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ABSTRACT
The centrosome, consisting of mother and daughter centrioles surrounded by the pericentriolar matrix
(PCM), functions primarily as a microtubule organizing center (MTOC) in most animal cells. In dividing cells
the centrosome duplicates once per cell cycle and its number and structure are highly regulated during
each cell cycle to organize an effective bipolar spindle in the mitotic phase. Defects in the regulation of
centrosome duplication lead to a variety of human diseases, including cancer, through abnormal cell
division and inappropriate chromosome segregation. At the end of mitosis the daughter centriole
disengages from the mother centriole. This centriole disengagement is an important licensing step for
centrosome duplication. In S phase, one new daughter centriole forms perpendicular to each centriole.
The centrosome recruits further PCM proteins in the late G2 phase and the two centrosomes separate at
mitotic entry to form a bipolar spindle. Here, we summarize research findings in the field of centrosome
biology, focusing on the mechanisms of regulation of the centrosome cycle in human cells.

Abbreviation: Anaphase promoting complex/cyclosome (APC/C), microtubule organizing center (MTOC), microtu-
bules (MTs), pericentriolar matrix (PCM), polo-like kinase (Plk), g-tubulin ring complexes (g-TuRCs)
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Introduction

Centrosomes are the microtubule organizing centers (MTOCs)
of most animal cells and play a critical role in mitotic spindle
orientation. The centrosome consists of a pair of centrioles,
namely mother and daughter centrioles, embedded in the peri-
centriolar matrix (PCM). The PCM contains g-tubulin ring
complexes (g-TuRCs), which play important roles in nucleat-
ing, anchoring, and positioning microtubules. Centrioles are
characterized by a nine-fold radical symmetry of microtubules
(MTs) and also function as basal bodies for the formation of
cilia and flagella. The mother centriole harbors subdistal and
distal appendages that play important roles in anchoring MTs
and in docking centrioles to the membrane during flagellum or
cilium formation.

In G1/S phase a single centrosome is located in close apposi-
tion to the nuclear envelope. Centrosome duplication is con-
trolled by centriole replication. The mother and daughter
centrioles are disengaged at the end of mitosis. After centriole
disengagement, a proteinaceous linker is established between
the 2 centrioles and physically connects them during interphase
until mitosis. Building of the new centriole begins in early S
phase with the formation of a procentriole at each centriole.
One new daughter centriole forms perpendicular to each
mother centriole during S phase, and the new daughter centri-
ole gradually elongates during S and G2 phases. In late G2
phase, the amount of PCM proteins surrounding the centrioles
increases, and the 2 centrosomes separate by dissolution of
the linker that connects the 2 centrosomes. The separated

centrosomes then move to opposite sides of the cell to form the
spindle poles. Many of the proteins involved in the centrosome
cycle have been identified and characterized (Figure 1). In this
review we summarize research findings related to the centro-
some cycle.

Centriole disengagement

Centriole disengagement involves the disorientation and physi-
cal separation of mother and daughter centrioles at the end of
mitosis. Disengagement is an important licensing step for the
next round of centrosome replication, preventing reduplication
within one cell cycle.1 Engagement is thought to be a critical
block to reduplication inherent to centrioles. Consistent with
this, physical removal of the daughter centriole by laser ablation
induces reduplication of the daughter on the mother centriole.2

The mechanism of centriole disengagement is similar to that
of sister chromatid separation at anaphase. Sister chromatids
are held together by the ring cohesin complex, which consists
of the 4 subunits Scc1, Smc1, Smc3, and SA1/SA2; dissociation
of this complex by separase-mediated cleavage of Scc1 allows
segregation of sister chromatids. The cohesin complex also
localizes to the junction of engaged centrioles and is cleaved
there by separase-mediated Scc1 proteolysis.3,4 Separase is acti-
vated when its inhibitor securin is targeted for degradation by
the E3 ligase anaphase promoting complex/cyclosome (APC/
C)–Cdc20 and thus contributes to centriole disengagement.5

