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Chronic obstructive pulmonary disease (COPD) is a major public health problem and will be one of the
leading global causes of mortality over the coming decades. Much of the morbidity, mortality and health
care costs of COPD are attributable to acute exacerbations, the commonest causes of which are respira-
tory infections. Respiratory viruses are frequently detected in COPD exacerbations but direct proof of a
causative relationship has been lacking. We have developed a model of COPD exacerbation using exper-
imental rhinovirus infection in COPD patients and this has established a causative relationship between
virus infection and exacerbations. In addition it has determined some of the molecular mechanisms link-
ing virus infections to COPD exacerbations and identified potential new therapeutic targets. This new
data should stimulate research into the role of antiviral agents as potential treatments for COPD exacer-
bations. Testing of antiviral agents has been hampered by the lack of a small animal model for rhinovirus
infection and experimental rhinovirus infection in healthy volunteers has been used to test treatments
for the common cold. Experimental rhinovirus infection in COPD subjects offers the prospect of a model
that can be used to evaluate the effects of new treatments for virus-induced COPD exacerbations, and
provide essential data that can be used in making decisions regarding large scale clinical trials.
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1. Chronic obstructive pulmonary disease: aetiology and
pathophysiology

Chronic obstructive pulmonary disease (COPD) is defined as a
treatable and preventable disease characterised by progressive air-
flow limitation and an enhanced airway inflammatory response
(Vestbo et al., 2013). It is the most common chronic respiratory
condition in adults and it is estimated that 65 million people have
moderate to severe COPD resulting in 3 million deaths in 2005.
COPD develops in response to cumulative exposure to inhaled nox-
ious particles or gases that trigger pathological responses in the
lungs that eventually lead to the development of the disease. There
are a number of aetiological agents that are associated with the
development of COPD. In Western countries the prevalence of
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COPD is strongly related to cigarette smoking as tobacco smoke is
the main aetiological agent. From surveys carried out in developing
nations it has become apparent that the relationship between cig-
arette smoking and COPD is less strong in these countries (Buist
et al., 2007; Menezes et al., 2005), and other risk factors contribute
to the development of COPD including exposure to burning of bio-
mass fuels, outdoor air pollution and respiratory infections.

COPD is characterised by a number of pathological changes in
the lungs that include parenchymal destruction (emphysema),
inflammation of large airways (chronic bronchitis), inflammation
and destruction of small airways (bronchiolitis) and mucous
hypersecretion (Hogg and Timens, 2009). These pathological
changes lead to the characteristic physiological abnormalities of
airflow obstruction (manifested by a reduction in the forced expi-
ratory volume in 1 s (FEV1), and a reduction in the ratio of the FEV1

to the forced expiratory volume (FVC)), hyperinflation and im-
paired gas exchange that eventually lead to respiratory failure.

There are three main processes in the lungs that drive develop-
ment and progression of the disease namely pulmonary inflamma-
tion, oxidative stress and protease/antiprotease imbalance.
Exposure to inhaled irritants such as cigarette smoke triggers an
inflammatory response in the lungs and in those individuals that
develop COPD this response is exaggerated. Studies comparing
smokers with and without COPD have demonstrated greater num-
bers of neutrophils, macrophages and CD8+ T cells in the lungs of
COPD patients (Decramer et al., 2012; Di Stefano et al., 1996,
1998). These inflammatory cells release a host of biological medi-
ators including proteases such as neutrophil elastase and matrix
metalloproteases, whilst at the same time the antiprotease de-
fences of the lung are impaired (Pons et al., 2005). This protease/
antiprotease imbalance results in uninhibited proteolytic activity
and destruction of lung parenchyma. High levels of reactive oxygen
species are generated in COPD from both exogenous sources (to-
bacco smoke) and endogenous sources (inflammatory cells). When
these overwhelm the lungs’ anti-oxidant defences oxidative stress
results and induces multiple biological effects including induction
of pro-inflammatory cytokines and chemokines, mucous hyperse-
cretion, activation of proteases and damage to cellular components
including phospholipids, proteins and nucleic acids (Chiba et al.,
2012). Therefore the processes of airway inflammation, oxidative
stress and protease excess are interlinked and contribute to the
development of COPD.

Although COPD develops in response to inhaled noxious agents,
once the disease has developed it appears to be autonomous of the
original stimulus. Studies of ex-smokers with COPD have demon-
strated that the airway inflammation is indistinguishable from
COPD patients who continue to smoke (Gamble et al., 2007). There-
fore it has been suggested that other mechanisms such as autoim-
munity and infection may perpetuate the on-going inflammation
in COPD, even after exposure to the initiating agent has been re-
moved (Decramer et al., 2012).
2. Public health importance of COPD and its current and future
economic impact

COPD is an enormous public health problem and its impact is
expected to increase in the future. In 2002 COPD was the fifth lead-
ing cause of death worldwide and is predicted to be the 4th leading
cause of death by 2030 (Mathers and Loncar, 2006). COPD develops
after many years of exposure to the relevant aetiological agent and
therefore the current prevalence of COPD reflects exposure to risk
factors that has occurred in previous decades. In Western countries
the prevalence of COPD is expected to remain stable for some years
despite reductions in smoking rates. This reflects previous smoking
rates, an ageing population and improvements in therapies for
respiratory and cardiovascular diseases that have reduced mortal-
ity in COPD (Feenstra et al., 2001). Much of the increase in the glo-
bal prevalence of COPD in the future is expected to occur in
middle-income countries with large populations such as China, In-
dia, Turkey, South Africa and Indonesia. Smoking rates in these
countries remain high, and there is also a high burden of other risk
factors such as use of biomass fuels, outdoor pollution and respira-
tory infections. Therefore in these countries a ‘perfect storm’ of risk
factors will contribute to a continuing global epidemic of COPD for
the foreseeable future (Finney et al., 2013; van Zyl Smit et al.,
2010).
3. COPD exacerbations

