-actin (ab7817, 1:2,000, Abcam) was employed as 
the internal control. This image was captured using a gel imag-
ing system (Odyssey, LI-COR Biosciences, USA).

Measurement of mRNA half-life

ES-2 cells were subjected to treatment with actinomycin D 
(ACD, 5 µg/mL, ab291108, Abcam) for the specified dura-
tions (0, 1, 2, 3, and 4 days). Subsequently, RNA extraction 
and RT-qPCR were performed to assess the mRNA expression 
of PLAGL2 at each time interval. The PLAGL2 mRNA levels 
on days 1, 2, 3, and 4 were standardized against the level ob-
served on day 0, enabling the evaluation of its half-life.

RNA immunoprecipitations (RIP)

For the RIP experiment, a total of 2 × 107 ES-2 cell extracts 
were prepared on ice using RIP buffer (ab156034, Abcam). The 
extracts were then sonicated on ice and treated with DNase for 
30 min. Immunoprecipitation was carried out by incubating 
protein A/G precleared nuclear lysates with IgG (ab172730, 
Abcam), and IGF2BP3 (ab313556, Abcam) antibodies over-
night. Following washing with RIP buffer, RNA/antibody 
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complexes were eluted using SDS according to the standard 
protocol [16]. The co-purified RNA was extracted and quanti-
fied using qRT-PCR with the specified primers: METTL3 F: 
5'-CCCCAAGGCTTCAACCAGG-3'; R: 5'-TATCTCCTG 
GCACTCGCAAGA-3'; METTL14 F: 5'- ACTGACCTAAA 
ATCAGTCT-3'; R: 5'-TCAAACTGAGTCTTTGGTGG-3'.

RNA pulldown assays

IGF2BP3 was labeled using the Pierce™ RNA 3' end desthio-
biotinylation kit (Pierce, USA) according to the provided 
protocol. The ES-2 lysate was incubated with either purified 
biotinylated PLAGL2 or anti-PLAGL2 at a temperature of 4 
°C for a duration of 1 h. Subsequently, streptavidin-agarose 
beads were added to the lysate in order to precipitate the RNA-
protein complexes. The beads were then subjected to washing 
with a washing buffer and eluted using laemmli buffer. Finally, 
a western blot assay was performed to ascertain the protein 
that interacted with the RNA.

Human OC xenografts in immunodeficient mice

The animal studies were carried out in compliance with the pro-
tocol that underwent review and approval by the Animal Care 
and Use Committee of the Fourth Military Medical University, 
adhering to the guidelines established by the National Institutes 
of Health (eighth edition, NIH, 2001). During the experiment, 
eight nude mice (6 - 8 weeks old) were randomly divided into 
two groups, and each mouse received 200 µL RPMI-1640 
medium supplemented with Matrigel (Sigma) containing 1 × 
105 ES-2 cells (transduced with control or IGF2BP3-targeting 
shRNA) in the unilateral flank area subcutaneously. The mice 
were subjected to measurement of tumor volumes every week 
and monitored for body weight changes and other side effects. 
Tumor volume was determined by the formula V = 1/2 × L 
× W2, where L and W separately represent tumor length and 
width. Mice were euthanized after 30 days to avoid severe dis-
comfort in the control group. Tumor tissues were collected for 
biochemical or histological assays.

Statistical analysis

Statistical analyses were performed using GraphPad Prism v. 
7.0 (GraphPad, CA). The results are reported as means ± stand-
ard deviation (SD) from at least three independent experiments. 
The Student’s t-test was utilized for continuous variables, and 
statistical significance was determined by a P-value < 0.05.

Results

The expression of IGF2BP3 is elevated in OC

To examine the correlation between IGF2BP3 and the ad-
vancement of OC, TCGA data of OC tissues were analyzed. 

