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Abstract
We study a neuro-inspired model that mimics a discussion (or information dissemination)

process in a network of agents. During their interaction, agents redistribute activity and net-

work weights, resulting in emergence of leader(s). The model is able to reproduce the basic

scenarios of leadership known in nature and society: laissez-faire (irregular activity, weak

leadership, sizable inter-follower interaction, autonomous sub-leaders); participative or

democratic (strong leadership, but with feedback from followers); and autocratic (no feed-

back, one-way influence). Several pertinent aspects of these scenarios are found as well—

e.g., hidden leadership (a hidden clique of agents driving the official autocratic leader), and

successive leadership (two leaders influence followers by turns). We study how these sce-

narios emerge from inter-agent dynamics and how they depend on behavior rules of agents

—in particular, on their inertia against state changes.

Introduction
The notion of opinion leaders has become paradigmatic in social sciences [1, 2]. Identifying
leaders can be important for applications such as viral marketing, accelerating (or blocking)
the adoption of innovations, etc. Communication research postulates that informational influ-
ence in groups often happens via a two-step process, where information first flows from news
media to opinion leaders, and then is spread further to followers [3]. This theory is believed to
adequately account for consumer behavior [4] and has been refined in several ways [5, 6].

A significant research has focused on identifying traits and characteristics of leaders. For
instance, it has been observed that opinion leaders are not necessarily more educated than fol-
lowers, but they typically have higher income [7]. However, it was understood that no single
trait (or even a cluster of traits) can explain the emergence of leadership [8]. It is believed that
leaders can be imposed externally, or emerge within the group [9]—possibly out of purely ran-
dom reasons [10]—together with agents who are not opinion leaders, but are important for
ensuring that the leaders function [11].

Social psychology developed several qualitative theories on how leaders perform in groups
[12]. The contingency theory—developed in opposition to “leadership trait” approaches—
focuses on the nature of interactions between the leader and followers [12–14]. According to
this theory, the effectiveness of a particular type of leadership is contingent on the favorability
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of the situation to that type. Based on earlier research [13], the contingency theory identified
several major types of leaders [14]:

– Laissez-faire leadership is characterized by a relatively weak guidance of autonomous follow-
ers. It occurs in systems such as scientific collectives.

– Participative (democratic) leaders do influence their followers strongly, but encourage and
accept feedback from them.

–No feedback (from the majority of followers) is accepted by autocratic leaders. This type of
leadership is typically present in military, businesses and governance systems.

Given the above typology, which is well-confirmed by everyday experience, it is not
completely clear which features imply specific leadership types [1, 2]. Our main purpose is to
study this problem via a mathematical model.

The network theory developed methods for identifying opinion leaders via the core-periph-
ery (or star) structure of social networks [15–20]. Such structures can emerge from imposing
on the network certain functional goals or optimization principles [21–24]. Recent research on
social networks proposed several methods for uncovering hidden network of influences [25–
29], and identifying core-periphery structures related to opinion leaders [27].

Several models were proposed for describing the leadership phenomenon. Ref. [30] consid-
ers game-theoretic models, where the leadership is defined via the possibility of the first move
in a game. The related notion of Stackelberg equilibrium is one of the basic game-theoretic
manifestations of leadership [31]. Models of adaptive (inhomogeneous) networks identify
emergent leaders with well-connected nodes in a network of game-theoretic [32, 33] or
resource-distribution units [34, 35]. Other approaches to emergent leadership are reviewed in
[36, 37]. The leadership problem relates to diversity modeling in social and biological systems
[38, 39]; see [40] for a review.

Despite of much inter-disciplinary research devoted to the leadership issue, we seem to lack
a basic model that can reproduce in a single set-up the major leadership scenarios, and relate
them to behavior of involved agents.

