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Abstract

Introduction
Length of Stay (LoS) in Intensive Care Units (ICUs) is an important measure for planning beds
capacity during the Covid-19 pandemic. However, as the pandemic progresses and we learn more
about the disease, treatment and subsequent LoS in ICU may change.

Objectives
To investigate the LoS in ICUs in England associated with Covid-19, correcting for censoring, and
to evaluate the effect of known predictors of Covid-19 outcomes on ICU LoS.

Data sources
We used retrospective data on Covid-19 patients, admitted to ICU between 6 March and 24 May,
from the “Covid-19 Hospitalisation in England Surveillance System” (CHESS) database, collected
daily from England’s National Health Service, and collated by Public Health England.

Methods
We used Accelerated Failure Time survival models with Weibull and log-normal distributional
assumptions to investigate the effect of predictors, which are known to be associated with poor
Covid-19 outcomes, on the LoS in ICU.

Results
Patients admitted before 25 March had significantly longer LoS in ICU (mean= 18.4 days,
median= 12), controlling for age, sex, whether the patient received Extracorporeal Membrane
Oxygenation, and a co-morbid risk factors score, compared with the period after 7 April (mean= 15.4,
median= 10). The periods of admission reflected the changes in the ICU admission policy in England.
Patients aged 50-65 had the longest LoS, while higher co-morbid risk factors score led to shorter
LoS. Sex and ethnicity were not associated with ICU LoS.

Conclusions
The skew of the predicted LoS suggests that a mean LoS, as compared with median, might be
better suited as a measure used to assess and plan ICU beds capacity. This is important for the
ongoing second and any future waves of Covid-19 cases and potential pressure on the ICU resources.
Also, changes in the ICU admission policy are likely to be confounded with improvements in clinical
knowledge of Covid-19.
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Introduction

Background

As of 1 February 2021, more than 103 million people worldwide
had tested positive for SARS-CoV-2, with over 2.2 million
deaths due to Covid-191 93,448 deaths within 28 days from
a positive test were reported in England2. Numerous efforts
have been undertaken by epidemiologists to study the spread
of the pandemic [1, 2], fatality rates [3] and the effectiveness
of non-pharmaceutical interventions such as mitigation and
suppression [4]. Several medical and public health studies have
highlighted the increased length of stay (LoS) in Intensive Care
Units (ICUs) [5–8].

Some infected people are asymptomatic [9], others have
symptoms of varying severity, with a significant minority
requiring ICU admission (5% of all of those testing positive
in China [10]; 12% in Italy [5]). Such rates can lead to a fast
depletion of ICU capacity, especially with increasing prevalence
of Covid-19 in the population (idem). This information is
relevant during the decision-making process on admission to
ICUs, and also for the management and planning of resource
allocation in the health care system [11]. Hence, it is important
to know the average of and expected variation in ICU LoS, and
to determine which factors might predict that variation.

Early studies of ICU LoS for Covid-19 restricted themselves
to reporting descriptive statistics. A median of nine days was
reported in an Italian study of 1,591 ICU patients with an
average age of sixty-three [5]. In China, a median of eight
days in ICU was found based on a compilation of 46 different
studies [12]. The overall median conceals a wide variation in
LoS, from a median of five days for patients who had died
in ICU [13, 14] to a LoS of twenty-eight days for patients
aged over sixty who had not died during the study [14]. For
total hospital stay (including ICU), a median of twelve days
(mean 12.8) was found for 1,099 Covid-19 patients in China
with an average age of fifty-two [15]. In England, a median
of twelve days for survivors and ninety days for non-survivors
were reported as of 3 July 2020 [7].

For all the aforementioned studies, the complete LoS was
calculated only for patients who had already died or been
discharged from ICU; the LoS estimates were not adjusted
for censoring, i.e. for the fact that patients still in ICU may
go on to have greater LoS than that observed during the data
collection window of the study. For example, 94% of those
reported by [15] were still in hospital and were not included
in calculating LoS. ICU LoS reported by [5] included 58% of
the patients still in ICU but did not correct for censoring.
LoS reported by Intensive Care National Audit & Research
Centre (ICNARC) [7] was based on 9,768 patients with 519
still receiving critical care. Therefore, these figures on ICU LoS
for Covid-19 are likely to be underestimates.

