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ABSTRACT
Objective Develop and validate models that predict 
mortality of patients diagnosed with COVID-19 admitted to 
the hospital.
Design Retrospective cohort study.
Setting A multicentre cohort across 10 Dutch hospitals 
including patients from 27 February to 8 June 2020.
Participants SARS- CoV-2 positive patients (age ≥18) 
admitted to the hospital.
Main outcome measures 21- day all- cause mortality 
evaluated by the area under the receiver operator curve 
(AUC), sensitivity, specificity, positive predictive value and 
negative predictive value. The predictive value of age was 
explored by comparison with age- based rules used in 
practice and by excluding age from the analysis.
Results 2273 patients were included, of whom 516 
had died or discharged to palliative care within 21 days 
after admission. Five feature sets, including premorbid, 
clinical presentation and laboratory and radiology 
values, were derived from 80 features. Additionally, an 
Analysis of Variance (ANOVA)- based data- driven feature 
selection selected the 10 features with the highest F 
values: age, number of home medications, urea nitrogen, 
lactate dehydrogenase, albumin, oxygen saturation (%), 
oxygen saturation is measured on room air, oxygen 
saturation is measured on oxygen therapy, blood gas pH 
and history of chronic cardiac disease. A linear logistic 
regression and non- linear tree- based gradient boosting 
algorithm fitted the data with an AUC of 0.81 (95% CI 
0.77 to 0.85) and 0.82 (0.79 to 0.85), respectively, using 
the 10 selected features. Both models outperformed 
age- based decision rules used in practice (AUC of 0.69, 
0.65 to 0.74 for age >70). Furthermore, performance 
remained stable when excluding age as predictor (AUC 
of 0.78, 0.75 to 0.81).
Conclusion Both models showed good performance and 
had better test characteristics than age- based decision 
rules, using 10 admission features readily available in 

Dutch hospitals. The models hold promise to aid decision- 
making during a hospital bed shortage.

INTRODUCTION
The first wave of the COVID-19 pandemic 
had a dramatic effect on our society and 
severely disrupted our daily lives, economies 
and healthcare systems. During the peak of 
the first wave, hospitals and intensive care 
units (ICU) throughout Europe were over-
whelmed and resources were exhausted. 
Implementation of public health policies 
reduced the infection rate; however, there is a 
considerable risk that relaxation of these poli-
cies leads to a next pandemic wave, which is 
already seen throughout European countries.

Strengths and limitations of this study

 ► This study uses the largest cohort of hospital admit-
ted patients with COVID-19 in the Netherlands.

 ► Proven methods, such as leave- one- hospital- out 
cross- validation, strengthen the reliability of the 
results.

 ► However, the models are based on only Dutch pa-
tients, so it is unknown whether it is generalisable 
to other countries. Nonetheless, the results are com-
parable with a large multicentre cohort from the UK.

 ► The distribution of a favourable and unfavourable 
outcome is skewed, given that much more patients 
survived than that died. This is represented in a high 
negative predictive value and lower positive predic-
tive value.
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Given the novelty of the virus, accurate information 
about the clinical course and prognosis of individual 
patients is still largely unknown, which led to the use of 
crude limits to unilaterally withhold advanced life support 
measures to face the large numbers of pulmonary insuf-
ficient patients during the first wave. Although criticised, 
several hospitals in Europe have already solely used age 
as a triage criterion.1 Many publications have developed 
and evaluated triage selection criteria, but there remains a 
significant knowledge gap and the final criteria are subject 
to socio- ethical debate.2–4 Preferably, triage is averted, 
but when necessary, the decision should be guided by 
evidence- based medical criteria. Since March 2020, many 
studies have been published regarding the clinical char-
acteristics of patients suffering from a SARS- CoV-2 infec-
tion in both smaller (n=58,5 n=2006) and larger cohorts 
(n>50007–9). However, these studies have reported notable 
differences in clinical characteristics that were associated 
with an adverse outcome. Importantly, these studies only 
provide information about clinical characteristics and risk 
factors on the group level and therefore do not provide 
information about the prognosis for individual patients. 
Prognostics models using multivariable analysis, such as7 
and9 could be of great value during triage, especially when 
tailored towards individual prediction. These models can 
provide information about the individual patients’ chance 
of survival, despite largely unknown underlying risk factors. 
Within the ongoing socio- ethical debate in the Nether-
lands, whether age should be included in the triage selec-
tion criteria, a predictive model could allow to exclude 
age or to include it together with clinical characteristics.10 
Wynants et al10 reviewed COVID-19 prediction models, 
identifying 145 prediction models of which 23 were tailored 
towards predicting mortality. The authors identified that 
all studies were at high risk of bias and are likely to under-
perform in clinical practice. However, a recent paper, not 
yet reviewed by Wynants et al, showed promising results on 
predicting mortality with excellent performance, using a 
very large cohort (n>50.000) from the UK.11

The uncertainty and risk of bias in almost all published 
COVID-19 related prognostic models, stresses the impor-
tance of thorough methodology in variable selection, 
internal and external model validation and performance 
evaluation.10 In addition, a constant interplay between 
data scientists and clinicians must be in place during 
model development. Furthermore, studies developed 
and performed independently with similar methodology 
are more valuable than ever to reduce the uncertainty 
of published models and the risk of spurious publica-
tions.12 13 Therefore, a prognostic model was developed 
and evaluated that predicts 21- day all- cause mortality; 
using data from 2273 SARS- CoV-2 infected patients from 
10 hospitals across the Netherlands.