We intend to provide a formal, mathematical model for the emergence and the type of lead-
ership in a collective of interacting agents modeled via neurons. Certain analogies between
human agents and neurons were noted in literature [41–53]. Both neurons and human agents
are adaptive entities that form communities, analyze information, and can specialize for differ-
ent roles and functions in (resp.) brain and society [45]. Quantitative sociology employs neuro-
nal models for describing weak ties [54], social impact [55], and economic activity [56–58].
Neuronal models are capable to generalize on the concept of activity cascade that is frequently
employed in social modeling [59–61]. The major limitation of this concept is that the activation
of each network node occurs only once. However, there is an ample of empiric evidence that
social activity patterns are recurrent [28, 29, 62], an effect well described by neuronal models
[52, 53].

Our model mimics a discussion process, where opinion expression by one agent facilitates
activation of other agents. Experimental studies on the leadership emergence in discussion
groups were carried out in [63, 64]. It was noted there that the leader emerges due to it active
involvement into the group dynamics, e.g. due to active talking, while the quality of this talking
is not very important (babble effect) [63, 64].

We postulate tractable rules for the agent’s behavior. These rules incorporate major factors
that are relevant for the leadership, e.g. activity, attention, initial social capital (i.e. well-con-
nectedness in the network), and score (credibility). The rules depend on parameters that char-
acterize the agent’s “conservatism” with respect to changing its state.
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The leader is naturally defined as an agent that influences other agents strongly (i.e. stronger
than those agents influence the leader), and that actively participate in the group activity, in the
sense that blocking the leader will diminish (or at least essentially decrease) the activity of the
group.

Our main result is that the three basic leadership scenarios—laissez-faire, participative and
autocratic—emerge under different behavioral rules. Here is a short list of certain specific lead-
ership features predicted by the model.

The laissez-faire leadership emerges under noisy, but score-free dynamics. It relates to irreg-
ular activity patterns, allows autonomous sub-leaders and sizable communication between fol-
lowers. In the participative situation possible sub-leaders are strict subordinates of the leader.
A participative leader emerges due to an initial (possibly small) advantage in its social capital.
If the inter-agents interaction is sufficiently strong, the emergent participative leader wins over
an externally imposed candidate for leadership. The autocratic situation is more vulnerable to
an externally imposed leader, than the participative one. There are cases, where the “official”
autocratic leader is driven by a hidden click of other agents. Coalitions of autocratic leaders are
possible, but they are meta-stable, and for long times reduce to just two leaders driving the fol-
lowers by turns.

The model

State Dynamics
The main ingredients of our model are listed in Table 1. We consider N agents. At a given
moment of discrete time t, each agent can be active—give an opinion, ask question etc—or pas-
sive. For each agent i (i = 1, . . ., N) we introduce a variablemi(t) that can assume two values 0
(passive) and 1 (active).

Following a tradition in quantitative sociology [52, 54–61], we model agents via thresholds
elements, i.e. we postulate that each agent i has an information potential wi(t)� 0, and i acti-
vates whenever wi(t) is larger than a threshold ui> 0:

miðtÞ ¼ W½wiðtÞ � ui�; t ¼ 0; 1; 2; :::; ð1Þ

wiðt þ 1Þ ¼ ð1�miðtÞÞ
XN
j¼1

qijðtÞmjðtÞ; ð2Þ

Table 1. Here we list the main ingredients of the model with relevant notations and equations that
introduce them.

Equations and
references

Ingredients of the model

i = 1, . . ., N N agents modeled as neurons in discrete time t = 1, 2, . . ..

Eqs (1) and (2).
Refs. [65–67].

Firing rule for activitymi(t) of discrete agents-neurons.

Eqs (4) and (5).
Ref. [71].

Constrained network weights τij model attention limitation.

Eq (6). Adaptation of weights: an active agent gets more attention from others. Parameter
α accounts for inertia.

Eqs (7) and (9). An agent which gets more attention obtains larger score σi. The score-weight
interaction is controlled by parameter β.

Eqs (18) and (19).
Refs. [65–67].

Behavioral noise ϕi(t) with magnitude η.

doi:10.1371/journal.pone.0159301.t001
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where ϑ(x) is the step function: ϑ(x< 0) = 0, ϑ(x� 0) = 1. The factor (1 −mi(t)) in Eq (2) nulli-
fies the potential after activation; hence an agent cannot be permanently active. The influence
qij(t)mj(t) of j on i is non-zero provided that j activates,mj(t) = 1. We assume that qij � 0 and
qii = 0, i.e. connections can only facilitate the potential generation. Given the freedom in choos-
ing qij, we take ui = 1.