COPD patients experience a varying level of chronic symptoms
punctuated by periods of sustained acute deterioration during
which they experience increases in dyspnoea, sputum production,
sputum purulence and cough. These episodes are termed ‘acute
exacerbations’ and are associated with increased airflow limitation
and dynamic hyperinflation which can result in respiratory failure.
The occurrence of exacerbations increases with increasing severity
of the disease and some patients experience frequent exacerbations
(Hurst et al., 2010). Exacerbations have considerable impact on pa-
tients and healthcare providers both during and after the acute epi-
sode, and reduction of exacerbations is a key therapeutic goal in
COPD. COPD exacerbations are associated with considerable mortal-
ity with exacerbations requiring hospital admission having an in-
hospital mortality rate of 11–24% (Almagro et al., 2002; Connors
et al., 1996; Groenewegen et al., 2003), and 2-year mortality rates
ranging from 22% to 49% (Almagro et al., 2002; Connors et al.,
1996; Groenewegen et al., 2003). Exacerbations are associated with
falls in lung function that are frequently prolonged and lung function
may not return to baseline values for several weeks in some patients
(Seemungal et al., 2000a). Frequent exacerbations are associated
with an accelerated decline in lung function (Anzueto et al., 2009;
Celli et al., 2008; Donaldson et al., 2002; Kanner et al., 2001), im-
paired quality of life (Seemungal et al., 1998) and increased likeli-
hood of becoming housebound (Donaldson et al., 2005).

The healthcare costs and economic impact of COPD exacerba-
tions are enormous. In the United States COPD exacerbations ac-
counted for 1,254,703 hospitalizations in 2006 with an estimated
cost of US$11.9 billion (Perera et al., 2012). Therefore prevention
of COPD exacerbations is a major therapeutic target and a major
unmet need in COPD management. Non-pharmacological treat-
ments for prevention of exacerbations include smoking cessation,
influenza and pneumococcal vaccination and pulmonary rehabili-
tation. The mainstays of pharmacological therapy are inhaled bron-
chodilators and inhaled corticosteroids (ICS). Clinical trials have
demonstrated that these treatments reduce exacerbations (Calver-
ley et al., 2007; Wedzicha et al., 2008), although the efficacy of ICS
continues to be debated (Barnes, 2010; Suissa and Barnes, 2009).
These treatments are not without adverse effects and there is some
evidence to suggest that ICS use is associated with an increased
risk of pneumonia in COPD (Barnes, 2010; Cates, 2013; Singanaya-
gam et al., 2010). Treatment of the established exacerbation in-
cludes bronchodilators, systemic corticosteroids and antibiotics
but their clinical benefits are modest and they are associated with
considerable side effects. Therefore more effective treatments for
both prevention and treatment of COPD exacerbations are urgently
needed.
4. Pathophysiology of exacerbations

The pathological features of stable COPD are well described but
the pathology of exacerbations is less well defined. Exacerbations
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are associated with increased airflow obstruction and hyperinfla-
tion, and respiratory failure is a common feature of more severe
exacerbations. It is commonly stated that airways inflammation
is increased in exacerbations (Mackay and Hurst, 2013) but a close
examination of the literature reveals that the results of studies are
far from consistent. Some studies have reported increases in
inflammatory cells and mediators in exacerbations (Bathoorn
et al., 2009; Fujimoto et al., 2005; Mercer et al., 2005; Papi et al.,
2006), whereas others have not (Bhowmik et al., 2000; Roland
et al., 2001; Seemungal et al., 2000b). The role of oxidative stress
in COPD exacerbations is also unclear with both increased (Antczak
et al., 2012; Biernacki et al., 2003; Dekhuijzen et al., 1996; Drost
et al., 2005; Oudijk et al., 2006; Tsoumakidou et al., 2005), and un-
changed levels of markers of oxidative stress reported in exacerba-
tions (Kersul et al., 2011; Koutsokera et al., 2009; van Beurden
et al., 2003). There are a number of sources of variability in studies
of COPD exacerbations that can account for these conflicting re-
sults including different aetiologies and exacerbation severities,
variations in time to presentation and the effects of treatment.
Overcoming these issues is challenging but in order to develop
new, more targeted treatments for exacerbations a much better
understanding of the mechanistic pathways of COPD exacerbations
is required.
5. Aetiology of COPD exacerbations: role of respiratory virus
infections

Most exacerbations are associated with respiratory infections
and historically bacterial infections were considered the main
infective cause, reflected in the high use of antibiotics in exacerba-
tions (Sandhu et al., 2013). Epidemiological data has long sug-
gested a link between COPD exacerbations and virus infection as
exacerbations occur more commonly in the autumn and winter
months, and between half and two-thirds of patients report coryzal
symptoms with exacerbations (Falsey et al., 2006; Hurst et al.,
2005; Seemungal et al., 2001). However in older studies respiratory
viruses could only be detected in 10–30% of exacerbations (Buscho
et al., 1978; Murphy and Sethi, 1992; Smith et al., 1980), appar-
ently confirming the conventional wisdom that most exacerba-
tions were related to bacterial infections. The studies evaluating
the role of virus infection used culture and serological tests as
these were the only diagnostic tools available at the time but the
sensitivity of these tests is low, particularly for rhinoviruses.