TCGA data revealed that IGF2BP3 was notably elevated in the 
OC tissues compared to the adjacent tissues (Supplementary 
Material 1, www.wjon.org; Fig. 1a). The single cell sequenc-
ing data (GSE154600) revealed that IGF2BP3 expression was 
significantly higher in the malignant epithelial cells than in 
the normal epithelial cells from OC tissues (Supplementary 
Figure 1a, b www.wjon.org). Another GEO data (GSE14407) 
confirmed that IGF2BP3 was increased in the OC tissues (Sup-
plementary Figure 1c, d, www.wjon.org). Furthermore, the im-
munoblotting, RT-qPCR, and IHC assay of our collected clini-
cal samples also demonstrated the heightened expression of 
IGF2BP3 in OC tissues (Fig. 1b-d). Data from Human Protein 
Atlas database showed enhanced IGF2BP3 protein level in OC 
tissues (Supplementary Figure 1e, www.wjon.org). Finally, the 
utilization of Kaplan-Meier plot analysis on OC cohorts dem-
onstrates that OC patients with elevated levels of IGF2BP3 
experience a significantly diminished PFS compared to those 
with lower levels of IGF2BP3 (Fig. 1e). Consequently, these 
results strongly indicate that the IGF2BP3 is upregulated and 
closely associated with a detrimental prognosis for OC pa-
tients.

Silencing IGF2BP3 inhibits OC cells proliferation

We identified the high IGF2BP3 expression in OC tissues and 
poorer PFS in OC patients, but IGF2BP3-specific roles remain 
poorly understood. To explore the functional importance of 
IGF2BP3 in OC, we analyzed differentially expressed genes 
in IGF2BP3 knockdown in OC. ES-2 cells were determined 
(GSE109604). Subsequently, the identified genes were inte-
grated into biological pathways according to their functional 
context. The result indicated that downregulated genes in 
IGF2BP3-depleted cells were enriched in cell proliferation 
process, mRNA stability, and other biological pathways (Fig. 
2a). To characterize the functions of IGF2BP2 in OC cells in 
vitro, two IGF2BP3-targeting shRNAs (sh-IGF2BP3-1 and sh-
IGF2BP3-2) were delivered into OC cells (ES-2 and SKOV3) 
and the short hairpin knockdown efficiency was identified in 
mRNA and protein level (Supplementary Figure 2a-d, www.
wjon.org). The shRNA with higher knockdown efficiency 
(sh-IGF2PB3-1) was employed for later investigations (sh-
IGF2BP3). Cell proliferation by MTS and EdU assays was 
performed to evaluate the role of IGF2BP3 in OC cell growth. 
The results revealed that IGF2BP3 inhibition substantially sup-
pressed growth in OC cells (Fig. 2b-g). These results indicate 
that IGF2BP3 knockdown suppresses OC cell proliferation.

IGF2BP3 downregulates PLAGL2 in OC cells and tissues

To elucidate the mechanism by which IGF2BP3 regulates 
OC cell proliferation, we analyzed the microarray data of IG-
F2BP3-depleted ES-2 cells (GSE109604). We also explored 
the genes positively correlated with IGF2BP3 in the TCGA da-
tabase. Then, we overlapped these two gene sets and identified 
eight genes positively correlated with IGF2BP3 and down-
regulated in IGF2BP3-deficient OC cells (Fig. 3a, b). Among 
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these candidate genes, PLAGL2 attracted our attention for 
several reasons. First, it exhibits a high correlation coefficient 
with IGF2BP3 with a low P value (Cor = 0.5, P = 4.22 × 10-28, 
Supplementary Material 2, www.wjon.org); second, PLAGL2 
activates the pro-oncogenic signaling, increasing cancer cell 
proliferation [17]. Nevertheless, how PLAGL2 modulates OC 
progression remains largely unknown. Meanwhile, bioinfor-
matics analysis (Fig. 3c) and western blotting analysis (Fig. 3d) 
revealed that PLAGL2 is significantly higher in OC tissues. 
To investigate whether PLAGL2 expression level changes in 
tumor tissues, we analyzed PLAGL2 IHC staining was highly 
expressed in ovarian tissue (Fig. 3e). Moreover, the Kaplan-
Meier plot revealed that patients with a high level of PLAGL2 
exhibited poor PFS compared with those with low PLAGL2 
expression (Fig. 3f). Furthermore, we also noticed that in 
IGF2BP3-deficient OC cells, the expression of PLAGL2 was 

downregulated in mRNA and protein levels (Fig. 3g, h). Con-
sistently, the level of IGF2BP3 is identified correlated posi-
tively with PLAGL2 in OC tissue (Fig. 3i), which confirmed 
the positively regulation relationship. These findings further 
confirmed the correlation between IGF2BP3 and PLAGL2 in 
OC cells. These data indicate that downregulating IGF2BP3 
may suppress the PLAGL2 expression in OC cells and tissues.