MATERIALS AND METHODS
Data collection
Data were included from 10 Dutch hospitals varying from 
small to large peripheral hospitals to large academic 

centres. For an up- to- date overview of the including 
centres (see wwwcovidpredictorg). Clinical data were 
derived from electronic health records, pseudonymised 
and stored in the database (Castor EDC, Amsterdam, 
The Netherlands) by each hospital independently. Data 
collection started with the first admitted patients in the 
included centres. This was after the first confirmed case 
in the Netherlands on 27 February 2020. Records were 
included up to an admission date up until 8 June when 
the Dutch admission rates sharply decreased.14 Inclusion 
criteria were admission in a hospital, age ≥18 years, a 
positive SARS- CoV-2 PCR before or during admission, or 
a CO- RADS CT thorax score ≥4 at admission. All patients 
were included consecutively. Retrospective data collec-
tion was based on the rapid COVID-19 case report form 
(rCCRF) developed by the WHO.15 After consultation 
with several specialist consultants and an evaluation of 
the COVID-19 literature (mainly from China and Italy), 
additional clinical and laboratory features were added to 
the rCCRF. All included variables can be found in online 
supplemental table 1.

Given the exceptional circumstances related to the 
COVID-19 crisis and in accordance with national guide-
lines and European privacy law, the need for informed 
consent was waived and an opt- out procedure was commu-
nicated by press release. Despite this, individual centres 
used local guidelines to obtain consent retrospectively 
from patients or representatives. In all centres, measures 
were taken to ensure adequate and safe data pseudonymi-
sation and storage.

Outcome definition
To support the decision of (ICU) treatment during scarcity 
at hospital admission, we aim to predict the unfavourable 
outcome of patients with COVID-19 at hospital admis-
sion. Given the amount of data, predicting each possible 
outcome, such as mortality, palliative care, discharge 
and hospitalisation, could increase the risk of biased 
models and overfitting. Therefore, the prediction goal 
was modelled as a binary classification problem, where 
an unfavourable outcome corresponds to patients that 
either died or were discharged for palliative care within 
21 days after hospital admission. Palliative discharge is 
end- of- life care that focuses on patient comfort rather 
than treatments with curative intentions. A favourable 
outcome corresponds to patients that are discharged to 
home, nursing homes or rehabilitation units within 21 
days and patients that are alive and still hospitalised at 
21 days after hospital admission. Patients that were still 
hospitalised but shorter than 21 days, transferred to other 
hospitals (including transfers to participating hospitals), 
readmitted or have an unknown outcome were excluded 
from further analysis.

Data processing and quality
The rCCRF was filled in manually by a large team of 
researchers and doctors because the electronic patient 
dossiers in the different hospitals could not be coupled 
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to the Castor database. The rCCRF and additional 
features resulted in a large number of features (>400). 
A consensus meeting with clinicians was held (18 April 
2020) to remove features that were not available at hospital 
admission, not within the standard admission laboratory 
values or at risk of bias. This resulted in a feature set of 
80 features. These 80 features were then divided into six 
sets: (1) premorbid characteristics (age, gender, occupa-
tion and medical history, n=24), (2) clinical character-
istics at admission (n=14), (3) laboratory and radiology 
findings at admission (n=42), (4) the combination of set 
1 and 2 (n=38), (5) all features (n=80) and (6) a data- 
driven selection from all features (n=10). The process of 
data- driven selection is described further in the model-
ling process section. The decision to use 10 variables was 
a practical one, in an attempt to balance fewer variables 
for easier application in practice and more variables to 
inform about important features. A complete overview 
of all features per set is shown in online supplemental 
table 1 and numerical characteristics per set are shown 
in online supplemental table 2. The resulting features 
were checked for physiologically implausible outliers by 
two authors (MJHA/DH). Some features contained high 
but plausible values and were therefore not removed (eg, 
creatine kinase). Furthermore, collinearity was assessed by 
a Pearson correlation matrix (online supplemental figure 
1). No variables were removed due to high collinearity.

Predictive modelling
Ultimately, the obtained models could change the clini-
cians’ decision and thus could directly influences the 
life of a patient. It is therefore of utmost importance 
that the obtained models are both robust and interpre-
table.16 To comply with these requirements, two models 
with a fundamentally different modelling approach 
were selected: a logistic regression (LR) that fits the data 
linearly, and a tree- based gradient boosting algorithm 
that fits the data non- linearly. The models were imple-
mented using the Python 3 libraries Scikit- learn17 and 
XGBoost (extreme gradient boosting (XGB)),18 respec-
tively. Both models can be interpreted relatively easy and 
XGB often shows state- of- the- art results in multiple tasks. 
The models were trained and validated using leave- one- 
hospital- out cross- validation (LOHO- cv). By iteratively 
training the models on all but one hospital and perfor-
mance testing on the left- out hospital, the performance 
of the model represents the ability to predict the outcome 
on independent data and thereby incorporate possible 
data heterogeneity between hospitals. To prevent skewed 
performance on individual folds due to a small number 
of samples, we combined the data from the two hospi-
tals with the smallest number of samples and considered 
them as a single hospital in LOHO- cv for further anal-
ysis. Additional to LOHO- cv, internal 10- fold random 
subsampling cross- validation using data from all hospitals 
was performed to facilitate a comparison of the results 
to other studies that typically only perform internal 
cross- validation.