Aims

Our aim was to provide more accurate estimates of the
ICU LoS attributable to Covid-19. We analysed the LoS in

1https://www.worldometers.info/coronavirus/
2https://coronavirus.data.gov.uk/details/deaths?areaType=nation&areaName=England
3https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/phe-letter-to-trusts-re-daily-covid-19-hospital-surveillance-11-
march-2020.pdf
4There are also 25 health and care trusts which include 10 ambulance trusts, and 53 mental health trusts.

ICU of patients with Covid-19 during the first wave of the
SARS-CoV-2 pandemic in England using data from a national
reporting system using survival analysis methods that can
compensate for the censoring of LoS data. We also aimed
to investigate potentially important predictors of LoS, such as
sex, age and the presence of comorbidities, as well as structural
factors such as changes to care guidelines that occurred during
the data collection period [16, 17].

Methods

Data

This was a secondary analysis of data collected by the COVID-
19 Hospitalisation in England Surveillance System (CHESS)
daily reporting mechanism. CHESS collates epidemiological
surveillance reports from all National Health Service (NHS)
hospitals in England to provide daily patient-level and
aggregate data on COVID-19-positive hospitalisations3. In
the patient-level data, patients are followed through their
hospitalisation pathway, with the dates of various events
recorded, such as date of admission to hospital, date of
admission to ICU and final outcome date. CHESS also provides
information about demographics and comorbid conditions.
We used the data that was released on 26 May 2020. The
individual-level data were obtained from 103 NHS trusts, with
134 participating trusts that provided aggregate data [18]. In
England, there are a total of 150 acute trusts [19]4.

Of the 103 NHS Trusts providing individual data to
CHESS, we excluded twelve due to data quality issues. In
these trusts, less than 50% of patient-stays in ICU had dates
recorded for both entry and exit. A further ten trusts were
removed as they had no cases that passed the exclusion
criteria. In the remaining trusts, we analysed all cases admitted
to hospital between 6 March and 24 May 2020 who had a
positive, laboratory performed, polymerase chain reaction test
for Covid-19, were admitted to ICU and were 18+ years old.
This resulted in a sample of 4,041 cases. Sixty-one patients
were admitted to ICU more than once, so the number of unique
patients in this sample was 3,980. See Appendix A for full
details of the sample selection criteria.

Duration in ICU or censoring

The outcome variable was LoS in ICU, measured in days. This
was calculated as the date of leaving ICU (either through
death, discharge, or transfer) minus the ICU admission date.
In the absence of the ICU admission date we used hospital
admission date (n = 154) as a proxy. If the ICU leaving date
was missing but the case had a reported outcome, we used
the date of that outcome (n = 1,140), or the date of the
record update (n = 8) as a proxy. These proxy measurements
permitted us using a substantially larger sample while not
underestimating a patient’s actual LoS, as records are always
updated after the outcome (a median of 6 days later).

Table 1 shows the number of records by final outcome
and its occurrence. 743 cases were either recorded as being

2

https://www.worldometers.info/coronavirus/
https://coronavirus.data.gov.uk/details/deaths?areaType=nation&areaName=England
https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/phe-letter-to-trusts-re-daily-covid-19-hospital-surveillance-11-march-2020.pdf
https://www.england.nhs.uk/coronavirus/wp-content/uploads/sites/52/2020/03/phe-letter-to-trusts-re-daily-covid-19-hospital-surveillance-11-march-2020.pdf


Shryane, N et. al. / International Journal of Population Data Science (2021) 5:4:05

Table 1: Number of records of ICU stays by final outcome and when the outcome happened

Final Outcome While in ICU After ICU stay Unknown Total

Death 1,350 83 1 1,434
Discharged 843 1,020 1 1,864
Censored 222 137 384 743
Total 2,415 1,240 386 4,041

Source: own elaboration using CHESS data until 26 May 2020. Note: the final outcome denotes the outcome that could have
happened after a patient left ICU.

still in ICU at the end of the data collection period, or had
an incomplete record which omitted the final outcome. For
these latter cases, we assumed that the last date on which
the patient’s CHESS record had been updated, or if this
was not available the date of the most recent SARS-Cov-
2 test swab (after they had been admitted to ICU), was
the last date they were definitely still in ICU (n = 222) as
this date is the last time we actually observe the patient
to be in ICU. Thus, we treated these patients as having
censored ICU LoS. Those patients might, in fact, have left
the ICU but the data do not contain information on such an
event.