Silencing IGF2BP3 attenuates OC cell proliferation in a 
PLAGL2-dependent manner

As we identified PLAGL2 to be a functional downstream gene 
of IGF2BP3 in OC cells, we next analyzed the biological role 
of PLAGL2 in OC cell proliferation by modulating the expres-
sion of IGF2BP3. We first upregulated PLAGL2 in parental 

Figure 1. Insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) expression is increased in ovarian cancer (OC). 
(a) The mRNA expression of IGF2BP3 in OC (n = 419) tissues versus in the adjacent tissues (n = 88) from The Cancer Genome 
Atlas (TCGA) data. ****P < 0.0001, OC vs. normal ovary. (b) Representative images of western blot analysis demonstrating the 
protein level of IGF2BP3 in normal (N) and cancerous (T) ovarian tissues. (c) The expression of IGF2BP3 was analyzed by qRT-
PCR and normalized to GAPDH in 20 pairs of normal and cancerous ovarian tissues. (d) Representative immunohistochemistry 
(IHC) images reflecting the IGF2BP3 expression in OC and normal ovarian tissues. Scale bars: 50 µm (left) and 200 µm (right). 
(e) Kaplan-Meier curves of progression-free survival (PFS) for OC patients with high (n = 410) and low (n = 1,025) levels of IG-
F2BP3 (probe ID 203819_s_at).
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OC cells (Figure 3, www.wjon.org) and IGF2BP3-depleted 
cells (Fig. 4a-d) and found that overexpressing PLAGL2 sig-
nificantly reconstituted the IGF2BP3 knockdown-mediated 
downregulation of PLAGL2. Then, cell proliferation was in-
vestigated, and we found that silencing IGF2BP3 significantly 
suppressed the OC cell proliferation, while this inhibitory ef-
fect was compromised by further overexpressing PLAGL2 
(Fig. 4e-h, Supplementary Figure 4, www.wjon.org). This in-

dicated that IGF2BP3 knockdown inhibits OC cell prolifera-
tion via downregulating PLAGL2.