The serine/threonine protein kinase polo-like kinase 1 (Plk1)
functions in cooperation with separase to trigger centriole
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disengagement,3 and also mediates an APC/C–Cdc20-indepen-
dent pathway of disengagement.5,6 Plk1 interacts with the
smaller of 2 splice variants of Shugoshin 1 (Sgo1), sSgo1, which
localizes to the centrosome in a Plk1-dependent manner and
functions in the protection of centriole cohesion.4,7 In addition,
the microtubule and kinetochore-associated protein Astrin
functions as an inhibitor of centrosomal separase.8 Akt kinase-
interacting protein 1 (Aki1) interacts with cohesin in the centro-
some and this interaction prevents premature cleavage and is
important for centriole cohesion.9 Furthermore, cleavage of
cohesin is insufficient for centriole disengagement in Drosoph-
ila.10 In addition to cohesin, pericentrin/kendrin, a scaffolding
element of the PCM, is a crucial target of separase at the centro-
some and is important for centriole disengagement as it protects
the engaged centrioles from premature disengagement.11,12

Recent studies in Caenorhabditis elegans showed that MT-
dependent forces also promote centriole disengagement.13 In
addition to disengagement, Plk1-dependent modification of
daughter centrioles in early mitosis is also a licensing step for
centriole duplication in the next cell cycle; the modified cen-
trioles become competent to duplicate in the following S
phase.14 15,16

After centriole disengagement, a proteinaceous linker composed
of C-Nap1/Cep250 and the filamentous protein rootletin is estab-
lished between the 2 centrioles and physically connects them dur-
ing interphase until entry into mitosis.17 This proteinaceous linker
is referred to as centrosome cohesion18 or the G1-G2 tether.19

Procentriole nucleation

Centrosome replication begins at the G1/S transition with
nucleation of a procentriole at the base of the pre-existing cen-
trioles. Plk4 is thought to be the key kinase responsible for the
initiation of centriole duplication.20-22 Centrosomal localization
of Plk4 is regulated in time and space by the ordered interaction

with 2 scaffolds, Cep192 and Cep152. Plk4 is recruited to the
centrioles together with Cep152 through interaction with
Cep192.23,24 The centrosomal localization of Cep152 depends
on Cep192.23 Cep192 and Cep152 localize around the centriole
barrel as the inner Cep192 ring and the outer Cep152 ring.25

Crystal structure analyses revealed that Plk4 competitively
binds to Cep192 and Cep152 in opposite orientations and in a
mutually exclusive manner. Plk4 is repositioned from the inner
Cep192 ring to the outer Cep152 ring as Cep152 is recruited
around the Cep192-enriched daughter centriole.26 Cep63 also
functions together with Cep152 to promote efficient centriole
duplication; Cep63 colocalizes with Cep152 to the proximal
end of the mother centriole wall and Cep63–Cep152 direct
interaction is required for centrosomal localization of both pro-
teins.27-29 Plk4 then dynamically moves from the surroundings
of mother and daughter centrioles to the sites of procentriole
assembly.24 Plk4 recruits STIL and SAS-6 to each mother cen-
triole, and these proteins subsequently recruit CPAP to trigger
the assembly of procentriolar MTs.20,30,31 STIL is phosphory-
lated by Plk4, and this phosphorylation facilitates the STIL–
SAS-6 interaction to trigger SAS-6 recruitment.32,33

Building the cartwheel

The initial visible sign of procentriole formation is the emer-
gence of a cartwheel-like structure with 9-fold symmetry.34 The
cartwheel consists of a central hub surrounded by 9 radical
spokes. SAS-6 localizes to the cartwheel center and is a key
molecule in cartwheel assembly.35 Structural analysis of the
SAS-6 protein provided crucial insight into the mechanism
underlying the 9-fold radical symmetry of centrioles.36,37 The
SAS-6 molecule has a conserved amino-terminal domain, a
coiled-coil domain, and a poorly conserved C-terminal domain.
SAS-6 homodimerizes in parallel via the coiled-coil domain,
resulting in a rod-shaped structure that oligomerizes via the N-