Modelling process
Features that had more than 50% missing values and 
subsequently patient records that had more than 80% 
missing values were removed. The remaining missing 
values were imputed using Bayesian ridge regression, 
which is inspired by the Multivariate Imputation by 
Chained Equations (MICE) method,19 and implemented 
using the IterativeImputer from the Sci- Kit Learn library. 
Only one dataset per imputation was used since the 
disadvantages of single imputation are most apparent in 
small datasets with less than 100 events.20 This imputation 
method models the missing values in each feature as a 
function of all other features and therefore provides a 
more sophisticated approach than the traditional impu-
tation methods, such as using mean, median or mode 
imputation.19 After imputation, each feature was scaled 
to its IQR. IQR scaling is known to be robust to outliers 
and often gives better results than z- score or minmax 
scaling.21 Non- linear interactions between continuous 
variables can be taken into account by a non- linear model 
like XGB, thus splines were not included to prevent an 
unnecessary increase of the feature space.22

The data were then split into folds using LOHO- cv, 
where each iteration consists of a training fold with eight 
hospitals and a test fold with one hospital. The data- driven 
feature selection of set (6) was performed on the training 
fold by selecting the 10 features showing the highest 
ANOVA F value. Because for each iteration, the training 
fold consists of eight different hospitals, the selected 
features with the highest F values can differ due to hetero-
geneity between hospitals. To be able to describe the 10 
most predictive features in further analysis, the features 
selected most often overall iterations are presented. If 
two feature sets are selected equally often, the set with the 
highest summed F values was chosen. Both missing value 
imputation and feature selection were performed inde-
pendently on the training and test set. After feature selec-
tion, both models were fitted and parameters optimised 
by a 50- iteration randomised grid search using a strati-
fied shuffle split cross- validation. A schematic overview 
of all the processing steps is shown in figure 1 and the 
grid search parameters are shown in online supplemental 
table 3. All code in the pipeline was implemented using 
the Scikit- learn python package.17 To adhere to guide-
lines on transparent reporting of multivariable prediction 
models, the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis or Diagnosis 
checklist is included in online supplemental table 4.23 All 
code used in this paper, the final model and a calculator 
is available in online (DOI:10.5281/zenodo.4077342). A 
screenshot of the calculator is shown in online supple-
mental figure 2.

Performance analysis
Model discrimination was assessed by area under the curve 
(AUC), sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV). Except for 
AUC, the metrics require a binary classification instead of 
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likelihood and therefore the cut- off threshold was tuned 
to the shortest distance to the upper- left corner in the 
receiver operating curve (ROC) plot, which was named 
as the ‘optimal’ threshold in further analysis. In addition, 
a confusion matrix was derived over the complete dataset 
and for each centre, also tuned to the optimal threshold. 
Furthermore, model calibration is shown in online 
supplemental figure 3.

Feature importance
Feature importance of models is described using SHAP 
(SHapley Additive exPlanations),24 a game- theoretic 
approach to explain the output of any machine learning 
model. SHAP computes the average contribution of all 
features by permuting all of them and subsequently evalu-
ating the error in the prediction for when a given feature 
is either included or not in the model. With SHAP, the 
impact of low and high values of a given feature on the 
models’ predictions can be evaluated, as well as how 
impactful the feature is in predicting the correct class.24

Subgroup analysis for ICU admitted patients
During a large influx of patients suffering from life 
threatening lung infections, it is most likely that the ICU 
is exhausted first due to the low bed count and invasive 
ventilation capacity. It is therefore important to analyse 
whether the model also performs well on ICU admitted 
patients, as triage might be dependent on ICU capacity. 
In the Netherlands, triage was prevented by distributing 
patients to districts with fewer admissions or German 
hospitals. However, possible bias may already be present 
in the selection of patients, because, for example, certain 
patients might not be admitted to the ICU because of old 
age, premorbid characteristics, presentation with multi- 
organ failure and patients’ own treatment restraints 
wishes. For these reasons, both LR and XGB performances 

were assessed by training on the complete dataset and the 
ICU patient subgroup.

Age as feature
To compare the models to clinical practice, the perfor-
mance was compared with two age- based decision rules 
that have been applied in practice during the crisis.1 The 
rules were translated as follows: (1) if age is above 70 then 
the outcome is considered unfavourable and (2) if age is 
above 80 then the outcome is considered unfavourable.

Furthermore, it was assessed whether age is important 
for the final prediction to be able to contribute to the 
ongoing socio- ethical debate in the Netherlands. In July 
2020, a discussion between ethicists, medical profes-
sionals and policy- makers was started about criteria for 
triage to decide which patients receive ICU care during 
acute hospital care shortage. The main point of discus-
sion was that the Dutch government was firmly opposed 
to using an age- based decision rule because it violates the 
Dutch constitution, which states that everyone should be 
treated equal and discrimination on any ground is illegal. 
To contribute to this discussion, the effect of age on the 
best performing model was assessed, by retraining the 
model on the same feature set, while excluding age as a 
feature.