The continuous-time limit of Eqs (1) and (2) reduces to an integrate and fire model of neu-
ronal dynamics [65–67].

In Eq (2), qij(t) quantifies the influence of j on i. We parametrize it as

qijðtÞ ¼ qtijðtÞ; tiiðtÞ ¼ 0; ð3Þ

XN
j¼1

tijðtÞ ¼ 1; ð4Þ

where q is the maximal possible value of qij(t). Now τij is the weight of influence. Eq (4) reflects
the fact that agents have limited attention [68–70]. This characteristics was also noted for neu-
rons [71], and it is achieved via introducing non-normalized weights ~t ijðtÞ [71]:

tijðtÞ ¼ ~t ijðtÞ
�XN

j¼1

~t ijðtÞ: ð5Þ

Importantly, we do not pre-determine the network structure. The sum q
PN

j¼1 tijðtÞmjðtÞ in Eq

(2) is taken over all the agents, and the weights change in time as

~t ijðt þ 1Þ ¼ tijðtÞ þ f taijðtÞmjðt þ 1Þ; a > 0; ð6Þ

where a non-active j (mj(t + 1) = 0) does not change τij. In one version of the model f = const.
Thus ~t ijðtÞ changes such that more active and more credible agents get more attention from

neighbors. In Eq (6), taijðtÞ controls the extent to which i re-considers those links that did not

attract its attention previously (conservatism): for α 6� 0 the weight with τij(t)� 0 is not recon-
sidered in the next step. A similar structure was employed for modeling confirmation bias [72].
It also appears in a preferential selection model for network evolution [35].

Below we study the above model for f = const, and show that it leads to a non-trivial leader-
ship scenario. To get richer scenarios, we shall introduce additional variables.

Credibility scores
For each agent i we now introduce its credibility score σi(t)� 0, which is a definite feature of
an agent at a given moment of time [73]. Credibility refers to the judgments made by a message
recipient concerning the believability of a communicator. A more general definition of credibil-
ity (not employed here) should account for its subjective aspect; a message source may be
thought highly credible by one perceiver and not at all credible by another [73].

Credibility scores interact withmi and τij by modulating the function f in Eq (6):

f ¼ f ½sjðtÞ � bsiðtÞ�; b ¼ 0; 1; ð7Þ

where we assume for simplicity

f ½x� ¼ x for x > 0; f ½x� ¼ 0 for x � 0: ð8Þ
Thus for β = 1, the agent i reacts only on those with credibility score higher than σi, whereas for
β = 0 every agent j can influence i proportionally to its score σj. For convenience, we restricted
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β = 0, 1 to two values. (Note that if we define f[x] to be a positive constant for x� 0, then the
situation without scores can be described via β!1.)

Dynamics of σi is determined by the number of agents that follow i and by the amount of
attention those followers pay to the messages of i:

siðt þ 1Þ ¼ ð1� x1ÞsiðtÞ þ x2
XN
k¼1

miðtÞtkiðtÞ; ð9Þ

where ξ1 and ξ2 are constants: 1� ξ1 > 0 quantifies the credibility score loss (forgetting), while
the term with ξ2> 0 means that every time the agent i activates, its score increases proportional
to the weight τki(t) of its influence on k. If i is not active,mi(t) = 0, its score decays.

Development of complex network theory motivated many models, where the links and
nodes are coupled [46, 47, 74–81]; see [82] for an extensive review. Neurophysiological motiva-
tion for studying such models comes from the synaptic plasticity of neuronal connections that
can change on various time scales [65, 83].

The ingredients in the evolution of the credibility score Eq (9) do resemble the notion of fit-
ness, as introduced for models of competing animals [38]. There the fitness determines the
probability of winning a competition. Similar ideas were employed for modeling social diver-
sity [39]; see [40] for a review.