Figure 1. The centrosome cycle. Engagement of mother and daughter centrioles blocks centriole duplication. Disengagement of 2 centrioles occurs at the end of mitosis,
and construction of the procentriole at the proximal end of the mother centriole is initiated at the G1-S transition. The 9-fold symmetry of the centriole is established by
the formation of a cartwheel structure through the oligomerization of SAS-6. During the S and G2 phases, centriole elongation is promoted by CPAP. Later on in G2 phase,
Plk1 and Aurora A kinase induce centrosome maturation and accumulation of PCM proteins. Centrosome separation takes place in late G2 phase to form the spindle poles.
Proteins that function in each process are shown.
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terminal domain. SAS-6 oligomers form a ring-like structure
that resembles a central hub composed of 9 amino-terminal
dimers, and 9 radical spokes formed by 9 coiled-coil dimers.
These structures within the proximal part of the centrioles play
pivotal roles in centriole assembly and elongation. A recent
report described a model of SAS-6 recruitment to the mother
centriole.38 In S phase, SAS-6 is transiently recruited to the
lumen of the mother centriole, where it is assembled into a
structure with 9-fold symmetry structure through interactions
with the luminal wall. The assembled SAS-6 oligomer is then
repositioned to the luminal wall of the mother centriole for
procentriole formation. This repositioning of SAS-6 is depen-
dent on STIL and Plk4.

During mitosis, SAS-6 and STIL dissociate from centrioles
and are subsequently degraded.39 The cartwheel is removed
from nascent centrioles at the end of mitosis. Centriole-to-cen-
trosome conversion mediated by a newly generated centriole-
enriched protein, Cep295, is required for stabilization of the
centrioles lacking cartwheels.40

Assembly of centriole microtubules

In most animal cells, the daughter centriole is composed of 9
radically arranged MT triplets that form a cylinder built around
the cartwheel. Starting from the inside, each triplet contains A-
tubules, B-tubules, and C-tubules. The A-tubule of one triplet
is connected to the C-tubule of the next triplet via an A-C
linker. The A-tubule is nucleated by a conical structure resem-
bling the g-tubulin ring complex .g-TuRC) structure, whereas
B- and C-tubules are formed from the wall of A- and B-tubules,
respectively.41 e-tubulin is required for the addition of B-
tubules and C-tubules, and d-tubulin is required for the addi-
tion of C-tubules.42

Cep135 is a highly conserved centrosomal protein that is
involved in cartwheel assembly. The SAS-6 coiled-coil length is
shorter than the distance between the cartwheel hub and the A-
tubule of MT triplets. Cep135 directly interacts with SAS-6 via
its C-terminal region and with MTs via its N-terminal region,
acting as the physical link between SAS-6 and MTs.43 Depletion
of Cep135 results in the formation of abnormal centriole struc-
tures with altered MT triplet numbers and short centrioles.

Centriole elongation

After the formation of procentrioles, new centrioles start elon-
gating in S phase, followed by elongation of the distal region
during G2 phase. A number of conserved molecules are
involved in the regulation of centriole elongation. CPAP stabil-
izes the cartwheel structure and plays an important role in
recruiting MTs to the cartwheel structure during centriole elon-
gation.44-46 Overexpression of CPAP results in elongated
centrioles.

The interaction of STIL with CPAP and formation of a com-
plex with SAS-6 are required events for centriole elonga-
tion.30,47-49 Cep135 interacts with CPAP via its N-terminal
region and is involved in CPAP-induced centriole elongation.43

Cep120 localizes to daughter centrioles and is essential for cen-
triole assembly,50 and also interacts with CPAP and Spice1 to
positively regulate centriole elongation.51,52 In addition, Plk2

phosphorylation is critical for the role of CPAP in procentriole
formation and centriole elongation.53 A daughter centriole pro-
tein, centrobin, is recruited to the centrosome early during cen-
triole duplication, where it interacts with CPAP and
a/b-tubulin dimers and promotes the elongation and stability
of centrioles.54,55 A recent report revealed that centrobin inter-
acts with the ubiquitinated form of CPAP and prevents CPAP
degradation for centriole elongation.56

Distinct proximal and distal elongation steps have been
identified. The centrin-binding protein, POC5, and mouse oro-
faciodigital syndrome 1 (OFD1) localize to the distal portion of
centrioles and are required for distal elongation.57,58 Expression
levels of POC1 protein play a role in the early steps of centriole
duplication and the later step of elongation.59