Patient and public involvement
This study was a rapid response to an international public 
health emergency. Patients were not involved in any stage 
of this study.

RESULTS
Patient population
The database included 2527 patients from 10 different 
hospitals on 8 June 2020. Two hundred and twenty- three 

Figure 1 A schematic overview of all steps involved data acquisition to model evaluation. The dotted line depicts the step only 
used during feature selection of the 10 best features.
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patients were excluded because it was not possible to 
retrieve an outcome for these patients: patients that were 
still in the hospital, but less than 21 days (n=53), patients 
transferred to another hospital (n=113), patients that were 
discharged and re- admitted (n=55) and patients where 
the outcome was listed as unknown (n=2). In addition to 
these 223 excluded patients, 31 patients were excluded 
because they did not have a confirmed COVID-19 
infection. After exclusion, 2273 patient remained to be 
included in further modelling and analysis.

Of these 2273 included patients, 1757 had a favour-
able outcome and 516 had an unfavourable outcome. Of 
the 1757 patients with a favourable outcome, 1195 were 
discharged home and not re- admitted patients, 76 were 
discharged to a nursing home and 232 were discharged 
to a rehabilitation unit. In addition, 254 were still in the 
hospital at 21 days after admission (112 at the ward or 
medium care and 142 in the ICU). Of the 516 patients 
with an unfavourable outcome, 509 patients died and 7 
patients were discharged to palliative care. See figure 2 
for an overview.

To better balance the samples per hospital, the two 
smallest hospitals (n=59 and n=70) were combined. The 
resulting ratio of unfavourable outcome/total patients 
per hospital is 19% (n=261), 14% (n=169), 10% (n=118), 
31% (n=317), 14% (n=113), 21% (n=401), 27% (n=325), 
27% (n=440) and 19% (n=129).

Feature description
Two features, history of smoking and alcohol abuse, 
were removed because of multi- interpretable questions 
in the rCCRF. One feature was removed from the Clin-
ical presentation feature set and eleven features were 
removed from laboratory and radiology feature set 
for missing more than 50% values. No patient records 
were excluded for missing more than 80% values. After 
preprocessing, Premorbid and Clinical presentation 
features had 2.8% and 4.0% missing values, respectively. 
The admission laboratory and radiology features showed 
21.6% missing values. See online supplemental tables 1 

and 2 for a complete overview of features and missing 
values. Descriptive statistics of a selection of features are 
shown in table 1.

Overall model performance
XGB and LR performed equally on the premorbid set 
with an AUC of 0.77 (95% CI 0.73 to 0.81) and 0.77 
(95% CI 0.72 to 0.81), respectively. On all other feature 
sets, XGB performed better than LR, although most 95% 
CIs overlapped. Both XGB and LR achieved the highest 
AUC on the 10 best features (0.82, 95% CI 0.79 to 0.85 
and 0.81, 95% CI 0.77 to 0.85, respectively). Figure 3A 
shows a comparison of the AUCs per feature set, and 
figure 3B the confusion matrix of XGB trained on the 
10 best features. Sensitivity and specificity were compa-
rable between the algorithms. Overall, the NPV was high 
and the PPV was low, as the number of patients with a 
favourable outcome was considerably higher than the 
number of patients with an unfavourable outcome. This 
implies that the model can make accurate predictions 
of favourable outcomes, but less accurate predictions of 
unfavourable outcomes. All results are shown in table 2. 
For an in- depth overview of the results per fold, see 
online supplemental table 5. The results from internal 
cross- validation were comparable and shown in online 
supplemental table 6.

The between- hospital performance variation was small 
for both algorithms, shown by the small 95% CIs in AUC 
of 0.02 to 0.06 and a low SD (0.01). LR showed larger CIs 
(0.04 to 0.07) with equal SD (0.01).

The overall SD for all folds is small, and the compar-
ison between internal cross- validation and LOHO- cv 
shows only minor differences in results between these 
approaches, reducing the risk of over- optimistic results. 
Between models, XGB fitted the data more robustly than 
LR, supported by the relatively equal ratios between 
correct and incorrect predictions, as shown in figure 4, 
which shows the confusion matrix per hospital for XGB-10 
best predicting features using the optimal threshold 
derived from the complete dataset.

Performance stability over time
With increased duration of stay within the hospital, the 
uncertainty of the patients’ outcome may also increase. 
The patient’s chance of survival might change because 
patients that have a longer hospital stay are likely to have 
a more complicated clinical course and/or get different 
types of treatments. Additionally, prolonged hospital 
stay simply allows more events to happen. To assess 
whether the models’ performance changes based on 
the duration of hospital stay, the patients were split per 
duration of stay and subsequently, the performance per 
group was assessed. The result, presented in figure 5, 
shows that model performance does not deteriorate as 
the hospital duration increases, as the relative correct 
predictions remain between 0.6 and 0.9 and no trend 
is shown.