Records for which LoS could not be calculated (n = 386),
or for which negative LoS (n = 13) or zero LoS (n = 48) were
implied by the data were removed from the analysis, leaving a
sample of 3,594 cases. After also removing cases with missing
predictor information on health risk factors score (n = 545),
a final sample of n = 3, 049 was used. Table B1 presents the
LoS a recorded in the final sample broken by characteristics
described in further sections.

Patient-level pre-morbid predictor variables

We found no studies specifically focused on evaluating risk
factors for ICU LoS due to Covid-19, although associations
have been found for non Covid-19 ICU LoS (see for
example [20]) and Covid-19-related hospital (not exclusively
ICU) LoS [21]. Instead, we looked at studies that evaluated
pre-morbid, individual level risk factors for Covid-19 severity
and mortality. Of these, the most consistently reported
were old age, male sex, and the presence of comorbid
conditions [22–25]. We used these as the primary predictors
of LoS in our analyses. In our sample, there were 920 (30.2%)
females and 2,129 (69.8%) males. We grouped age into four
categories: 18-49 years old (n = 682), 50-64 years old (n =
1, 322), 65-74 years old (n = 726), 75 or over (n = 319). We
further evaluated whether there might have been differential
effects of age on LoS by sex, as well as the effects of age and
sex independently.

We also explored differences in LoS by ethnicity. These
analyses were exploratory because of the amount of missing
ethnicity data (n = 535) and the consequent potential for
biased findings. Ethnicity was grouped into five categories
(based on those used by the UK Office for National Statistics):
Black (including black African and Afro-Caribbean; n = 134),
Asian (primarily Indian, Pakistani, and Bangladeshi; n = 388),
Mixed (n = 51), Other (n = 162), and White (n = 1, 779).
The White group was used as a baseline category in the
analysis.

Risk factor score

We used information on eleven individual health-related risk
factors recorded in CHESS: asthma (requiring medication),
diabetes (I and II combined), chronic heart disease,
hypertension, immunosuppression due to disease, immuno-
suppression due to treatment, chronic liver disease, chronic
neurological disease, chronic renal disease, respiratory disease,
and clinician-rated obesity; all were coded as binary items
(0= no, 1= yes), apart from clinician-rated obesity which was
coded on a three-point scale: (0= no, 1=maybe, 2= yes).
The data on risk factors was incomplete; specifically, there
was often no distinction between the patient not having a
condition and the information being missing due to not being
recorded. To make maximum use of the available information,
we used the one-parameter Rasch partial credit model to
combine the information from all of the risk factors into
one overall score. This model allowed us to test whether the
risk factors formed a uni-dimensional scale and to account
for their intercorrelations (e.g. heart disease and hypertension
were highly correlated) [26]. The Rasch risk score summarised
the pre-existing health-statuses and comorbid conditions of
the patient, a high score indicating the presence of many
health-related diseases and risk factors, and a low score
indicating lower risks. Details of the Rasch model results are in
Appendix A.3.

Treatment-related factors

Some studies have reported on post ICU-admission factors
(e.g. mode of respiratory support, fraction of inspired oxygen,
secondary infections) influencing outcome severity [5]. The
secondary infections indicate that they might be acquired in
general ward or intensive care (Hospital-Acquired Infection;
HAI). Typically, these infections lead to longer LoS [27]. There
were 580 cases with secondary bacterial pneumonia or other
infections in our sample, and they had, on average, longer LoS
in ICU than other patients (19.3 vs. 11.6 days for patients
with an outcome recorded). However, only 125 cases had a
swab for that infection after they were admitted to the ICU,
which we believe suggests it was acquired in ICU. This was
assessed by comparing the swab date for secondary infection
with the dates of admission and leaving of the ICU. We decided
not to use the treatment-related factors as predictors because
they will not be available before the patient is admitted to
ICU, and they likely reflect a complex interaction between
unobserved patient characteristics, the severity of infection
and the treatment choices made by the clinicians, which would
render these predictors endogenous to the outcome.