Initial conditions
All agents are equivalent initially:

sið0Þ ¼ 0: ð10Þ
The initial network structure is random [cf. Eq (5)]

tijð0Þ ¼ nij

�XN
k¼1

nik; nij 2 ½0; b�; nii ¼ 0; ð11Þ

where nij are independent random variables homogeneously distributed over the interval [0,
b]. Now

�i �
XN
k¼1

tkið0Þ; ð12Þ

measures the initial cumulative influence of i (i.e. its initial social capital and estimates the ini-
tial rate of score generation; cf. Eq (9). (Financial capital is money. Physical capital is tools,
machinery etc. Human capital is people. Social capital is the relationship among persons.
Human capital resides in people; social capital resides in the relations among them [1].)

Formi(0) we impose initial conditions, where some agents are activated initially (by a news
or discussion subject), i.e.mi(0) are independent random variables:

Pr½mð0Þ ¼ 1� ¼ g; Pr½mð0Þ ¼ 0� ¼ 1� g; g � 1=2: ð13Þ

Thresholds of collective activity
The only way the initial activity can be sustained is if the agents stimulate each other (as it hap-
pens in a real discussion process). Our numerical results show that with initial conditions Eq
(13) there exists a sustained activity regime. Specifically, there are two thresholdsQþ andQ�,
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so that for q � Qþ the initial activity is sustained indefinitely,

XN
i¼1

miðtÞ > 0; if q � Qþ: ð14Þ

If q � Q� the initial activity decays in a finite time t0 (normally few time-steps)

XN
i¼1

miðt � t0Þ ¼ 0; if q � Q�: ð15Þ

ForQþ > q > Q� the activity sustaining depends on the realization of random initial condi-
tionsmi(0) and τij(0): either it is sustained indefinitely or it decays after few steps. Qualitatively,
the activity is sustained if sufficiently well-connected agents are among the initially activated
ones; see below.Qþ andQ� depend on all the involved parameters, their numerical estimates
are given below in Eq (17). Note thatQ� > 1, since for q< 1 no activity spreading is possible:
even the maximal weight τik = 1 cannot activate i; see Eqs (2) and (3).

Emergent networks (described below) depend mainly on parameters α and β; see Table 1.
Other parameters can be important for supporting activity, i.e.Qþ andQ� depend on them,
but are not crucial for determining the type of the emerging network. So we fix for convenience
[cf. Eqs (13), (11) and (9)]:

N ¼ 100; g ¼ 0:5; b ¼ 10; x1 ¼ 0:1; x2 ¼ 1: ð16Þ

For these parameters and (for example) α = β = 1, we got numerically

Q� ¼ 2:19; Qþ ¼ 2:65: ð17Þ

Behavioral noise
The deterministic firing rule Eq (1) can be modified to account for agents with behavioral
noise. We want to make it possible for an agent to activate (not to activate) even for sub-thresh-
old (super-threshold) values of the potential. The noise will be implemented by assuming that
the threshold ui + vi(t) has (besides the deterministic component ui discussed in Eq (1)) a ran-
dom component vi(t). These quantities are independently distributed over t and i. Now vi(t) is
a trichotomic random variable, which takes values vi(t) = ±V with probabilities Z

2
each, and

vi(t) = 0 (no noise) with probability 1 − η. Hence η describes the magnitude of the noise. We
assume that V is a large number, so that with probability η, the agent ignores wi and activates
(or does not activate) randomly. Thus, instead of Eq (1), we now have

miðtÞ ¼ W½�iðtÞðwiðtÞ � uiÞ�; ð18Þ

Pr½�iðtÞ ¼ 1� ¼ 1� Z; Pr½�iðtÞ ¼ �1� ¼ Z; ð19Þ

where ϕi(t) are independent (over i and over t) random variables that equal ±1 with probabili-
ties Pr[ϕi = ±1].