Figure 2 Flow diagram of patients excluded for further 
analysis.
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Table 1 Patients characteristics per outcome group and a selection of features. P values were calculated using a t- test and 
corrected for multiple comparisons by Bonferroni correction

Variables Missing Overall
Favourable 
outcome

Unfavourable 
outcome

Adjusted p 
value

Total patients 2273 1758 516   

  Age, median (Q1, Q3) 19 69.0 (58.0,78.0) 65.0 (55.0,75.1) 77.1 (71.0,83.1) p<0.001***

  Gender, n (%) 0   

Female 858 (37.7) 690 (39.3) 168 (32.6)   

  Male 1415 (62.3) 1067 (60.7) 348 (67.4)   

History of hypertension, n (%) 30 p<0.001***

  No 1207 (53.8) 998 (57.7) 209 (40.8)   

  Yes 1036 (46.2) 733 (42.3) 303 (59.2)   

History of diabetes with 
complications, n (%)

64 p<0.001***

  No 2044 (92.5) 1608 (94.4) 436 (86.3)   

  Yes 165 (7.5) 96 (5.6) 69 (13.7)   

History of diabetes without 
complications, n (%)

69 p<0.001***

  No 1789 (81.2) 1412 (83.0) 377 (75.1)   

  Yes 415 (18.8) 290 (17.0) 125 (24.9)   

History of asthma, n (%) 55 p>0.05

  No 1988 (89.6) 1524 (89.0) 464 (91.7)   

  Yes 230 (10.4) 188 (11.0) 42 (8.3)   

History of liver disease, n (%) 57 p>0.05

  No 2194 (99.0) 1693 (99.0) 501 (99.0)   

  Yes 22 (1.0) 17 (1.0) 5 (1.0)   

History of rheumatological 
disorder, n (%)

43 p<0.05*

  No 1981 (88.8) 1549 (89.9) 432 (85.2)   

  Yes 249 (11.2) 174 (10.1) 75 (14.8)   

History of autoimmune and/or 
inflammatory diseases, n (%)

62   p<0.05

  No 2027 (91.7) 1559 (91.5) 468 (92.3)   

  Yes 184 (8.3) 145 (8.5) 39 (7.7)   

History of chronic cardiac 
disease, n (%)

36 p<0.001***

  No 1539 (68.8) 1271 (73.6) 268 (52.4)   

  Yes 698 (31.2) 455 (26.4) 243 (47.6)   

History of chronic haematological 
disease, n (%)

50 p<0.05

  No 2133 (96.0) 1648 (96.0) 485 (95.7)   

  Yes 90 (4.0) 68 (4.0) 22 (4.3)   

History of chronic kidney disease, 
n (%)

45 p<0.001***

  No 1987 (89.2) 1566 (91.3) 421 (82.2)   

  Yes 241 (10.8) 150 (8.7) 91 (17.8)   

History of chronic neurological 
disorder, n (%)

45 p<0.001***

  No 1921 (86.2) 1519 (88.4) 402 (79.0)   

Continued
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Feature importance
The 10 features selected most often were, in order of 
highest F value to lowest F value: age, urea nitrogen, 
number of home medications, oxygen saturation (%), 
history of chronic cardiac disease, oxygen saturation is 
measured on room air, oxygen saturation is measured 
on oxygen therapy, blood lactate dehydrogenase (LDH), 
blood albumin and blood gas pH value. Blood gas pH is 
measured from arterial, venous and capillary samples, of 
which 90.7% of the pH values are arterial measurements. 
The two ‘oxygen is measured on’ features are binary 
features that determine whether the oxygen saturation 
(%) is measured on room air or during oxygen therapy. 
The features were chosen independently of the choice 
of the model; therefore, the selected features were the 
same for both LR and XGB. Figure 6A,B shows the SHAP 
values per feature based on XGB trained on all features. 
For readability, only the top 20 features are shown. The 
features selected by the ANOVA in pretraining are also 

present in the top features computed by the SHAP values 
in post- training, which strengthens the likelihood of 
these features being the most important features within 
this dataset. This is also shown by the fact that LR scored 
notably higher by using the 10- best features than using 
all features and XGB showing equal performance using 
10- best or all features. Analysis of SHAP values for LR on 
all features (online supplemental figure 4) showed that 
the linear LR model was not able to capture the non- 
linear predictive value of the age feature, as it was ranked 
as fourth. Nonetheless, the highest- ranked features for 
LR show importance and a direction of association consis-
tent with the literature.25 26

Subgroup analysis for ICU patients
Of the 2273 included patients, 384 (17%) were admitted 
to the ICU at any time during the hospitalisation. LR 
showed the highest overall performance on ICU patients 
with an AUC of 0.71 (0.66 to 0.76). XGB showed the 

Variables Missing Overall
Favourable 
outcome

Unfavourable 
outcome

Adjusted p 
value

  Yes 307 (13.8) 200 (11.6) 107 (21.0)   

History of chronic pulmonary 
disease (not asthma), n (%)

47 p<0.001***

  No 1790 (80.4) 1419 (82.5) 371 (73.2)   

  Yes 436 (19.6) 300 (17.5) 136 (26.8)   

***p<0.001, **p<0.01, *p<0.05.

Table 1 Continued

Figure 3 (A) Overall performance of both models per feature set. All models perform well above chance level. XGB generally 
performs better than LR, except on the premorbid feature set, where both models performed equally. The highest performance 
was achieved by XGB on both all features and the 10 selected features. (B) The confusion matrix of the best performing models, 
XGB trained on the 10 selected features. The prediction threshold was tuned to the shortest distance to the upper left corner 
of the AUC plot to create the ‘optimal’ binary prediction. AUC, area under the curve; LR, logistic regression; ROC, receiver 
operating curve; XGB, extreme gradient boosting.