3



Shryane, N et. al. / International Journal of Population Data Science (2021) 5:4:05

The single exception to this decision was the inclusion
of whether the patient received Extracorporeal Membrane
Oxygenation (ECMO) while in ICU. Previous studies have
shown that ECMO patients had longer LoS in ICU because of
the severity of their condition and the nature of the treatment
[28, 29]. To complicate this further, ECMO was only available
in a few hospitals in England. For these reasons, we included
an indicator variable for whether a patient received ECMO
(n = 73) in our analyses.

Accounting for period effects: admission period, ICU
entry guidelines and guidance on proning

We used data from a two-month period when Covid-19
infections were rising rapidly to a peak in England, approaching
and nearly overwhelming critical-care capacity in some areas.
During this time there was a change in official health-service
guidelines on the criteria to be used in assessing Covid-19
patients for suitability of ICU admission [16]5. The nature of
the change in guidelines was to give more weight to frailty
rather than age of the patient when considering whether
they might benefit from treatment in ICU. As the pandemic
progressed, clinicians gained experience in treating Covid-19
patients, reflected in the guidance on proning of conscious
patients on 12 April 2020 [17] to improve their oxygenation
and hence survivorship [30]. All of these factors are likely to
have had an impact on the characteristics of patients being
admitted to ICU and decisions on who and when to discharge
from ICU.

To account for these period-effects on LoS we divided the
data collection window into three periods, focusing on the
change of the ICU entry guidelines: i) pre-change, i.e. until 24
March 2020, for ICU admissions before the guideline update
(N = 387), ii) transition, covering ICU admissions from 25
March to 7 April 2020 (n = 1, 452) during the transition in
guidelines, and iii) post-change, for ICU admissions from 8
April to 24 May 2020 (n = 1, 210).

We hypothesised that the changes over time might have
had a differential effect on patients based upon their age and
frailty. We did not have a direct measure of frailty, so we used
the health-related risk factor score as a proxy variable, which
is likely to be positively correlated with frailty (i.e. a patient
with many risk factors is unlikely to have a low frailty score).

Statistical analysis

We used parametric, continuous-time survival models, also
known as Accelerated Failure Time (AFT) models, to evaluate
the LoS from ICU admission until the patient left ICU (by
death, discharge, or transfer). We used the AFT models to
evaluate how the above-described predictor variables lengthen
or shorten LoS. These models can also allow for patients
who were still in ICU and who had therefore not yet reached
their full LoS (i.e. censored observations). This is achieved by
making an assumption about the distributional form of the
underlying hazard. The hazard is the probability that leaving
ICU will occur at a particular time, given that it has not
already occurred. In our models, we evaluated two commonly
used parametric hazard distributions: the Weibull and the
log-normal. The Weibull distribution can allow for hazards that
are either stable, or monotonically increasing or decreasing

5Information about updates to the guidelines can be found at https://www.nice.org.uk/guidance/ng159/chapter/Update-information

over time. The log-normal can allow for hazards that are non-
monotonic, i.e. the risk of observing an event for a patient
first increases until a peak, then decays. We fitted these AFT
models by maximum likelihood estimation. We used the Stata
16 command streg [31]. Code for the method is available at
https://github.com/a-wis/CHESS-covid19-los.

We divided our analyses into two sets. In Set 1 we
evaluated models of LoS that did not include ethnicity as
a predictor. In this set we compared models of the main
effects of the predictor variables above, with models that also
included the three interaction effects: (admission period)*age,
(admission period)*(risk factor score), and sex*age. We also
evaluated the choice of baseline hazard function, i.e. Weibull
or log-normal. The goodness-of-fit of these models were
compared using Akaike’s Information Criterion (AIC), which
is a penalised likelihood suitable for comparing complex
multivariate models because it adjusts for model complexity
and the likely fit of the model in alternative samples of
data [32].

In Set 2 we evaluated the effect of including ethnicity as
a predictor variable into the preferred model from Set 1. The
large amount of missing data for the ethnicity variable meant
that the sample size was smaller for Set 2 models compared
to Set 1 models, which might lead to biased estimates of LoS.
To evaluate if this smaller sample biased our LoS estimates
from Set 1, we also fitted the preferred Set 1 model (without
ethnicity as a predictor) on the Set 2 sample (i.e. just those
patients who did have their ethnicity recorded).