Diagnostic methods based on the polymerase chain reaction
(PCR) for amplification and detection of viral nucleic acids are sig-
nificantly more sensitive in detecting viruses in the respiratory
tract compared with culture and serology (Beckham et al., 2005;
Sethi, 2011). The development of PCR-based diagnostics led to a
re-evaluation of the role of respiratory viruses in COPD exacerba-
tions. More recent studies using PCR have generally reported high-
er detection rates compared to older studies with the prevalence of
viruses in COPD exacerbations varying between 22% and 60% (Ta-
ble 1). Comparisons between studies are difficult due to differences
in exacerbation severity, samples collected (sputum/nasal/naso-
pharyngeal) and the inclusion of PCR for new viruses such as hu-
man metapneumovirus and bocavirus in the more recent studies.
However in the majority of studies the most frequently identified
viruses are rhinoviruses, with influenza and respiratory syncytial
virus (RSV) also commonly detected. Other viruses identified but
much less frequently include parainfluenza viruses, coronaviruses,
adenoviruses, and human metapneumoviruses. In all studies
carried out in Europe apart from one (Dimopoulos et al., 2012)
rhinoviruses are the most common viruses, whereas the viral aeti-
ology of exacerbations in Asia and North America appears more
diverse. Whether this is due to differences in circulating viruses
or differences in influenza vaccination uptake between these
regions is unknown.

Although these studies demonstrate an association between
virus infection and COPD exacerbations they do not prove a causal
relationship, as PCR detects viral nucleic acid and therefore does
not prove the presence of live, replicating virus. Demonstration
of lower airways inflammation in response to virus infection would
provide further evidence for a causative role of viruses in COPD
exacerbations, as it would provide evidence of a host immune re-
sponse to infection. Conversely lack of an inflammatory response
would suggest that the presence of a virus is simply a secondary
event or epiphenomenon. The few studies investigating this have
had conflicting results, with some reporting that virus infection
is associated with an inflammatory response (Rohde et al., 2008;
Seemungal et al., 2000b) whereas others do not (Bafadhel et al.,
2011; Hurst et al., 2006; Pant et al., 2009). Evidence in favour of
a causative relationship has been provided by case control studies
demonstrating higher virus detection rates and higher virus loads
in exacerbations compared to the stable state (Quint et al., 2010),
but not all studies have included a control group (Table 1). There-
fore although respiratory viruses can be detected in COPD exacer-
bations generally at greater frequency than in stable COPD, a
definitive causal relationship between virus infection and exacer-
bations has not been established. Improved diagnostics and antivi-
ral therapies make treatment of virus infections a realistic
possibility in the near future, and therefore establishing the role
of respiratory viruses in COPD exacerbations is no longer solely
of academic interest.
6. Experimental rhinovirus infection in COPD

Definitive proof that respiratory viruses cause exacerbations
will always be difficult to obtain with studies of naturally-occur-
ring virus infections. Asthma is a respiratory disease that shares
many of the features of COPD including the occurrence of acute
exacerbations that are commonly associated with the detection
of respiratory viruses (Johnston et al., 1996). The role of respiratory
virus infections in asthma exacerbations is well established and
this is in part due to the use of experimental rhinovirus infection
as a model of virus-induced asthma exacerbations. Inoculation of
carefully selected asthmatic volunteers with rhinovirus induces
the clinical features of an asthma exacerbation (Bardin et al.,
2000) and these studies have provided important insights into
the mechanisms linking virus infections with asthma exacerba-
tions (Contoli et al., 2006; Gern et al., 2000; Message et al.,
2008). Moreover experimental rhinovirus infection studies have
contributed to the and to the development of a novel treatment
for asthma exacerbations with the identification of interferon defi-
ciency in asthmatics (Contoli et al., 2006). This observation led to
the development of inhaled interferon-b as a treatment for virus-
induced asthma exacerbations and this has demonstrated efficacy
in a Phase II clinical trial that has been published as a recent con-
ference abstract (Boxall et al., 2013).

Experimental rhinovirus infection in asthma has been carried
out by a number of different groups and has an excellent safety re-
cord (Bardin et al., 2000; Gern et al., 2000; Grunberg et al., 2001). In
view of the frequent detection of rhinoviruses in COPD exacerba-
tions our group aimed to establish whether experimental rhinovi-
rus infection could be used to develop a similar model in COPD.
However despite the excellent safety record of experimental rhino-
virus infection in asthma there existed a number of concerns about
experimental infections in COPD. COPD patients differ markedly
from asthma patients in that they are older, are current or ex-
smokers, have impaired lung function and their airflow obstruction
is not reversible, all factors that have the potential to result in a



Table 1
Studies of respiratory virus infection in COPD exacerbations using PCR. The detection frequencies of the individual viruses are expressed as percentage of virus positive
exacerbations. Abbreviations: OP – outpatient, IP – inpatient, ED – emergency department, ITU – intensive care unit, RSV – respiratory syncytial virus.