CP110 and its interacting proteins act as capping structures
that determine the final length of centrioles. CP110 localizes to
the distal end of the centrioles and its depletion impairs the reg-
ulation of centriole length, resulting in long centrioles.44,45

CP110 interacts with Cep97 and the kinesin-13 homolog Kif24.
Cep97 recruits CP110 to the centrosome; depletion of Cep97
also results in centriole elongation.60 Loss of Kif24 leads to the
disappearance of CP110 from mother centrioles but not from
abnormally long centrioles.61 The level of CP110 is regulated
by the SCFcyclinF ubiquitin ligase complex, which targets it for
degradation, and this process is antagonized by the deubiqui-
nating enzyme USP33.62,63

Centrosome maturation

This step is characterized by the acquisition of PCM proteins
g-TuRC and associated proteins. Recently, studies using 3D-
structured illumination microscopy revealed that PCM proteins
are organized in concentric toroids around mother centrioles in
interphase and that the centrosome acquires additional PCM
proteins that surround the toroidal PCM during mitosis.25

CPAP localizes to the PCM in addition to the proximal
region of the centriole and plays a role in PCM recruitment
independent of its role in centriole duplication.64,65 CPAP inter-
acts with, and forms a scaffolding complex with, PCM proteins,
thus tethering them to the centrosome. A guanine nucleotide
that binds to the a/b-tubulin dimer attached to CPAP regulates
CPAP-dependent PCM recruitment to the centrosome.66

The centrosome shows an increased ability to nucleate and
anchor microtubules towards the end of G2 phase and during
mitosis. Plk1 and Aurora A kinases are required for this pro-
cess. Plk1 plays crucial roles in the initiation of centrosome
maturation. Plk1 phosphorylates the PCM proteins, pericen-
trin, Cep192, NEDD1, and CDKRAP2/Cep215.67 Phosphoryla-
tion of pericentrin by Plk1 is required for the recruitment of
Cep192, NEDD1, g-tubulin, Aurora A, and Plk1 itself.68 Peri-
centrin and Cep192 are mutually interdependent for their
localization to the centrosome, and both proteins are required
for the recruitment of NEDD1 and g-tubulin.69,70 CDKRAP2/
Cep215 is associated with g-TuRC and stimulates microtubule
nucleation.71,72

In addition to the recruitment of PCM proteins to the cen-
trosome, displacement of ninein-like protein (Nlp) from the
centrosome is also important for centrosome maturation. Nlp
binds to g-TuRCs and stimulates microtubule nucleation
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during interphase. Plk1 phosphorylates Nlp and displaces it
from the centrosome.73,74

Plk1 promotes the recruitment of Aurora A to the centrosome.
During G2 phase, Aurora A kinase functions in the initial activa-
tion of Plk1 together with Bora and contributes to centrosomemat-
uration.75-77 Once Plk1 is activated in G2 phase, continuous Plk1
activity is required during mitosis to maintain the PCM structure
of the centrosome.78 Plk1-dependentmodification of daughter cen-
trioles renders the centrosomes competent for recruiting PCMpro-
teins involved inMTnucleation during the G2/M transition.15 Plk1
is involved in the degradation of Bora in mitosis.79 Minimal
amounts of the Aurora A-Bora complex are sufficient to sustain
Plk1 activity during mitosis.80 The microtubule binding protein
TPX2 is also involved in centrosome maturation through the acti-
vation of Aurora A.81

Centrosome separation

In the G2 phase, centrosome separation occurs through a 2-
step process that consists of phosphorylation-dependent disso-
lution of the proteinaceous linker that connects 2 mother cen-
trioles by Nek2 kinase and force-dependent separation of the
centrosome by Eg5 to form spindle poles.17

C-Nap1/Cep250 localizes to the proximal ends of the mother
centriole,82 whereas rootletin is found in the proteinaceous linker
between the 2 centrioles.83 C-Nap1/Cep250 functions as a docking
site for rootletin. The centriolar protein Cep135 interacts with C-
Nap1/Cep250 and functions as a docking site for C-Nap1/
Cep250.84 Cep68 is also involved in the proteinaceous linker.18

Cep68 forms fibers that attach to the proximal end of mother cen-
trioles and functions in cooperation with rootletin and C-Nap1/
Cep250 in centrosome cohesion.