Results

Descriptive statistics

Table B1 and Figures B1 and B2 in Appendix B present
the descriptive statistics of the LoS in ICU broken down by
the predictors used in the model. In these figures we also
break down the results by either of the outcomes (death or
discharge/transfer) and censoring.

Among the patients with censored LoS, long ICU stays
were more common, with a mean of around twice that of those
who died or were discharged. The later the admission to ICU
date, the more censored cases we observed (Table B1: n = 28
before 25 March; n = 265 afterwards).

For patients younger than seventy-five years old with
known outcomes, we observed a mean ICU LoS of
approximately thirteen days, whereas for those seventy-five or
over this was around nine days. We observed a decreasing
mean LoS for patients with known outcomes with the three
periods of ICU admission. Non-White patients had slightly
longer LoS in ICU; whereas those needing ECMO stayed
around four days longer in the ICU. There was also a
considerable variation in the observed LoS for all subgroups;
overall the standard deviation (SD) was ten days for those
with known outcomes and sixteen for those without.

AFT models

We found that the assumption of a log-normal baseline hazard
function, which allows for a non-monotonic, peaked hazard,
gave the best (lowest) AIC (7,937.42, compared to 8,021.42

4
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for the equivalent Weibull model; see Tables C1 and C2). The
interaction effects (between admission period with age and
health-risk score, and between age and sex) did not improve
the AIC (7,949.64 and 7,953.82 for the log-normal models
with interactions; see Tables C3 and C4, respectively), so
we report the results from the log-normal model with main-
effects only in Table 2. Results for the other tested models,
including Weibull and models with interactions, are shown in
Appendix C.

Table 2 shows the model coefficients, which represent
the effects on mean log LoS associated with the predictors.
Patients admitted during the early admission period had a
significantly higher average LoS compared to those admitted
after 7 April (at a significance level α = 5%). There was weak
evidence (p value= 0.055) that admissions during the middle
period (25 March to 7 April) had longer LoS. The 50-65 age
group had the longest LoS, with all other age groups having
shorter estimated LoS in comparison. Treatment with ECMO
was strongly associated with longer LoS (e0.40 = 1.49, i.e.
around 49% longer than non-ECMO patients, after controlling
for the other predictors). We also found a negative association
between the co-morbid risk factors score and ICU LoS. Patients
with the lowest score (i.e. least number of co-morbid risk
factors, weighted for their co-occurrence in the Rasch model)
had LoS around 6% longer than average; those with the
highest score had LoS shorter by around 14%. There was
only very weak evidence of an association between sex and
the LoS.

We used the results from the model shown in Table 2
to predict LoS for each patient (Table 3). The overall mean
predicted LoS for the sample was 16.5 days (SD 3.0). The
variation in model predicted LoS associated with the two main
significant predictors, admission period and age, are shown in
Figures 1a and 1b.

Figure 1a shows that the age group with the shortest
predicted mean LoS, 10.7 days (SD 1.0), was the oldest
group (75 and older). Inspection of the final outcomes for this
group showed that it was the one with the highest proportion
of deaths (over 70% of the 304 non-censored cases). The

next-shortest average LoS, of 15.4 days (SD 2.3) was for
the youngest group (less than 50 years old). This younger
group had the lowest proportion of deaths (18% of non-
censored cases). The group with the longest predicted LoS
was the 50-64 year old group, with a mean of 18.4 days
(SD 1.9).

Figure 1b shows that the later the admission period,
the shorter the LoS on average, with the early period
having a mean predicted LoS of 18.4 days (SD 3.4) and
the latest admission period, after April 7th, having a mean
predicted LoS of 15.4 days (SD 2.6). The LoS distributions
by admission period were notably bi-modal, with a small peak
with relatively short LoS for each period. This was associated
with the patients in the oldest age group, which, as shown in
Figure 1a, had the shortest average predicted LoS by some
margin.

The inclusion of ethnicity (based on a smaller sample size
n = 2, 514) did not improve the model fit (AIC= 6,572.26
without ethnicity vs AIC= 6,574.48 with ethnicity). Moreover,
the pattern of findings from the model without ethnicity as
a predictor was virtually the same as in the model without
ethnicity but with the full sample size n = 3, 049 (see Table
C5 and Figure C1).