Country Site of patient
recruitment

Exacerbations with
positive virus PCR (%)

Picorna/rhino-
viruses (%)

Influenza
(%)

RSV (%) Other
viruses (%)

Viruses in
stable COPD

References

Hong Kong IP 22 14 45 10 21 / Ko et al. (2007)
Australia OP/IP 22 78 9 3 9 2% Hutchinson et al. (2007)
USA ED 25 21 16 32 37 / Camargo et al. (2008)
Australia IP 26 70 5 5 20 / Bozinovski et al. (2008)
Australia ED 29 14 43 14 29 / Pant et al. (2009)
UK OP/IP 29 60 9 33 14 5% Bafadhel et al. (2011)
Canada OP/IP 24 29 13 32 4% De Serres et al. (2009)
UK IP 37 64 6 6 36 12% McManus et al. (2008)
UK OP 39 58 14 29 14 16% Seemungal et al. (2001)
USA OP/IP 42 48 20 9 16 / Beckham et al. (2005)
USA IP/ICU 30 69 13 6 6% 0% Singh et al. (2010)
France IP/OP 44 45 15 5 45 / Perotin et al. (2013)
Australia ICU 47 15 46 15 41 / Cameron et al. (2006)
Italy IP 48 55 23 13 23 6% Papi et al. (2006)
Switzerland IP 51 50 5 7 39 11% Kherad et al. (2010)
Greece IP 54 9 14 52 22 / Dimopoulos et al. (2012)
Germany IP 56 44 40 27 13 19% Rohde et al. (2003)
Singapore IP 64 33 56 0 11 / Tan et al. (2003)

Fig. 1. Time course of symptoms recorded on daily diary cards and lung function during experimental rhinovirus infection in COPD subjects (N = 11) and smokers with
normal lung function (N = 12). (A) Total daily scores for upper respiratory symptoms. (B) Total daily scores for lower respiratory symptoms. (C) Daily scores for the symptom
of breathlessness. (D). Post-bronchodilator peak expiratory flow expressed as a percentage of baseline. All values are mean ± SE. ⁄P < 0.05 vs. baseline, ⁄⁄P < 0.01 vs. baseline, �

P < 0.05 COPD vs. controls, ��P < 0.01 COPD vs. controls, ���P < 0.001 COPD vs. controls (Mallia et al., 2011). Reprinted with permission of the American Thoracic Society.
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more severe response to rhinovirus infection. Therefore we carried
out a small pilot study to evaluate the effects and the safety of
inoculation with a low dose of rhinovirus 16 in subjects with mod-
erate COPD (GOLD stage II). Subjects kept daily diary cards where
they recorded upper respiratory symptoms (‘cold’ symptoms)
and the lower respiratory symptoms of cough, sputum volume
and purulence, wheeze and breathlessness – the typical symptoms
of COPD exacerbations with higher scores indicating more severe
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symptoms. Following rhinovirus infection the subjects developed
symptomatic colds and increases in lower respiratory symptoms,
accompanied by increased airflow obstruction, increased inflam-
matory markers and the detection of rhinovirus nucleic acid in na-
sal lavage (Mallia et al., 2006). There were no adverse events such
as severe exacerbations requiring treatment, hospitalisations or
pneumonia and all the subjects recovered completely. Therefore
this was the first demonstration that experimental rhinovirus
infection in COPD subjects can safely induce the typical clinical fea-
tures of a COPD exacerbation.

Following on from this small study we repeated the procedure
in a larger group of COPD subjects, together with a group of smok-
ers without COPD, in order to further evaluate the safety of rhino-
virus infection and to investigate mechanisms of virus-induced
exacerbations. We again successfully demonstrated that rhinovirus
inoculation of COPD subjects induced both colds and increases in
lower respiratory symptoms. The time course of upper and lower
respiratory symptoms are shown in Fig. 1. Cold symptoms oc-
curred early peaking on day 3 post-inoculation (Fig. 1A), whereas
lower respiratory symptoms occurred later peaking on day 9, and
were more prolonged taking up to 5 weeks to return to baseline
levels (Fig. 1B). This mirrors what COPD patients often report in
naturally-occurring exacerbations, i.e. that exacerbations are fre-
quently preceded by an upper respiratory tract infection (Seemun-
gal et al., 2001). The non-COPD subjects also had increases in lower
respiratory symptoms but these were not as severe or as prolonged
Fig. 2. Virus load in nasal lavage and sputum samples measured with quantitative
PCR. (A) The time course of virus load in nasal lavage. (B) The time course of virus
load in sputum. All values are mean ± SE. ⁄P < 0.05 vs. baseline, ⁄⁄P < 0.01 vs.
baseline, ⁄⁄⁄P < 0.01 vs. baseline, �P < 0.05 COPD vs. controls (Mallia et al., 2011).
Reprinted with permission of the American Thoracic Society.
as in the COPD group. On analysing the individual symptoms there
were no differences between the groups in symptoms of cough and
sputum but only the COPD subjetcs reported increases in breath-
lessness (Fig. 1C).