https://dx.doi.org/10.1136/bmjopen-2020-047347
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highest performance on both premorbid and premor-
bid+clinical presentation features (0.69, 0.59 to 0.79). See 
table 3 for all results. For non- ICU patients, LR showed 
highest performance on the 10- best features (AUC 0.85, 

0.81 to 0.88) and XGB on all features (AUC 0.86, 0.82 to 
0.89). Compared with the results on the complete dataset, 
the performance dropped notably on ICU patients, 
decreasing in AUC by 0.04 to 0.20. The CIs also increased, 
overall ranging from 0.03 to 0.18. The decreased discrim-
inative power of the models is considered acceptable, as 
the initially best- performing feature sets decreased only 
slightly and retained small CIs. The decrease was expected, 
given that performance on a smaller subgroup is inevi-
tably lower. In addition, the prognosis of the outcome of 
ICU admitted patients might change, for example, due to 
receiving distinct interventions only available at the ICU. 
Inspection of sensitivity and specificity indicates that the 
lower performance was due to a decrease in sensitivity 
rather than specificity (see online supplemental table 7). 
The main objective in times of ICU admission at the time 
of ICU bed shortage is to correctly identify those patients 
that would benefit from intensive care. Therefore, the 
models may still be considered for application in practice, 
despite lower overall performance. Nonetheless, a more 
tailored approach might capture the unique characteris-
tics of ICU patients better.

Comparison with age-based rules for whole cohort
Of the 2273 patients, the age of 19 patients was missing 
and these were thus excluded from this analysis. Of the 
remaining 2254 patients, 1061 were older than 70 and 
415 were older than 80. The age- based decision criteria 
therefore ‘predicted’ that of age >70, 1193 will survive 
and 1061 will die. For age >80 the prediction was 1839 
and 415, respectively. Age >70 showed an AUC of 0.69 
(0.65 to 0.74) whereas age >80 showed a lower AUC (0.61, 
0.57 to 0.65). Figure 7 shows the confusion matrices of 
LR and XGB trained on the 10- best features and both 
age- based decision criteria. To compare both models with 

Table 2 Evaluation metrics for both classifiers for each feature set

Classifiers Feature set AUC Sensitivity Specificity PPV NPV

LR Premorbid 0.77 (0.72 to 0.81) 0.73 (0.61 to 0.84) 0.71 (0.64 to 0.78) 0.39 (0.35 to 0.44) 0.91 (0.88 to 0.95)

Clinical presentation 0.67 (0.62 to 0.71) 0.60 (0.51 to 0.68) 0.63 (0.57 to 0.69) 0.30 (0.22 to 0.38) 0.86 (0.83 to 0.90)

Laboratory and 
radiology

0.66 (0.59 to 0.73) 0.65 (0.47 to 0.83) 0.54 (0.34 to 0.73) 0.25 (0.16 to 0.34) 0.83 (0.74 to 0.91)

Premorbid+clinical 
presentation

0.79 (0.75 to 0.83) 0.71 (0.62 to 0.80) 0.71 (0.66 to 0.75) 0.38 (0.32 to 0.43) 0.91 (0.89 to 0.93)

All 0.71 (0.67 to 0.76) 0.62 (0.52 to 0.73) 0.70 (0.62 to 0.78) 0.36 (0.28 to 0.44) 0.88 (0.85 to 0.92)

Ten best 0.81 (0.77 to 0.85) 0.77 (0.68 to 0.85) 0.71 (0.65 to 0.77) 0.41 (0.36 to 0.45) 0.93 (0.90 to 0.95)

XGB Premorbid 0.77 (0.73 to 0.81) 0.68 (0.54 to 0.81) 0.60 (0.39 to 0.82) 0.36 (0.29 to 0.43) 0.68 (0.44 to 0.92)

Clinical presentation 0.73 (0.71 to 0.74) 0.69 (0.61 to 0.77) 0.64 (0.59 to 0.69) 0.33 (0.26 to 0.40) 0.89 (0.87 to 0.92)

Laboratory and 
radiology

0.72 (0.66 to 0.77) 0.68 (0.60 to 0.75) 0.63 (0.57 to 0.68) 0.31 (0.27 to 0.35) 0.88 (0.84 to 0.92)

Premorbid+clinical 
presentation

0.81 (0.78 to 0.83) 0.76 (0.67 to 0.85) 0.62 (0.47 to 0.78) 0.36 (0.29 to 0.44) 0.81 (0.62 to 1.00)

All 0.82 (0.79 to 0.85) 0.66 (0.54 to 0.78) 0.77 (0.65 to 0.89) 0.47 (0.42 to 0.52) 0.91 (0.88 to 0.95)

Ten best 0.82 (0.79 to 0.85) 0.67 (0.57 to 0.77) 0.75 (0.63 to 0.86) 0.44 (0.40 to 0.48) 0.91 (0.88 to 0.94)

The average and 95% CIs over all leave- onehospital- out cross- validation iterations are presented. Values in bold represent the best performance for each metric per classifier. The 
premorbid feature set includes age, gender, occupation and medical history.
AUC, area under the curve; LR, logistic regression; NPV, negative predictive value; PPV, positive predictive value; XGB, extreme gradient boosting.

