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Abstract

Background: Influenza has been associated with heavy burden of mortality and morbidity in subtropical regions. However,
timely forecast of influenza epidemic in these regions has been hindered by unclear seasonality of influenza viruses. In this
study, we developed a forecasting model by integrating multiple sentinel surveillance data to predict influenza epidemics in
a subtropical city Shenzhen, China.

Methods: Dynamic linear models with the predictors of single or multiple surveillance data for influenza-like illness (ILI) were
adopted to forecast influenza epidemics from 2006 to 2012 in Shenzhen. Temporal coherence of these surveillance data
with laboratory-confirmed influenza cases was evaluated by wavelet analysis and only the coherent data streams were
entered into the model. Timeliness, sensitivity and specificity of these models were also evaluated to compare their
performance.

Results: Both influenza virology data and ILI consultation rates in Shenzhen demonstrated a significant annual seasonal
cycle (p,0.05) during the entire study period, with occasional deviations observed in some data streams. The forecasting
models that combined multi-stream ILI surveillance data generally outperformed the models with single-stream ILI data, by
providing more timely, sensitive and specific alerts.

Conclusions: Forecasting models that combine multiple sentinel surveillance data can be considered to generate timely
alerts for influenza epidemics in subtropical regions like Shenzhen.
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Introduction

Influenza is a contagious disease with high transmissibility to

spread around the world. Influenza viruses, particularly the type A

viruses, are characterized with a high mutation rate. According to

WHO, there are about 300,000 deaths related to influenza every

year [1]. Although influenza was once considered to be a ‘‘cold’’

disease, influenza-associated disease burden in warm tropical and

subtropical regions has been demonstrated as high as in cold

temperate regions [2]. For example, in subtropical city Hong

Kong, influenza causes more than 1,000 deaths and more than

4,000 hospitalizations of respiratory disease and cardiovascular

disease_ENREF_4 every year [3]. Hence it is of great significance

for public health to establish a forecasting model with the aim to

issue timely warning signals for influenza epidemics. However,

unlike temperate countries where influenza virus exhibits one

sharp winter peak, tropical and subtropical regions have less clear

seasonal pattern and influenza viruses could be active throughout

the year [4]. Despite of a few attempts [5,6], to this date there are

no forecasting models that have been widely adopted in tropical

and subtropical regions.

With increased awareness on influenza epidemics under warm

climates, sentinel surveillance for influenza has been greatly

enhanced in subtropical and tropical regions. Shenzhen, one of the

largest migratory metropolitan cities located in Southern China,

has established the influenza surveillance program in late 1990s

[7]. Like many other regions [8], Shenzhen’s surveillance system

for influenza includes both clinical surveillance for influenza-like

illness (ILI, defined as fever over 37.8uC and/or cough) and

laboratory surveillance from a selected sample of ILI patients.

Although laboratory surveillance can provide more accurate

signals for influenza epidemics, it usually lags weeks, even months,

behind clinical surveillance [6]. ILI consultation rates can be

quickly and easily collected by clinical doctors to generate more

timely alerts, so that health authorities could quickly implement

control measures. However, the lack of specific symptoms after

influenza infections often resulted in false signals [9]. Previous
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studies have adopted a variety of forecasting models, such as

regression models [10–12] and cumulative sum (CUSUM) method

[13,14], to improve the accuracy and timeliness of warning signals,

but relatively few attempts have been made in tropical and

subtropical regions [6,15].

Dynamic linear model (DLM) is a type of Gaussian linear state

space models used in time series analysis [16,17]. A previous study

using the Hong Kong and US data has found that DLM

outperformed regression models and CUSUM method [6]. In this

study, we tried to optimize the DLM forecasting model in

generating alerts for influenza epidemics in Shenzhen, one of the

largest migratory metropolitan cities in mainland China, by

integrating ILI surveillance data from different districts.

Methods

Data
Shenzhen has four districts located at the Special Economic

Zone (Luohu, Futian, Nanshan and Yantian) and two suburban

districts (Baoan and Longgang) (Figure 1). These districts showed

great heterogeneity in terms of living environment, socioeconomic

development and population composition (Table S1 in File S1).