Breathlessness is the key defining symptom of a COPD exacer-
bation and therefore rhinovirus infection causes an acute bronchi-
tis in non-COPD subjects, but in patients with COPD it results
greater physiological impairment that manifests itself as an acute
exacerbation. This was confirmed by significant increases in air-
flow obstruction in the COPD subjects (Fig. 1D). Using quantitative
PCR we measured virus load to analyse the relationships between
symptoms and virus replication. Rhinovirus nucleic acid was
detectable in nasal lavage fluid on average 2 days post-inoculation
peaking on day 6 in nasal lavage and day 5 in sputum (Fig. 2). The
kinetics of virus load in the airways provided powerful new evi-
dence of a causative relationship between virus infection and COPD
exacerbations, as previously studies had only demonstrated their
presence of virus on a single time point. The rise in virus load fol-
lowing inoculation indicates that active viral replication is occur-
ring in the airways. The temporal relationship between
appearance of virus in the airways and onset of symptoms and air-
flow obstruction, and then virus clearance followed by resolution
of clinical illness provided strong evidence of a causal relationship
between virus infection and exacerbations.

There were significant increases in neutrophils, neutrophil elas-
tase and the neutrophil chemokine CXCL8 in sputum and reduced
expression of adhesion molecules on blood neutrophils in the
COPD subjects (Mallia et al., 2013b). Lymphocytes in bronchoalve-
olar lavage in the COPD subjects but not in the non-COPD group in-
creased following rhinovirus infection (Mallia et al., 2011), and
these were predominantly CD3+ and CD8+ T cells (Mallia et al.,
2013a). There was a significant relationship between peak virus
load in sputum and peak levels of inflammatory markers with cor-
relations between sputum virus load and sputum levels of CXCL8,
IL-6, TNF-a and sputum neutrophils, indicating that virus infection
drives inflammation in exacerbations (Mallia et al., 2011). In a sub-
sequent infection study we replicated these results and again dem-
onstrated consistent induction of exacerbations and airways
inflammatory markers by rhinovirus infection, with more severe
symptomatic, physiological and inflammatory responses compared
to non-COPD subjects (unpublished data).
7. Susceptibility to virus infection in COPD

All subjects were inoculated with the same dose of virus via the
same route of inoculation, but post-inoculation virus loads in the
COPD group were higher compared to the non-COPD smokers
(Fig. 2). In nasal lavage virus loads were up to 2 logs greater and
this was statistically significant on day 6. This suggests that the im-
mune mechanisms that control viral replication are deficient in
COPD. The type I interferons (interferon-a and interferon-b) and
the type III interferons (interferon-k) are important mediators of
innate immunity to virus infections in the respiratory tract. We
examined the responses of bronchoalveolar lavage cells to virus
infection by infecting them ex vivo with rhinovirus and measuring
interferon production. Production of interferons in response to
virus infection was impaired in bronchoalveolar lavage cells from
COPD patients compared to the controls (Mallia et al., 2011). Our
group has previously identified deficient interferon production in
asthma, and related this to outcomes following experimental rhi-
novirus infection (Contoli et al., 2006). The main site of virus rep-
lication in the airway are airway epithelial cells and in vitro
studies have not demonstrated impaired production of interferons
in response to virus infection in COPD epithelium (Baines et al.,
2013; Schneider et al., 2010). However impaired interferon pro-



Table 2
Studies of viral/bacterial co-infection in COPD exacerbations.

Percentage of
exacerbations
with virus

Percentage of
exacerbations
with bacterial

Percentage of
exacerbations
with both viral
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duction in response to rhinovirus infection has also been reported
in a mouse model of COPD (Sajjan et al., 2009). Therefore the
mechanisms of impaired antiviral immunity in COPD require fur-
ther investigation as they offer new therapeutic options for COPD
exacerbations.
infection infection and bacterial
infection

43 23 6.5 Cameron et al. (2006)
53.5 13.5 7 Dimopoulos et al. (2012)
29 25 8 Pant et al. (2009)
51 64 11.5 Kherad et al. (2010)
21 30 12 Hutchinson et al. (2007)
31 49 13 De Serres et al. (2009)
29 55 13 Bafadhel et al. (2011)
29 38 15 Bozinovski et al. (2008)
24 76 17 Hurst et al. (2006)
48 55 25 Papi et al. (2006)
44 42 27 Perotin et al. (2013)
8. Rhinovirus infection and secondary bacterial infection

Both bacterial and viral infections are common in COPD but few
studies have examined the role of dual virus-bacterial infection in
COPD exacerbations. The studies that are available reported dual
infection in a minority of exacerbations, casting doubt on whether
it plays a significant role in COPD exacerbations (Table 2). All these
studies collected samples on a single time point apart form that by
Hutchinson et al. In this study patients were sampled at the onset
of exacerbation and again 5–7 days later, and 36% of exacerbations
in which a virus was detected at the initial time point developed
secondary bacterial infection. 71% of patients with bacterial exac-
erbations had reported symptoms of a viral upper respiratory tract
infection prior to onset (Hutchinson et al., 2007). Therefore the
studies in which a single sample was collected may have underes-
timated the true prevalence of dual infection if viral and bacterial
infections do not occur concurrently.