IGF2BP3 binds PLAGL2 and regulates PLAGL2 expres-
sion

IGF2BP3, an mRNA-binding protein, belongs to a distinct fam-

Figure 2. Insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) knockdown suppresses ovarian cancer (OC) cell 
proliferation. (a) The pathways impacted by the silencing of IGF2BP3 in OC cells were examined using the clueGO and cluePe-
dia plugins of the cytoscape software. Through this analysis, the cluster of cell proliferation and mRNA stability pathway were 
found to be enriched and were identified based on statistical analysis. Cell proliferation assay results of MTS assay (b and c) 
and 5-ethynyl-2′-deoxyuridine (EdU) assay (d-g) evaluating the effect of IGF2BP3 depletion on the growth in ES-2 and SKOV3 
cells (*P < 0.05, sh-IGF2BP3 vs. sh-control). (d-g) Representative images (d and f) and quantified results (e and g) of EdU as-
say determining the effect of IGF2BP3 depletion on the growth in ES-2 (upper panel) and SKOV3 (lower panel) cells. Error bars 
represent mean ± SD from three experiments. **P < 0.01, sh-IGF2BP3 vs. sh-control.
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Figure 3. PLAGL2 is a downstream target of insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) in ovarian 
cancer (OC). (a) Venn diagram showing genes from indicated datasets were positively correlated with IGF2BP3 and/or down-
regulated in IGF2BP3-deficient OC cells. (b) Genes from the Venn diagram that are both correlated with IGF2BP3 and down-
regulated in IGF2BP3-dificient OC cells. (c) The mRNA expression of PLAGL2 in OC tissues (n = 419) versus in the adjacent 
tissues (n = 88) from The Cancer Genome Atlas (TCGA) data. ****P < 0.0001, OC vs. normal ovary. (d) Western blot analysis of 
PLAGL2 expression in paired normal and cancerous ovarian tissues. (e) Representative immunohistochemistry (IHC) images 
showing PLAGL2 expression in cancerous and normal ovarian tissues. Scale bars: 50 µm (left) and 200 µm (right). (f) Kaplan-
Meier curves of progression-free survival (PFS) for OC patients with high (n = 647) and low (n = 788) levels of PLAGL2 (probe 
ID 202925_at). (g and h) Results of RT-qPCR (h) and western blot analysis (h) detecting the expression of PLAGL2 in ES-2 and 
SKOV3 cells transduced with or without IGF2BP3-targeting shRNAs. (i) Paired 20 normal and cancerous ovarian for qRT-PCR 
assay. Pearson’s correlation analysis of the relative expression levels of IGF2BP3 and PLAGL2.
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ily of m6A readers, which effectively targets numerous mRNA 
transcripts through recognition of the consensus sequence, 
thereby augmenting both mRNA stability and translation [2]. 
Using an online bioinformatics tool RBPmap, we found that 
IGF2BP3 preferentially binds to the m6A modification core mo-
tif (Fig. 5a). The binding site of IGF2BP3 on PLAGL2 mRNA 
was predicted (Fig. 5b). Next, we sought to investigate whether 
IGF2BP3 interacted with PLAGL2 mRNA. Consistent with the 
bioinformatics, our RIP-qPCR assays demonstrated IGF2BP3 
could precipitated with the mRNA of PLAGL2 in ES-2 cells 
(Fig. 5c). The presence of IGF2BP3 within the PLAGL2 sense 
RNA probe pull-down cell samples in ES-2 cells was confirmed 
through western blot analysis (Fig. 5d). Then, to test the im-
pact of IGF2BP3 on PLAGL2 mRNA stability, we determined 
the PLAGL2 half-life mRNA in control or IGF2BP3-depleted 
OC cells. We found accelerated PLAGL2 mRNA decay in IG-
F2BP3-deficient ES-2 cells (Fig. 5e). IGF2BP3 knockdown re-
sulted in the inhibition of exogenous mRNA decay, as evidenced 

by a decrease in the half-life of PLAGL2 mRNA from 62 to 
40 min (Fig. 5f). These data suggested that IGF2BP3 bound to 
PLAGL2 mRNA and increased its stability.

We next want to know how IGF2BP3 regulated PLAGL2 
mRNA stability. Recent studies revealed that m6A modifications 
could enhance or disrupt RNA stability, which depends on the 
m6A readers’ specificity, through dynamic interplays with RNA-
binding proteins [18]. So, we evaluated whether the IGF2BP3 
binding to the PLAGL2 mRNA is associated with m6A modi-
fication. Data from the GEO dataset (GSE119168) of clinical 
patients’ samples showed that m6A-modified PLAGL2 mRNAs 
in the OC tissues were much higher than in the normal tissues 
(Fig. 5g). Additionally, the silencing of PLAGL2 m6A writers, 
METTL3 and METTL14, also reduces the level and half-life 
of PLAGL2 mRNA (Fig. 5h, i, Figure 5, www.wjon.org). RIP 
assay showed that METTL3 or METTL14 knockdown also re-
duced PLAGL2 enrichment in the anti-IGF2BP3 immunopre-
cipitates in the ES-2 cells (Fig. 5j). These findings revealed that 

Figure 4. Silencing insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) attenuates ovarian cancer (OC) cell 
proliferation in a PLAGL2-dependent manner. (a, b, c, and d) The expression of PLAGL2 in IGF2BP3-depleted and PLAGL2 
overexpressing cells was assessed using RT-qPCR and western blot analysis in ES-2 cells (a and b) and SKOV3 cells (c and d). 
(*P < 0.05, **P < 0.01). Cell proliferation results of MTS assays (e and g) and EdU (f and h) assay using ES-2 cells and SKOV3 
cells under indicated conditions (IGF2BP3-depleted and PLAGL2 overexpressing cells) (*P < 0.05).
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IGF2BP3 regulated PLAGL2 mRNA stability and their direct 
interaction was dependent on m6A modification.

m6A modification mediates stabilization of PLAGL2 
mRNA by IGF2BP3

To further explore the m6A mRNA mechanism that IGF2PB3 
regulates PLAGL2 mRNA stability in OC, we predicted the 
m6A modification site in PLAGL2 transcripts using an online 
tool m6AVar. The results revealed a potential m6A site located 
in the 3'-UTR 979-989 bp region with very high confidence 
(Fig. 6a). Using PLAGL2-specific m6A RT-qPCR assay, this 
region was confirmed as an m6A modification site (Fig. 6b). 