Weekly proportions of specimens positive for influenza A or B in

the entire territory of Shenzhen from 2006 to 2012 were collected

by the Shenzhen Center for Disease Control and Prevention

(SZCDC) through its sentinel surveillance network established in

each district. We defined influenza peak season as the period of at

least two consecutive weeks when weekly proportion of specimens

positive for influenza exceeded 30% of the maximum level of

weekly positive proportions in that year [6,15]. If there were only

one or two nonpeak weeks found between two peaks seasons, they

were also classified as peak weeks to form a wide peak. Weekly ILI

consultation rate was separately collected in two outpatient

settings: 6 general hospitals (GH) and 6 community health centers

(CHC), with one in each of six districts [7]. Patients with mild

illness often sought medical treatment at community health

centers, and relatively severe patients consulted doctors in general

hospitals. Two datasets of city-level GH and CHC consultation

rates were also calculated by combining the data from all the

districts.

Temporal coherence of surveillance data
Because many respiratory pathogens other than influenza can

also cause ILI symptoms, ILI rates are a less specific indicator for

influenza virus activity than laboratory data. We decided to assess

the coherence between ILI rates and laboratory data in terms of

seasonal variation. To deal with non-stationary seasonal patterns

shown in most data streams, we used wavelet analysis to assess the

temporal coherence of district-level ILI surveillance data and city-

level laboratory data. Wavelet analysis has been used to explore

the temporal and spatial variations of various infectious diseases

including influenza [18,19]. The advantage of wavelet analysis is

that it can decompose time series data into small time-frequency

bands to identify the dominant frequencies (cycles) at different

time periods. Similar to correlation, wavelet coherence measures

the association between two time series at each time-frequency

band. High coherence suggests that one time series can be used to

predict another. All these 14 data streams of GH and CHC data at

district- or city-level showed a similar annual pattern, with the

exception of GH data in the Nanshan and Longgang districts. To

avoid the false warning signals released from the data streams with

distinct seasonal patterns, we excluded the GH data from Nanshan

and Longgang from the subsequent analysis. Therefore, a total of

12 data streams were finally included in analysis.

Dynamic linear model
Dynamic linear model (DLM) [16,17] is a type of Gaussian

linear state space models used in time series analysis. Unlike

classical ARMA models, DLMs can be used to model non-

stationary time series; therefore it is particularly suitable for the

non-stationary surveillance data in our study. We used one of the

simplest DLMs, the first order polynomial model, which is also

called the random walk plus noise model. This model assumes

Yt~htzvt, vt eN 0,Vð Þ
ht~ht{1zwt, wt eN 0,Wð Þ

(

where Yt denotes the observed data at week t , which is a noisy

observation for a Markov chain ht (termed as the state process).

Therefore, conditionally on ht, Yt are mutually independent

[6,15,17]. Based on this assumption, Yt can be predicted from

prior conditions and past observations Yt{1. When the observed

value of Yt has been obtained, DLM can be updated to make a

new forecast value for Ftz1. The terms vt and wt represent

observation error and evolution error respectively, under the

assumption of mutual independence. Kalman filter can be applied

to estimate the variance V of the data [20,21]. The parameter

W represents the assumed smoothness of the changes of under-

lying information, i.e., the influenza activity changes from time to

time, which are pre-specified as 0.1, 0.075, 0.05, and 0.025 under

the assumption of low-to-high smoothness in changes.

Rules of generating alerts
As the first step, we constructed twelve single-stream models

with weekly ILI rates respectively from each district or whole city

in either GH or CHC settings. Then multiple-stream models

which incorporated all the single data streams of ILI data with

similar seasonal patterns were developed.

For single-stream models, an alert was triggered by an

aberration, which was defined as weekly observed ILI of any data

streams exceeding the upper bound of its forecast interval of

1{að ÞFt derived from the DLMs. While for the multiple-stream

models, a variety of alert rules were adopted and compared: first

occurrence of any aberration (R1), 5 simultaneous aberrations

(R2), 8 simultaneous aberrations (R3), any 5 aberrations (R4) or

any 8 aberrations (R5) first occurred within 2 weeks.

Model performance
The performance of dynamic linear models using single- and

multiple-stream ILI surveillance data was evaluated by sensitivity,

specificity and timeliness [22]. Sensitivity measures whether there

is at least one alert during each influenza peak season, as

true alerts

number of the peak season weeks
,

while specificity assesses false alerts generated outside the peak

season, as

1{
false alerts

number of weeks outsides the peak season
:

.

Influenza Epidemics Forecast in a Subtropical City

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92945



Timeliness is defined as the lag time between the first alert and

the onset week of each peak season.