We carried out a second experimental infection study that also
included a group of non-smokers and used the samples from the 2
studies to investigate relationships between rhinovirus infection
and secondary bacterial infection in COPD. Following rhinovirus
infection bacterial infection was detected in sputum in 60% of sub-
jects with COPD, compared to 9.5% of smokers and 10% of non-
smokers (Mallia et al., 2012). Moreover whereas the peak of virus
load occurred on days 5 and 9 post-inoculation, peak bacterial load
was on day 15. Airflow obstruction, breathlessness and airway
inflammation occurred irrespective of the presence of secondary
bacterial infection and peaked at the time of initial viral infection,
but recovery time was more prolonged in subjects with dual infec-
tion and persisted to day 21 when viral load was undetectable
(Mallia et al., 2012). Therefore secondary bacterial infections may
play a role in prolonging the course of virus-induced exacerbations.
The predominant organisms cultured were Haemophilus influenzae
and Streptococcus pneumoniae. Using molecular methods of bacte-
rial detection we demonstrated a rise in bacterial burden and a sig-
nificant outgrowth of Haemophilus influenzae from the existing
microbiota of COPD subjects (Molyneaux et al., 2013).

To investigate the mechanisms of post-viral secondary bacterial
infections we measured levels of antimicrobial peptides in sputum.
Those COPD subjects who developed secondary bacterial infection
had increased levels of neutrophil elastase and lower levels of the
antimicrobial peptides secretory leukoprotease inhibitor (SLPI) and
elafin (Mallia et al., 2012). Neutrophil elastase degrades SLPI and
elafin and therefore this suggests a mechanism linking virus infec-
tion to increased susceptibility to bacterial infection in COPD.

Therefore these results demonstrating that bacterial infection
follows an initial virus infection with a delay of 6–10 days between
the two, suggests that studies that collect a single sample during
an exacerbation will underestimate the true contribution of dual
virus/bacterial infections to COPD exacerbations. This was con-
firmed in a recent conference abstract where George et al. reported
that in COPD exacerbations where rhinovirus was detected at exac-
erbation onset, bacteria were frequently detected in subsequent
sputum samples and peaked at day 14 post-exacerbation onset
(George et al., 2013).

Therefore we have demonstrated that experimental rhinovirus
infection induces the clinical features of exacerbations in COPD
subjects and provided novel in vivo evidence of the mechanisms
of virus-induced exacerbations. However this model does have a
number of limitations in that, for ethical reasons, experimental rhi-
novirus infection can only be carried out in subjects with mild or
moderate COPD, whereas the patients most susceptible to exacer-
bations are those with more severe disease. It is not yet known
whether the mechanisms of virus-induced exacerbations are the
same irrespective of COPD severity. Also it is not known whether
exacerbation mechanisms differ according to the aetiology. There
may be a common exacerbation inflammatory pathway or the
mechanisms may be different with different viruses, bacteria or
non-infectious aetiologies such as air pollution. Establishing this
will determine whether the results of this model are more widely
applicable beyond rhinovirus infection only or not. Notwithstand-
ing these limitations the evidence that there is a causative relation-
ship between respiratory virus infection and exacerbations in
COPD patients indicates that antiviral therapies may be potential
treatments for COPD exacerbations. The link between virus infec-
tions and secondary bacterial infections also holds out the intrigu-
ing prospect that antiviral treatments may reduce bacterial
infections and therefore result in less use of antibiotics.
9. Treatments of COPD exacerbations: unmet clinical need

Current treatments for COPD exacerbations consist of support-
ive therapies, corticosteroids and antibiotics and no new treat-
ments have been developed over the past 3 decades. The use of
antibiotics is based on the assumption that bacteria are the main
aetiological agents triggering acute exacerbations but debate about
the relative role of bacteria and the efficacy of antibiotics continues
(Vollenweider et al., 2012; Wedzicha, 2008). Bacterial infections
certainly trigger a proportion of exacerbations and it is likely that
these exacerbations will benefit from antibiotic treatment. A study
of biomarker-directed antibiotic therapy in COPD exacerbations
found that patients with low levels of procalcitonin recovered with-
out antibiotics and using a biomarker-directed approach could re-
duce antibiotic use by 44% (Stolz et al., 2007). However
antibiotics continue to be prescribed in the vast majority of COPD
exacerbations and this contributes to the development of antibiotic
resistance. Corticosteroids have considerable side effects with 1 ad-
verse effect for every 5 patients treated with oral corticosteroids
(Walters et al., 2009). Therefore new treatments for COPD exacer-
bations that are both more effective and safer are urgently required
and antiviral drugs may offer a new therapeutic option for virus-in-
duced exacerbations in COPD patients.
10. Development of antiviral drugs

A better understanding of the life cycle of respiratory viruses
such as rhinoviruses has led to the identification of key events in
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the viral life cycle and the development of molecules that target
these. There are a number of points in the rhinovirus life cycle that
offer potential targets for pharmacological intervention including
viral attachment and uncoating, viral RNA synthesis and the viral
proteases. Rhinoviruses are classified into 2 groups based on their
receptor use. The majority of rhinovirus serotypes use intercellular
adhesion molecule-1 (ICAM-1) as their receptor (major group rhi-
noviruses), whereas a minority bind to the low density lipoprotein
(LDL) receptor (minor group rhinoviruses) (Kennedy et al., 2012).
Recently a new group of rhinoviruses has been identified that
has been termed human rhinovirus species C, but the cellular
receptor for this group remains unknown (Bochkov and Gern,
2012). Following binding to cellular receptors conformational
changes occur in the capsid and viral entry occurs via endocytosis.
After uncoating, rhinovirus proteins are synthesized by translation
of the viral nucleic acid and the resulting polyprotein is cleaved by
viral proteases into 4 structural (VP1-VP4) and 7 non-structural
proteins. The viral capsid is composed of 3 outer structural pro-
teins VP1, VP2, and VP3 and an interior protein VP4 that anchors
the RNA core to the capsid.