Figure 4 Confusion matrix per centre as predicted by 
extreme gradient boosting trained on the 10 selected 
features. The prediction threshold is optimised by the 
shortest distance to the upper- left corner in the receiver 
operating curve plot of the complete dataset. All matrices 
show comparable distributions, though centre 4 shows 
relatively many false positives.

https://dx.doi.org/10.1136/bmjopen-2020-047347
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the age- based rules, the results were tuned to the shortest 
distance to the upper left corner in the ROC plot. Both LR 
and XGB show a higher AUC than either age- based deci-
sion criteria. The results show that the presented models 
can outperform earlier applied triage rules during crises 

and can thus provide better information based on indi-
vidual medical data.

Figure 5 Performance per day for the extreme gradient boosting (XGB) trained on the 10 selected features. The left y- axis 
shows the absolute number of correct predictions and the right y- axis the relative number of correct predictions. Relative 
performance was calculated by correct/(correct+incorrect) and was well above chance level (0.5) for all days. The results 
indicate robust performance as the relative performance showed no decrease over time while varying between 0.6 and 0.9. 
The absolute performance shows that most patients have an outcome (both favourable and unfavourable within 1 week after 
admission. A high number of patients is seen on day 21, which is caused by the aggregation of all patients that are in the 
hospital 21 days or longer. Logistic regression on the 10 best features shows similar performance (figure not shown).

Figure 6 SHAP values of XGB trained on all features. To prevent readability issues, only the top 20 features are shown and the 
SHAP value range is set from −1.5 to 1.5, visually cutting of a few outliers. The colour of each data points depicts the height of 
the value, where red corresponds to high values and blue to low values. SHAP values above 0 suggest a positive association 
with the outcome. Given the outcome is defined as mortality within 21 days, the positive SHAP values translate to association 
with higher mortality. AST SGOT, aspartate aminotransferase / serum glutamic- oxaloacetic transaminase; LDH, lactate 
dehydrogenase; SHAP, SHapley Additive exPlanations; XGB, extreme gradient boosting.
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Sensitivity analysis of age as feature
The best performing model, XGB-10, was retrained and 
evaluated without age as a feature. While expecting the 
performance to drop significantly, given that age was the 
most predictive feature by both the feature selection and 
SHAP analysis (figure 6), the performance decreased 

only slightly from an AUC of 0.82 (0.79 to 0.85) to 0.78 
(0.75 to 0.81). Even though there were no signs of trou-
blesome collinearity (online supplemental figure 1), age 
did show high multicollinearity (variance inflation factor; 
VIF >20). However, during model development, it was 
decided not to exclude features beforehand. Nonethe-
less, the high VIF indicates that the information present 
in age is latently present in two or more other features, 
which could explain the retained performance.

DISCUSSION
We have shown that the mortality of individual patients 
with COVID-19 can be predicted at hospital admission 
with good discrimination using both linear (LR; AUC 
0.81, 0.77 to 0.85) and non- linear (XGB; 0.82, 0.79 to 
0.85) models with 10 features that are readily available in 
most hospitals. Both models showed improved discrim-
ination over age- based decision rules, used in practice 
during acute hospital bed shortage.2 XGB trained on all 
80 features and the 10 best features performed compa-
rable, but the latter model may be preferred for easier 
translation to clinical practice.

The presented models were trained on a large cohort, 
representing approximately 16% of the total COVID-19 
related hospital admissions in the Netherlands during the 
first wave (Nationale Intensive Care Evaluatie (NICE), 
consulted 7 October).24 Wynants et al reported that most 
models were at severe risk of bias due to poor patient 
selection, predictor description and methodology.10 
The present study has addressed these issues by aiming 
to clearly describe the patient inclusion process of a 
large cohort, clearly defining an outcome measure and 
by using a standardised predictor format (rCCRF) from 
the WHO, expanded with potentially predictive variables 
curated by clinicians working in the COVID-19 field. The 

Table 3 Model performance on (non- )ICU subgroup

Classifiers Feature set AUC—ICU patients AUC—non- ICU patients

LR Premorbid 0.71 (0.66 to 0.76) 0.81 (0.77 to 0.84)

Clinical presentation 0.51 (0.37 to 0.66) 0.68 (0.64 to 0.72)

Laboratory and radiology 0.54 (0.45 to 0.63) 0.69 (0.61 to 0.76)

Premorbid+clinical presentation 0.60 (0.42 to 0.78) 0.83 (0.80 to 0.86)

All 0.63 (0.50 to 0.76) 0.75 (0.72 to 0.79)

10 best 0.62 (0.44 to 0.80) 0.85 (0.81 to 0.88)

XGB Premorbid 0.69 (0.59 to 0.79) 0.80 (0.76 to 0.83)

Clinical presentation 0.57 (0.41 to 0.72) 0.75 (0.72 to 0.77)

Laboratory and radiology 0.59 (0.52 to 0.66) 0.76 (0.69 to 0.83)

Premorbid+clinical presentation 0.69 (0.59 to 0.79) 0.84 (0.81 to 0.87)

All 0.68 (0.58 to 0.78) 0.86 (0.82 to 0.89)

10 best 0.68 (0.57 to 0.79) 0.85 (0.82 to 0.88)

Values in bold represent the best performance per classifier per subgroup. The premorbid feature set includes age, gender, occupation and 
medical history.
AUC, area under the curve; ICU, intensive care unit; LR, logistic regression; XGB, extreme gradient boosting.