Meanwhile, RIP assay also showed that PLAGL2 3'-UTR 
could be immunoprecipitated by METTL3 and METTL14, re-
spectively (Fig. 6c), indicating the involvement of these writ-
ers in the PLAGL2 m6A modification. To further illustrate the 
molecule mechanism, we generated reporter plasmids express-
ing PLAGL2 3'-UTR containing wildtype or mutated m6A site 
(Fig. 6d) and performed a dual luciferase reporter assay. We 
observed that IGF2BP3 significantly increased the luciferase 
activity in cells expressing wildtype 3'-UTR of PLAGL2 but 
not in those expressing mutated PLAGL2 3'-UTR (Fig. 6e). 
Conversely, both silence of IGF2BP3 and m6A writer MET-
TL14 inhibited the luciferase activity with wildtype m6A mod-
ification site of PLAGL2 3’-UTR but failed to suppress the lu-
ciferase activity with mutant m6A modification site of PLAGL2 

Figure 5. Insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) binds with PLAGL2 mRNA and regulates its stabil-
ity. (a) Consensus sequences of IGF2BP3-binding sites by motif prediction. (b) The binding site of IGF2BP3 on PLAGL2 mRNA 
was predicted. The 3′-UTR sequence with potential binding sites (blue) is shown. (c) Enrichment of PLAGL2 in ES-2 cells per-
formed RIP of IGF2BP3 and control using anti-flag antibody from nuclear extractions and identified the associated PLAGL2 mR-
NAs by RT-qPCR. (***P < 0.001, **P < 0.01). (d) The cell lysate of ES-2 cells was utilized in an RNA pulldown assay employing 
biotin-labeled PLAGL2 and PLAGL2 antisense, followed by western blotting analysis. (e) Result of the mRNA half-life measure-
ment showing the decaying of PLAGL2 mRNA in parental and IGF2BP3-depleted cells (*P < 0.05, sh-IGF2BP3 vs. sh-control). 
(f) Half-life values in the same treatment groups. (g) Results of bioinformatics analysis of online dataset (GSE90639) revealing 
the enrichment of PLAGL2 m6A-modified RNA by IGF2BP3 (***P < 0.001, m6A probe vs. unmethylated probe). (h) Result of the 
mRNA half-life measurement showing the decaying of PLAGL2 mRNA in parental and METTL3- or METTL14-depleted cells (*P 
< 0.05, vs. sh-control). (i) Half-life values in the same treatment groups. (j) Enrichment of PLAGL2 in parental and METTL3- or 
METTL14-depleted ES-2 cells performed RIP of IGF2BP3 and control using anti-flag antibody and identified the associated 
PLAGL2 mRNAs by RT-qPCR. Input percentage is shown (*P < 0.05).
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3’-UTR (Fig. 6f, g). Moreover, silence of the m6A writer MET-
TL14 completely abrogated the m6A reader IGF2BP3-induced 
upregulation of luciferase activity with wildtype m6A modifica-
tion site of PLAGL2 (Fig. 6h). Altogether, these results suggest-
ed that m6A modification mediated upregulation of PLAGL2 
through corporation of IGF2BP3 and METTL14.