A number of molecules have been identified that demonstrate
activity against rhinoviruses in vitro however the majority of these
molecules have never progressed to use in man. One reason for this
is the lack of robust small animal models of rhinovirus infection. Ma-
jor group rhinoviruses only bind to human ICAM-1 and therefore do
not infect mice. Our group has developed an experimental animal
model of rhinovirus infection using minor group viruses in wild-
type mice and major group viruses in transgenic mice expressing hu-
man ICAM-1 (Bartlett et al., 2008). Infected mice demonstrated in-
creased bronchoalveolar lavage neutrophils and lymphocytes,
chemokines and cytokines and increased viral RNA. In addition com-
bining rhinovirus infection with ovalbumin sensitisation of mice
provides a model of virus-induced asthma exacerbations. We have
recently demonstrated that use of an anti-ICAM-1 antibody in the
mouse model decreased inflammatory cells and cytokines in bron-
choalveolar lavage and lung homogenate, and significantly reduced
rhinovirus replication (Traub et al., 2013). This model has also been
used to evaluate the effect of immunization with a recombinant rhi-
novirus capsid protein on cellular and humoral immune responses
to rhinovirus infection (Glanville et al., 2013). Therefore this was
the first successful demonstration of a therapeutic intervention in
a small animal model of rhinovirus infection and holds out the pros-
pect of testing compounds with in vitro activity in animals prior to
use in humans.

Due to the lack of animal models the experimental human chal-
lenge model has been used to investigate the in vivo effects of
agents that have demonstrated antiviral activity in vitro (Hayden
and Gwaltney, 1982, 1984; Hayden et al., 1988, 2003b; Levandow-
ski et al., 1982; Phillpotts et al., 1983; Turner et al., 1993, 1999).
The majority of these have not been successful, or have been lim-
ited by adverse effects and have not undergone further develop-
ment. However studies using experimental rhinovirus infection
were essential in providing in vivo clinical data regarding the effi-
cacy and adverse effects of these drugs. The active site of viral pro-
teases is highly conserved amongst serotypes and has no homology
with mammalian proteases making it an attractive target for anti-
viral therapy.

11. Studies of antirhinovirus agents

The viral proteases are attractive targets for antiviral drug devel-
opment due to their essential roles in viral replication and their un-
ique protein structures. The 3C protease inhibitor rupintrivir was
identified as having highly active antiviral activity in vitro and
underwent clinical assessment in experimental infection studies.
Rupintrivir prophylaxis reduced the proportion of subjects with po-
sitive viral cultures by 26% and reduced viral titres, but had no ef-
fect of the frequency of symptomatic colds. Rupintrivir treatment
commenced 24 h after inoculation reduced the mean total daily
symptom score by 33% and significantly reduced viral titers and na-
sal discharge weights, but had no effect on the frequency of colds
(Hayden et al., 2003b). Based on these results rupintrivir did not un-
dergo further development as an antiviral agent for rhinovirus
infections.

Preventing cellular virus attachment by receptor blockade uti-
lising soluble forms of ICAM-1 demonstrates antiviral effects
in vitro and a soluble ICAM molecule tremacamra was developed
for use in vivo and underwent clinical trials. In experimental infec-
tion studies tremacamra reduced total symptom scores by 45% and
the proportion of subjects with clinical colds by 23%, and reduced
virus titers and CXCL8 levels in nasal lavage fluid (Turner et al.,
1999). The effect was the same when the drug was administered
either prior to or after rhinovirus challenge. However the drug re-
quired a 6 times daily administration and will not be effective
against minor group and group C rhinoviruses as these utilise other
receptors for cell entry. Tremacamra has not undergone further
clinical development.

Analysis of the 3-dimensional structure of the rhinovirus led
to identification of a small hydrophobic pocket within VP1 be-
neath the ICAM-binding region. Molecules that bind to this area
(capsid-binding agents) induce conformational changes in this
pocket thus hindering virus-receptor interactions and preventing
attachment to host cells. The first drug in this class to be tested
was pirodavir that is administered 6 times a day via the nasal
route. Intranasal pirodavir administered as prophylaxis reduced
both infection rates and clinical colds (54% vs. 8%, P = 0.03) in
subjects experimentally infected with rhinovirus. When treat-
ment was commenced 24 h after rhinovirus challenge virus
shedding was reduced but no clinical benefits were found (Hay-
den et al., 1992). Intranasal pirodavir was generally well toler-
ated but was associated with an excess rate of transient
unpleasant taste. In a study of naturally-occurring colds no clin-
ical benefits were seen and pirodavir was associated with higher
rates of adverse effects including nasal dryness, nasal bleeding
and unpleasant taste (Hayden et al., 1995). Pleconaril is an oral
capsid-binding agent that is the only anti-picornavirus agent that
has undergone large-scale, randomised, double-blinded, placebo-
controlled phase III trials in healthy subjects with colds. In an
initial experimental infection study with coxsackievirus plecona-
ril significantly reduced viral shedding and symptom scores
(Schiff and Sherwood, 2000). Subsequently in studies carried
out in naturally-acquired colds pleconaril resulted in a signifi-
cant reduction in illness duration, a significantly shorter time
to a 50% reduction of symptom severity and a 16% reduction
in disturbed nights in subjects with confirmed picornavirus
infection (Hayden et al., 2003a). However these modest clinical
benefits were outweighed by concerns regarding the risks of
drug interactions, particularly with oral contraceptives and
pleconaril was not approved for treatment of the common cold
by the US Food and Drug Administration (Senior, 2002). An
intranasal form of pleconaril has been evaluated as a treatment
for asthma exacerbations but the results of this study have not
yet been published (ClinicalTrials.gov identifier NCT00394914,
http://www.clinicaltrials.gov/ accessed 15th October 2013). The
capsid-binding agent vapendavir reduced virus load in healthy
subjects experimentally inoculated with rhinovirus 39 (Jacobs
et al., 2013) and has undergone a Phase II clinical trial in asth-
matics but the results have not yet been published (ClinicalTri-
als.gov identifier NCT01175226, http://www.clinicaltrials.gov/
accessed 15th August 2013).