To simplify the comparison, we further calculated a single metric

of weighted receiver operating characteristic curve (AUWROC)

[22,23], which combined sensitivity, specificity and timeliness

together, to measure the overall model performance. AUWROC

was calculated as the area under the plot of 1{Specificity (y-axis)

against 1{ Timeliness
Specified maximal delay

� �
|Sensitivity (x-axis), where spec-

ificity was set to 95% to simplify calculation. The maximal delay

allowed for alerts was 4 weeks [6]. A higher AUWROC value

indicated a model with better performance. All analyses were

conducted using the R software [24].

We did sensitivity analysis by building dynamic linear models in

shorter study periods of 2007–2012 and 2007–2011. To justify our

choice of the first-order DLM, we also applied the more

complicated second-order DLM to our data [16,17].

Ethics
The Ethics Committee of Shenzhen Center for Disease control

and Prevention approved this study and written consent was

waived by the Ethics Committee of Shenzhen Center for Disease

control and Prevention, as there was no personal data involved in

this study.

Results

During the study period, we collected 24,210 samples from ILI

patients. In total, 3,318 ILI patients were tested positive for

influenza by hemagglutination tests. The weekly numbers of

influenza positive specimens had an average of 9.1 and range from

0 to 71. Time series plots of city-level laboratory data and average

ILI rates are shown in Figure 2, and district-level ILI rates in CHC

and GH settings are plotted in Figure 3. Wavelet analysis showed

that city-level laboratory data and all district-level CHC-ILI data

had a significant annual cycle during the whole study period from

2006 to 2012 (Figure S1 and Figure 4). A similar annual pattern

was found for most GH-ILI data, with the only exceptions of

Nanshan and Longgang districts where a semiannual cycle

occasionally occurred (Figure S2). Significant coherence with

laboratory data was found between the remaining 7 single data

streams from CHC setting (6 district-level streams plus 1 city-level

stream) and 5 from GH setting (4 district-level streams plus 1 city-

level stream). These 12 coherent data streams were included for

further analysis to ensure that all the data streams follow the

similar seasonal pattern.

To facilitate model comparison, we calculated the highest

AUWROC, sensitivity and timeliness at a fixed specificity of 95%

for each model. For the model with single data stream of each

district- or city-level ILI rates, the best performance was achieved

by the model with only the GH-ILI data from the Futian district

included (AUWROC 0.78 and timeliness 1.18 weeks). The

AUWORC of city-level ILI for either GH or CHC settings were

0.74 and 0.71, respectively. In overall, the alerts generated from

the single stream models using the GH-ILI data tended to have

higher AUWROC than those using the CHC-ILI data (average

AUWROC 0.71 vs. 0.65). For the multi-stream models with

twelve streams of ILI data, the AUWROC had an average of 0.73

across different alert generating rules. The rule R5, i.e. any 8

aberrations first occurred within 2 weeks, had the most optimal

performance, with AUWROC of 0.81 and timeliness of 1.23

weeks. The performance of multi-stream models was better than

that of the single-stream models, with higher AUWROC (average

0.73 vs. 0.67), higher sensitivity (average 0.92 vs. 0.83) and less lag

time (average 1.54 weeks vs. 2.47 weeks) (Table 1).

We found that overall the second-order DLM did not obviously

improve the model performance, as compared to the simplest first-

order DLM (Table S2 in File 1). The first-order DLM that was

applied to the data of shorter study periods (2007–2012 or 2007–

2011) yielded similar sensitivity, specificity and AUWROC (Table

S3 in File S1). In the sensitivity analysis of varying the thresholds of

Figure 1. Geographical locations of six districts in Shenzhen. Four districts at the Special Economic Zone are highlighted in red; two
suburban districts are highlighted in yellow.
doi:10.1371/journal.pone.0092945.g001
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influenza epidemic period, the definition of weekly positive

proportion exceeding 40% of annual maximum showed the worst

performance, but the definitions of 20% and 30% had similar

estimates in all the indicators (Table S4 in File S1).

Discussion

In this study we compared the performance of different single-

or multi-stream DLM using the sentinel surveillance ILI data, in

terms of generating sensitive, specific, and timely alerts for

influenza epidemics in a subtropical city of Southern China.