Discussion
Our estimated mean LoS for ICU patients was over sixteen
days. The median, at nearly eleven days, was similar to the
values reported by ICNARC [7] for England (twelve days for
survivors, nine for non-survivors; or 10.8 for either of the
outcomes on 3 July; 10.1 on 5 June). Our estimates adjust
for the censored cases, who have longer than average LoS in
the sample (Table B1).

Comparisons with other countries are less informative,
because of differences in the populations and health-care
systems, but our estimated LoS were longer than [5] for Italy,
(2020; median nine days), and [12] for China (median of eight
days based on a compilation of forty-six different studies);

Table 2: Log-normal Accelerated Failure Time model with main effects results

Variable Coefficient Robust SE p

female −0.05 0.04 0.193
admission period (reference: after 07/04)
before 25/03 0.21 0.07 0.002
25/03-07/04 0.09 0.05 0.055
age group (reference: 50-64)
<50 −0.22 0.06 < 0.001
65-74 −0.12 0.05 0.021
75+ −0.55 0.06 < 0.001
risk score −0.06 0.03 0.047
ecmo 0.40 0.14 0.004
intercept 2.42 0.05 < 0.001
log(σ) −0.07 0.02 < 0.001
n 3,049
AIC 7, 937.42

Source: own elaboration using CHESS data.

5
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Table 3: Predicted length-of-stay in days based on the log-normal model with main effects

Admission period
Age Measure

<25/03 25/03-07/04 >07/04
Total

18-50 mean 17.3 15.5 14.8 15.4
median 11.2 10.1 9.6 10.0
SD 1.9 1.8 2.5 2.3
N 79 306 297 682

50-64 mean 21.3 18.8 17.2 18.4
median 13.8 12.2 11.2 12.0
SD 2.0 1.4 1.2 1.9
N 141 646 535 1,322

65-74 mean 18.9 16.7 15.1 16.5
median 12.3 10.9 9.8 10.7
SD 1.3 0.8 0.8 1.5
N 106 360 260 726

75+ mean 12.3 10.9 9.7 10.7
median 8.0 7.1 6.3 7.0
SD 0.5 0.5 0.4 1.0
N 61 140 118 319

Total mean 18.4 16.8 15.4 16.5
median 12.0 10.9 10.0 10.7
SD 3.4 2.7 2.6 3.0
N 387 1,452 1,210 3,049

Note: “mean” denotes a mean of the predicted mean LoS for all individual patients; “median” denotes a mean of the predicted
median LoS for all patients. Source: own elaboration using CHESS data.

some studies reported median LoS in ICU as short as five
days [13, 14].

We found that ICU LoS was decreasing over our study
period, with patients admitted before 25 March having LoS
five days longer on average than those admitted after 7 April.
There was no evidence of any differentiation of this effect
between patients in various age groups, or with pre-existing
risk factors.

Unfortunately, the reasons for this change cannot be
determined from the CHESS data, as several different and
likely influential processes were confounded (except patient
age, which we adjusted for): changes in the characteristics
of patients contracting Covid-19 because of the stage of
the epidemic, changes in who was admitted to ICU because
of guideline changes and shielding introduced by the UK
Government [33] around 21 March 2020 (i.e., during the first
wave of the pandemic), and changes in the treatment and
management of Covid-19 patients [17]. The first of the above
possible explanations is further obscured by the non-uniform
spread of the Covid-19 across the regions of England, with
London and the Midlands being affected first. The changes
to the guidelines are likely to have a modest effect as the
final decisions on whether to elevate care to intensive are
ultimately taken by clinicians. Also, general compliance with
advice on shielding of vulnerable groups might have influenced
the composition of patients admitted to specific hospitals and
ICUs [34]. Further, at no point was the capacity of the ICUs in
England overwhelmed by the number of patients, according to
the NHS data on bed availability and occupancy [35]. However,
some of the hospitals (e.g. in London) were close to the
limit.

It is not clear from the CHESS data whether this trend in
shortening ICU LoS for Covid-19 patients was approaching an
asymptote, but the balance among the influences on LoS may
shift as the pandemic moves on from the first peak, possibly
lengthening the LoS again in future waves of the pandemic.