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/
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12. Antiviral therapies in COPD

To date no drugs for the treatment of rhinovirus infections have
been approved for clinical use (apart from use of pleconaril on a
compassionate release basis). However the only clinical trials that
have been reported have been conducted in healthy volunteers for
treatment of the common cold. Pleconaril was not approved as the
benefits in healthy subjects were felt insufficient to outweigh the
risks. In patients with chronic lung diseases such as COPD the po-
tential benefits are greater as treatment may prevent virus-in-
duced exacerbations rather than just colds. Moreover concerns
regarding contraceptive failure are less of an issue in this older pa-
tient group, and therefore the risk/benefit ratio may be consider-
ably more favourable. However studies of pleconaril or other
antiviral drugs need to be carried out specifically in COPD patients
to determine whether they will in fact prevent virus-induced exac-
erbations. Our data demonstrating relationships between virus
infection and lower respiratory symptoms and between virus load
and inflammatory markers in the airways provide a strong theoret-
ical basis that antiviral agents will be of clinical benefit in COPD. In
addition our observation of frequent secondary bacterial infections
following rhinovirus infections hold out the possibility that antivi-
ral therapy may also reduce bacterial infections and antibiotic use.

Clinical studies of treatments for COPD exacerbations can be
expensive and time consuming. A recent study of oral corticoste-
roids in COPD exacerbations recruited patients from 5 hospitals
over 5 years and of 717 patients assessed for eligibility only
314 were randomised (Leuppi et al., 2013). A study of the
TNF-a antagonist etanercept in COPD exacerbations recruited
81 patients over 3 years from 8 hospitals and had a negative re-
sult (Aaron et al., 2013). Therefore even relatively small clinical
trials of novel therapeutic agents require a considerable financial
investment and this may represent an obstacle to bringing new
therapies to market. Moreover evidence is now emerging that
exacerbations are heterogeneous with different aetiologies,
inflammatory mediators (Bafadhel et al., 2011) and responses
to treatment (Bafadhel et al., 2012). In naturally infected COPD
patients it may not be possible to detect a beneficial effect of
an effective antiviral drug against a background of differences
in the route, dose and timing of exposure to a virus, presence
or absence of other concurrent infections, effects of other treat-
ments, differences in time to presentation etc.

In the same way that experimental rhinovirus infection in
healthy subjects has been used to assess treatments for colds, such
an approach could be used to evaluate treatment effects on virus-
induced COPD exacerbations. Experimental rhinovirus infection in
COPD patients offers a model in which the route, dose and time of
infection are the same for all subjects and treatment can be started
early in the course of the infection. Therefore many of the sources
of variability inherent in clinical trials of naturally-occurring exac-
erbations can be eliminated. In addition the ability to carry out
intensive and frequent clinical sampling allows for analysis of the
effects of treatment on a large number of outcomes including
symptoms, lung function, virus load, inflammatory markers and
secondary bacterial infections. Demonstration that a treatment re-
duces symptoms, virus load or inflammation would provide evi-
dence of a biological effect that may translate into a clinically
relevant effect. Conversely if a treatment had no effect on these
parameters a clinically significant effect is unlikely. In addition
safety data can be obtained in the specific patient group that the
drug is aimed at. Therefore testing a new treatment in the experi-
mental infection model has the potential to demonstrate potential
efficacy (or lack of) in a small number of subjects in a relatively
short time period with a much smaller financial commitment. Data
obtained from such studies can then be used to inform decisions as
to whether to proceed to larger clinical trials in naturally-occurring
exacerbations. As experimental rhinovirus infection in COPD is a
relatively new model such studies have not yet been carried out,
but our work has established this as a robust, valid and safe model
and therefore provided the basis on which such studies can be car-
ried out in the future.
13. Conclusions

New treatments for COPD exacerbations are urgently needed
and the link between respiratory virus infections and COPD exacer-
bations has highlighted the potential of antiviral agents as treat-
ments for virus-induced exacerbations. To date there are no
published studies of antiviral agents in COPD and therefore their
effect is unknown. Experimental rhinovirus infection in healthy
subjects has been used to evaluate the effects of antiviral drugs
due to the lack of robust small animal models. We have developed
a model of COPD exacerbation using experimental rhinovirus
infection in COPD and established this as a valid model of virus-in-
duced COPD exacerbations. This model could be used to evaluate
new antiviral treatments in COPD and provide evidence regarding
their effectiveness in treating virus-induced COPD exacerbations.
Therefore experimental rhinovirus infection in COPD is a potential
tool that can aid translational development of new therapies for
COPD exacerbations.
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