IGF2BP3 knockdown impairs tumor growth in vivo

To examine the biological effect of IGF2BP3 on OC progres-
sion in vivo, we generated a subcutaneous xenograft model using 
ES-2 cells with stable knockdown of IGF2BP3 or control in nude 
mice. The in vivo data revealed that silencing IGF2BP3 signifi-

cantly inhibited the tumor growth in nude mice bearing human 
OC xenografts compared with the sh-control, as tumor tissues ex-
cised from nude mice shown (Fig. 7a). Meanwhile, the tumor vol-
ume and weight were decreased in IGF2BP3 knockdown ES-2 
cells xenografts (Fig. 7b, c). In addition, reduced expression of 
IGF2BP3 and PLAGL2 at transcriptional and translational lev-
els were confirmed in xenografts tissues (Fig. 7d, e). These data 
above suggested a vital role of IGF2BP3 in OC growth in vivo.

Discussion

The unregulated IGF2BP3 in tumors and different cancers in-
dicates IGF2BP3 serves oncogenic roles. However, as an m6A 

Figure 6. Identification of m6A methylation between PLAGL2 mRNA and insulin-like growth factor 2 mRNA-binding protein family 
(IGF2BP3). (a) The prediction of the PLAGL2 m6A RNA methylation site using online tool (m6Avar). (b) Results of PLAGL2-specific 
m6A RT-qPCR assay (*** P<0.001, m6A vs. IgG). (c) Results of RIP assay showing the interactions between PLAGL2 and METTL3/
METTL14 (***P < 0.001, vs. IgG). (d) A schematic diagram showing the wildtype and mutated methylation site on PLAGL2 3'-UTR. 
(e) Results of dual luciferase assay in ES-2 cells co-transfected with vechicle vector or IGF2BP3-overexpressing vector and reporter 
plasmid containing wildtype or mutant PLAGL2 3'-UTR (*P < 0.05, **P < 0.01, vs. pC3). (f) Results of dual luciferase assay in ES-2 
cells with or without IGF2BP3 knockdown transfected with reporter plasmid containing wildtype or mutant PLAGL2 3'-UTR (*P < 0.05, 
vs. WT sh-control). (g) Results of dual luciferase assay in ES-2 cells co-transfected with vechicle vector or METTL14-targeting shRNA 
and reporter plasmid containing wildtype or mutant PLAGL2 3'-UTR (*P < 0.05, vs. WT sh-control). (h) Relative luciferase activity 
of PLAGL2 wildtype 3'-UTR or mutation in METTL14 stable knockdown or control ES-2 cells with ectopic expression of IGF2BP3.
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reader, the sets of significantly IGF2BP3 depletion caused 
by dysregulated biological pathways in OC are unknown. 
In mechanism research, IGF2BP3 could bind to 3'-UTR of 
PLAGL2 to maintain the mRNA stability. In in vivo experi-
ments, IGF2BP3 knockdown suppressed OC cell proliferation 
via inhibiting PLAGL2 expression. In summary, our results 
showed that PLAGL2 mediates the main function of IGF2BP3 

knockdown on OC proliferation inhibition through mRNA sta-
bility regulation (Fig. 8).

In this study, by analyzing the RNA-seq results obtained 
from the TCGA database, we identified genes positively cor-
related with IGF2BP3 and found PLAGL2 was the most prom-
ising target gene. Meanwhile, we explored the genes in GEO 
dataset (GSE109604) and found PLAGL2 mRNA was pulled 

Figure 7. Insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) knockdown impairs tumor growth in vivo. (a) Im-
ages showing tumors harvested from each group. (b) Plotted data depicting tumor growth curves in different groups (n = 4) (*P 
< 0.05, **P < 0.01, vs. sh-control). (c) Analyzed data showing the individual tumor weight from each group (n = 4) (*P < 0.05, vs. 
sh-control). (d and e) Results of RT-qPCR (d) and representative images of western blot analysis (e) showing the expression of 
IGF2BP3 and PLAGL2 in harvested xenograft tumors (*P < 0.05, vs. sh-control).