Figure 7 LR and XGB trained on the 10 selected features 
compared with two age- based decision rules. Both LR and 
XGB showed a higher AUC than both age- based rules. 
Nineteen patients did not have a value for age and were 
excluded for this analysis. AUC, area under the curve; LR, 
logistic regression; XGB, extreme gradient boosting.

https://dx.doi.org/10.1136/bmjopen-2020-047347
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models were calibrated by using nested cross- validation 
to prevent data leakage and validated by LOHO- cv. This 
location- based external cross- validation shows better 
results than classic cross- validation,27 although validation 
on an independent dataset remains preferred. Additional 
to LOHO- cv, the risk of overfitting was further reduced 
by regularising both models, where regularisation param-
eters were optimised using nested cross- validation on the 
training set. Furthermore, the internal cross- validation 
results shown in online supplemental table 6 are similar 
to the results of LOHO- cv validation, indicating that the 
risk of overfitting on specific centres is low. An important 
note is that a good model fit was not shown on all feature 
sets, for example, laboratory and radiology features or LR 
on all features. Additionally, analysis of the SHAP values 
of LR (online supplemental figure 4), showed that the 
predictive value of age was not well captured by LR, as 
the feature was only ranked as the fourth most predictive 
feature. Combined, XGB-10 is the recommended model, 
as it showed a good fit and capture the non- linear predic-
tive value of age well.

The results shown in this study are similar to a large- 
scale study by Knight et al that used a UK cohort 10- fold 
larger than this cohort and external validation.11 The 
authors presented similar methods with similar results as 
this study, which strengthens the reliability of both models 
and reducing the risk of reporting over- optimistic results.

However, before application in practice the models 
need to be validated by an independent research group 
and for data in other countries. We have identified several 
uncertainties that may limit the current reliability of the 
models. First, the skewed outcome distribution (516 
events over 2273 records) in our cohort limits the cali-
bration of our models (online supplemental figure 3). 
This becomes apparent in the decreased calibration for 
higher- risk patients, though it must be noted that the 
recommended model (XGB-10) retains good calibra-
tion. Second, the cohort represents Dutch hospitalised 
patients with COVID-19 during the first wave of infections 
and might differ from current patients with COVID-19 
due to the availability of therapies like steroids or vaccina-
tion. The included features could be improved by adding 
some features that are known to be highly predictive such 
as d- dimer, presence of infiltrates on the chest X- ray and 
duration of symptoms before hospital admission. These 
variables were initially included in our data but had to 
be removed due to too many missing values. Additionally, 
the duration of symptoms before admission was anam-
nestic, decreasing its reliability due to the retrospective 
data collection.

Finally, some uncertainties arise from the outcome 
definition, defined as the chance of death or discharge 
to palliative care within 21 days after hospital admission. 
The outcome was defined as all- cause mortality instead of 
COVID-19 related mortality, and this might result in an 
overestimation of the predictive power of specific comor-
bidities. Furthermore, the cut- off point of 21 days was 
considered as a balanced choice between early outcome 

and eventual outcome. A shorter timeframe might result 
in inaccurate outcomes and extending it would not have 
resulted in many more cases. However, some patients 
that were still at the hospital on day 21 might have an 
unfavourable outcome shortly after, resulting in a misla-
belling of the patient, which overall might lead to an 
underestimation of mortality. Moreover, no follow- up of 
patients discharged to palliative care was implemented, 
possibly labelling patients with an erroneous unfavour-
able outcome. However, given that only seven patients 
(0.3% of all patients) were discharged to palliative care, 
we consider the risk negligible. Finally, no bed shortage 
was experienced in the Netherlands and it is therefore 
unlikely that prioritisation towards specific patients 
biased the cohort.

Implications for clinicians and policymakers
The presented models show that a reliable prediction can 
be made based on 10 features readily available in all Dutch 
and most worldwide hospitals: age, number of home 
medications, admission blood values urea nitrogen/
LDH/albumin, oxygen saturation (%), blood gas pH and 
history of chronic cardiac disease. The models are thus 
easily applicable in practice and can improve the triage 
decision by providing a more objective medical founda-
tion. We also showed that age as a feature is contributing 
towards a better prediction, but is not crucial. This impli-
cates that policymakers can decide to exclude age when 
using these models.

Unanswered questions and future research
This work shows a promising step towards a triage tool 
during a hospital bed shortage. However, given the rapidly 
improving medical care for patients with COVID-19 and 
the lack of external validation, the data used during devel-
opment are likely less representational of the current 
hospitalised patients with COVID-19. Additionally, the 
models are trained on a Dutch cohort and cannot be 
generalised to other countries. Finally, it should be evalu-
ated how the prediction of the models compare with the 
clinician expertise. Altogether, a validation study evalu-
ating these unanswered questions would be the next step 
towards clinical implication.

CONCLUSION AND RECOMMENDATION
Both LR and XGB showed good performance using the 
10 best features, and outperformed age- based rules, 
with or without age included in the features. The results 
suggest that XGB using the 10 best features can improve 
decision making during an acute hospital bed shortage 
during a COVID-19 crisis and this model holds promise 
to be developed into a clinical tool.
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