We found that LoS was not monotonic with age (i.e. either
increasing or decreasing), unlike the relationship between age
and Covid-19 severity and mortality [7]. While the group with
the shortest LoS was the oldest one, the group with the longest
LoS was the “younger” middle-aged group between 50 and 64
years. The middle-aged groups in our sample had roughly equal
proportions of those who died and those who were discharged
from ICU (for the patients with non-censored outcomes),
i.e. the final outcome for these patients was likely the most
uncertain on admission to ICU. Our sample was highly selective
(i.e. patients ill enough to be in ICU with Covid-19) and this
has the potential to bias our results, particularly with regard
to age. For example, for patients with the same level of severe
symptoms of Covid-19, younger patients were more likely to
be hospitalized than older, frailer patients [36].

We found no evidence in the CHESS data that LoS in
ICU is related to sex or ethnicity of the patient, and this
was consistent across all tested models. Also, the shorter LoS
found in more recent periods was not selectively affecting e.g.
non-White patients only nor patients with certain pre-existing
conditions score.

We argue that the median LoS better describes the central
tendency of LoS, but mean LoS might be better to be used
in planning of ICU capacity. In our case, mean LoS was five
days longer than the median (Table 3); this reveals a tail of
the distribution of mean predicted LoS with very long LoS, as

6



Shryane, N et. al. / International Journal of Population Data Science (2021) 5:4:05

Figure 1: Distribution of mean predicted LoS in ICU

Source: own elaboration using CHESS data and log-normal AFT model.

also shown in Figure 1. This ought to be taken into account
in situations when the infections are increasing exponentially
during early phases of the pandemic or potential further waves.

Limitations

The individual-level CHESS data, while in principle being a
census of all patients with Covid-19 in England, had severe
missingness issues. For example, when compared with the NHS
Situation Reports (SitRep) deaths, they captured only around
13% of deaths in hospitals. Those reported cases suffered
from missingness of predictors and other key information,
especially dates of admission to ICU and final outcome, as
well as ethnicity. The missingness patterns varied by NHS trust

and geography; London and the Midlands had the highest
percentages of missingness, which might have been due to
these regions experiencing the peak of the pandemic earlier
than elsewhere. Further, each NHS trust operates their IT
system autonomously, which may lead to discrepancies in
coverage and quality of collecting non-routine data, such as
individual-level CHESS data. These data-collection systems
might have been under various levels of pressure during the
peak of the pandemic.

Although our statistical models were suitable for adjusting
the observed overall LoS for censoring, they did not provide
LoS estimates separately for those in ICU who eventually died
and those who were discharged. The models only capture
the “net” effect of predictors on LoS, and these effects may
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be countervailing for different outcomes, e.g. old age may
be associated with a shorter LoS for eventual death but a
longer LoS for eventual recovery. To overcome this limitation,
more sophisticated models can be used. These methods
include AFT models for “competing” outcomes [37] and multi-
state models [38], that allow for finer-grained analysis of the
influences on ICU LoS and the different effects of predictors on
death vs. discharge. However, these approaches would require
data with nearly perfect coverage of all events, which was not
the case with the CHESS data.

Conclusion

Covid-19 Hospitalisation in England Surveillance System
(CHESS) data are limited due to case and variable missingness.
Future planning should enable more automated data collection
for clinical staff, e.g. based on existing patient data, with a
common standard of a minimum set of patient characteristics
that would permit national comparisons. Also, more detailed
information about inclusion and exclusion criteria for the
NHS trusts participating in the data collection [18] would
help alleviate potential biases resulting from the selective
samples.

Our analyses of the CHESS data suggest that using the
mean LoS, as compared with median, might be better suited
as a measure for assessing and planning ICU bed capacity,
because the median neglects the severe skew of the distribution
of LoS. This is important when considering subsequent waves
of Covid-19 cases and potential pressure on ICU resources.
We found that the most informative pre-admission predictors
of LoS were not necessarily the same ones that predict severity
of Covid-19 outcomes, with the exception of age. The weak
effect of comorbidities and the likely potential for them to
be influenced by clinical practice suggests that using them
to make predictions may also require using more recent data
and improved models. When considering the utility of such
predictors in planning ICU bed capacity, we note that changes
in ICU admission policy are likely to be confounded with
improvements in clinical knowledge of Covid-19, rendering
their utility labile over time.
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