Figure 8. A schematic diagram for the mechanisms of insulin-like growth factor 2 mRNA-binding protein family (IGF2BP3) 
knockdown on ovarian cancer proliferation inhibition is mediated by PLAGL2 through mRNA stability regulation. In mechanism 
research, knockdown IGF2BP1 inhibits cell proliferation and is downstream gene PLAGL2 mRNA stability. Like IGF2BP1, un-
regulated PLAGL2 indicates a poor prognosis in ovarian cancer. Together this indicates that IGF2BP1 knockdown represses 
ovarian cancer cell proliferation largely by regulating target gene PLAGL2 mRNAs stability.
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down by IGF2BP3. Subsequently, we identified an IGF2BP3 
m6A-dependent binding site on PLAGL2 3'-UTR. Based on 
these observations, we speculated that IGF2BP3 may recog-
nize the PLAGL2 mRNA and regulate its stability. A recent 
study reported that m6A writer METTL14 promotes the MYC 
mRNA stability, in which IGF2BP3-mediated-m6A-depend-
ent mechanism may also involve [2]. In our study, we also 
found that PLAGL2 mRNA stability was maintained by the 
IGF2BP3-mediated-m6A-dependent mechanism. More impor-
tantly, to the best of our knowledge, our study was the first 
to report that IGF2BP3-involved m6A methylation mediated 
stabilization of PLAGL2 and regulated OC growth.

The involvement of RBP in tumor progression and the un-
derlying mechanisms have been documented in recent years 
[19]. Among these reported RBPs, IGF2BP3 has been recog-
nized as an oncogene in various types of cancers including en-
dometrial carcinoma and nasopharyngeal carcinoma [19, 20]. 
IGF2BP3 has been implicated in tumor metastasis and unfa-
vorable survival outcomes among patients with nasopharyn-
geal carcinoma [20]. Furthermore, elevated levels of IGF2BP3 
have been observed to correlate with poorer overall survival 
and serve as a potential prognostic marker for lung adenocar-
cinoma [21]. Additionally, a prior investigation has provided 
evidence that IGF2BP3 facilitates the advancement of endo-
metrial carcinoma by augmenting the mRNA stability of E2F3 
[19]. Moreover, in the context of bladder cancer, IGF2BP3 has 
been observed to stimulate cellular proliferation and progres-
sion through the cell cycle, thereby facilitating tumorigenesis 
[22]. In recent research, it was discovered that the m6A “read-
er” IGF2BP3 exhibits the ability to recognize m6A-modified 
mRNAs and bolster their stability [2]. In line with these pre-
vious studies, we have shown that IGF2BP3 interacts with 
m6A-modified PLGAL2 mRNA at the consensus sequence to 
stabilize it to promote the tumor growth. Meanwhile, silencing 
IGF2BP3 facilitated the decaying of PLGAL2 mRNA, which 
ultimately suppressed the tumor cell proliferation. Consist-
ently, a recent study shows that IGF2BP3 recognizes the con-
sensus GG(m6A) and binds to their target mRNAs, including 
MYC and TMBIM6 [2, 23].

The carcinogenic effects of PLAGL2 have been observed 
in numerous malignancies and are commonly upregulated in 
various types of cancer, including OC and colorectal cancer 
[24-26]. PLAGL2 is responsible for activating pro-oncogenic 
signaling pathways, consequently enhancing cancer cell prolif-
eration, migration, and metastasis [25, 26]. Notably, PLAGL2 
has been demonstrated to facilitate cell proliferation in gastric 
cancer [17], and targeting PLAGL2 has been proven to effec-
tively suppress tumor proliferation and metastasis in colorectal 
cancer [27]. Under the scenario of OC, PLAGL2 shows an on-
cogenic role in enhancing ovarian tumorigenesis and promot-
ing malignant phenotypes of OC cells [25, 28]. These findings 
are consistent with our observations that elevated PLAGL2 is 
detected in cancerous ovarian tissues and is correlated with a 
negative prognosis for patients with ovarian cancer. Further-
more, our in vitro and in vivo data from the current study indi-
cate that decreased PLGAL2 is linked to inhibited cancer cell 
proliferation and diminished tumor growth, which is substanti-
ated by the abovementioned studies.

In this study, we have presented evidence supporting the 

significant involvement of disrupting IGF2BP3-mediated m6A 
modification in OC cell proliferation. Our findings suggest that 
the silencing of IGF2BP3 leads to a reduction in m6A meth-
ylation modification of PLAGL2, consequently compromising 
the mRNA stability of PLAGL2 in OC. Furthermore, our fu-
ture investigations indicate that targeting IGF2BP3-dependent 
networks may hold promise as a therapeutic strategy for OC.
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