The better performance of multi-stream models suggests that

incorporating different sources of surveillance data could improve

the performance of forecasting models. Although there are more

complicated multivariate mathematic models available, we used

relatively simple DLM in this study, which provides a simple and

convenient tool for health authorities in tropical and subtropical

regions. It is of note that our model requires that all different data

streams follow similar seasonal patterns, which can easily be

evaluated by wavelet analysis, as demonstrated in this study.

According to our study, the performance of multi-stream

forecasting models with all the twelve ILI data streams for 5 or

8 simultaneous aberrations (R2, R4, and R5) substantially

improved in sensitivity, timeliness and AUWROC, as compared

with the single-stream model from either GH or CHC settings. We

also found that the alert generating rule of 8 aberrations out of

total 12 data streams achieved the highest AUWROC. Hence the

prediction rule that at least 75% of data streams show aberrations

could be considered in future studies on forecasting models to

generate an alert for influenza epidemics.

In line with the previous study in Shenzhen, we found that

influenza laboratory data and ILI consultation rates in most

Figure 2. Time series plots of (A) weekly numbers of virus isolates and (B) average ILI consultation rates (%) from both CHC and GH
settings, 2006-2012.
doi:10.1371/journal.pone.0092945.g002
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districts demonstrated annual cycles [25]. However, we conducted

wavelet analysis for each district from different surveillance settings

of the city, and found the semiannual cycles in Longgang and

Nanshan from GH during and after the 2009 pandemic period.

The geographical heterogeneity in ILI data might be due to the

disparity of socioeconomic development, population composition

and health seeking behavior. Unfortunately, there are not many

related data available in the district levels. Further studies on the

factors that affect geographical heterogeneity are warranted when

such data become available.

A potential limitation of our study is the lack of influenza

laboratory data in each district, which does not allow us to define

district-specific influenza epidemics. Nevertheless, given the highly

synchronized seasonal peaks of influenza across even countries

[26] and efficient transmission of influenza virus inside the

community [27,28], we believe it is reasonable to assume that all

these districts simultaneously entered seasonal influenza epidemics.

Another limitation is that we defined influenza epidemics solely

based on an artificially set threshold, although sensitivity analysis

of using different thresholds suggested that our results were robust

to different definitions of influenza epidemics.

In conclusion, we found that forecasting models with multiple

data streams of ILI consultation rates could provide more timely

and accurate warning signals to influenza epidemics. The

Figure 3. District-level ILI consultation rates, from (A) GH and (B) CHC settings, 2006-2012.
doi:10.1371/journal.pone.0092945.g003
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Figure 4. Wavelet spectrums of ILI consultation rates from CHC in six districts, 2006–2012. (A: Luohu; B: Futian; C: Baoan; D: Nanshan; E:
Yantian; and F: Longgang). The black contour lines show the regions of time-frequency of the 95% confidence level for the spectrum generated from
1,000 Monte Carlo simulations. The black curve is the cone of influence indicating the region without edge effects. The power values are coded from
blue for low power to red for high power in the right panel.
doi:10.1371/journal.pone.0092945.g004
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modeling strategies of DLM could be applied to other subtropical

and tropical regions.

Supporting Information

Figure S1 Wavelet spectrums of city-level laboratory
data in Shenzhen, 2006-2012. The black contour lines show

the regions of time-frequency of the 95% confidence level for the

spectrum generated from 1,000 Monte Carlo simulations. The

black curve is the cone of influence indicating the region without

edge effects. The power values are coded from blue for low power

to red for high power in the right panel.

(TIF)

Figure S2 Wavelet spectrums of ILI consultation rates
from GH in six districts, 2006-2012. (A: Luohu; B: Futian; C:

Baoan; D: Nanshan; E: Yantian; and F: Longgang). The black

contour lines show the regions of time-frequency of the 95%

confidence level for the spectrum generated from 1,000 Monte

Carlo simulations. The black curve is the cone of influence

indicating the region without edge effects. The power values are

coded from blue for low power to red for high power in the right

panel.

(TIF)

File S1 Supporting Tables. Table S1. Population and

economic indicators of each district in Shenzhen. Table S2.

Performance of alerts generated by single monitoring and multiple

monitoring using first-order and second-order dynamic linear

models during 2006 to 2012. Table S3. Performance of alerts

generated by single monitoring and multiple monitoring by

dynamic linear models using different study periods. Table S4.

Performance of alerts generated by single monitoring and multiple

monitoring by dynamic linear models at different thresholds of

influenza epidemic period definitions (20%, 30%, or 40%),

Shenzhen, 2006-2012.

(DOC)
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