Nek2 is a NIMA-related kinase that localizes to the centro-
some during the S and G2 phases. Centrosome separation is
triggered by Nek2-dependent phosphorylation of the centro-
some linker proteins, including C-Nap1/Cep250 and rootletin,
at the G2/M transition. Recently, multisite phosphorylation of
C-Nap1/Cep250 by Nek2 was shown to disrupt the interaction
of C-Nap1/Cep250 with Cep135.85 Cep68 is also phosphory-
lated by Nek2.86 Cep68 dissociates from centrosomes during
mitosis and phosphorylation of Cep68 appears to promote its
degradation in mitosis.87

A recent report showed that LRRC45, centletin, and LGALS3BP
are also components of the proteinaceous linker.86,88,89 LRRC45
localizes to the proximal ends of centrioles and forms a fiber-like
structure between centrioles. LRRC45 is associated with C-Nap1/
Cep250 and rootletin and is phosphorylated by Nek2 during mito-
sis. Centletin localizes to the proximal ends of centrioles, directly
binds to C-Nap1/Cep250 and Cep68, and is also phosphorylated
by Nek2. LGALS3BP functions at the connecting region between
the 2 parental centrioles.

Regulation of Nek2 kinase activity is crucial for proper dis-
solution of the proteinaceous linker. Aurora A activates Plk1,
which binds to and phosphorylates the Hippo pathway effector
kinase Mst2.90 Mst2 and hSav1, Hippo pathway scaffold pro-
teins, directly bind to Nek2 and regulate the localization of
Nek2 and the phosphorylation of C-Nap1/Cep250 and rootle-
tin by Nek2.91 Phosphorylation of Mst2 by Plk1 prevents bind-
ing of protein phosphatase 1g (PP1g/ to Mst2-Nek2 and

reduces the levels of PP1g in the Mst2-Nek2-PP1g complex,
resulting in increased Nek2-dependent phosphorylation of C-
Nap1/Cep250.90 Furthermore, Nek2 associates with the nega-
tive regulators, HEF1 and pericentrin. The focal adhesion scaf-
folding protein HEF1 prevents Nek2 accumulation and inhibits
its activity at the centrosomes.92 Pericentrin seems to anchor
Nek2 at the centrosome and suppresses its kinase activity.93 In
addition, protein phosphatase 1a (PP1a/ dephosphorylates
and inactivates Nek2.94

After their separation caused by dissolution of the linker
proteins, the 2 centrosomes move to opposite directions to
form bipolar spindles that are generated by the organization of
motor proteins. The kinesin Eg5 generates the principal force
necessary for centrosome separation.17 Plk1 and intact MTs are
required for the targeting of Eg5 to the centrosome.90,95,96

Phosphorylation of Eg5 by Nek6, a NIMA kinase family pro-
tein, is important for Plk1-mediated targeting of Eg5.96 Nuclear
envelope-associated dynein anchored to the nuclear pores dur-
ing prophase and the sliding of 2 antiparallel oriented MTs by
dynein in (pro)metaphase function together with Eg5 to coor-
dinate proper centrosome separation.97,98 Furthermore, dynein
at the cell cortex is regulated by astral microtubules to control
spindle orientation.99 Recently, epidermal growth factor recep-
tor (EGFR) signaling was suggested to drive premature centro-
some separation and promote mitotic progression.100

Concluding remarks

During the cell cycle, centrosomes duplicate only once in a
highly spatiotemporally regulated manner that is controlled by
many proteins described in the present work. Perturbation of
these regulatory mechanisms can affect the proper execution of
the various processes and result in the formation of abnormal
centrosomes.101,102 Alterations in centrosome number and
structure lead to defective mitosis and consequently in chromo-
some instability, which is a major source of aneuploidy in can-
cers.103,104 In the future, further detailed characterization of
centrosome regulation during the cell cycle could provide
promising targets for cancer therapy.
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