Qualitatively the same predictions are obtained under a more traditional (for the neuronal
network literature [65]) model of noise, where the step function in Eq (1) is replaced by a sig-
moid function.
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Laissez-faire leadership
We shall study Eqs (1) and (2) under a weak-noise (η� 1 in Eqs (18) and (19)), but without
scores, i.e. we take f[x] = const in Eq (6). The magnitude q of the inter-agent interaction (see Eq
(3)) is taken so that no activity is sustained without the noise, i.e. q < Q�; cf. Eqs (15) and (17).
Hence we are looking for a regime, where both noise and inter-agent interactions are essential;

see Figs 1–4. The activity of the system—as measured bymðtÞ ¼ 1
N

PN
i¼1 miðtÞ—is now much

larger than the noise magnitude η, i.e. the noise is amplified; see Fig 3. We shall see that in this
regime there does emerge a laissez-faire leadership scenario.

In this noisy situation, the network structure is studied via time-averaged weights:

�t ij ¼
1

T

XTþs

t¼s

tijðtÞ; ð20Þ

where the observation time T is sufficiently large.
The average, cumulative influence of an agent k to all other agents is quantified by

Pn
i¼1 �t ik.

The leader can be defined by the maximum of this quantity over k. We saw that there emerges
a leader (L) that collects feedback from its many other agents (followers); see Figs 1 and 2.
There is also a sub-leader S (or few sub-leaders depending on the realization of the noise and
the initial state) for which

Pn
i¼1 �t ik is next to maximal over k. The sub-leader S has its own fol-

lowers and does collect feedback from them. The influence of L and S on other agents is larger
than the back-influence of those agents; see Figs 1 and 2. Many followers are shared between L

and S. All followers influence each other, but with much smaller weightsO 1
N

� �
.

Fig 1. Laissez-faire leadership. In Eq (6) we set f = 1 and α = 1. The behavioral noise is weak: η = 0.07; cf.
Eqs (18) and (19). The intergent coupling q = 2 is sizable, but is smaller than Eq (17). The observation time:
T = 600; see Eq (20). Black points (upper curve): the average weights �tkL by which the leader L influences
other agents; see Eq (20). Red points (lower curve): �tkS that quantify the influence of the leading sub-leader S
on other agents. Here �tkS and �tkL were separately arranged in the decreasing order over k.

doi:10.1371/journal.pone.0159301.g001
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Fig 2. Laissez-faire leadership. The same parameters as in Fig 1, but for the weights �tLk and �tSk that
quantify the influence of followers on the leader L, and on the sub-leader S, respectively. Again, �tSk and �tLk
were separately arranged in decreasing order. Note that the influence of L and on S, and S on L are
comparable: �tSL ¼ 0:545378 and �tLS ¼ 0:535170.

doi:10.1371/journal.pone.0159301.g002

Fig 3. Laissez-faire leadership. The same parameters as in Fig 1. Collective activitymðtÞ ¼ PN
i¼1 miðtÞ

versus time t. It is seen thatm(t) displays irregular (noisy) behavior.

doi:10.1371/journal.pone.0159301.g003
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The relation between L and S is not hierarchical, since they drive each other with compara-
ble magnitudes; see Figs 1 and 2. They are distinguished from each other by the fact that L has
more followers and influences them stronger.

The collective activitymðtÞ ¼ 1
N

PN
i¼1 miðtÞ shows irregular (chaotic) oscillations; see Fig 3.

Generally, the emergence of L and S takes few such oscillations, i.e. a rather long time (t* 500
for parameters of Figs 1–3). For even smaller magnitude of noise, the system activates via rela-
tively rare bursts; see Fig 4.

This leadership is not an epiphenomenon. Indeed, we can intervene into the system and
block the activity of L and S by suddenly raising their activation thresholds from u = 1 to some
very large value. As compared to the same situation, but without intervention, the time-aver-
aged overall activity

1

TN

XTþs

t¼s

XN
i¼1

miðtÞ ð21Þ

does decrease by 20–30%, and is recovered only after a long time, when new leader and sub-
leader emerge. (No statistically significant activity reduction was seen when the same amount
of non-leaders was blocked). For the situation shown in Figs 1–4, the intervention was realized
by letting the system to evolve for t = 1, . . ., 600, suddenly blocking L and S, taking s = T = 600
and then looking at the activity change (reduction) by calculating Eq (21) with and without
intervention.

Note that the scenario is only weakly dependent on the value of α, but it is essentially based
on the noise. For the noise-free situation η = 0 [see Eqs (18) and (19)], we get either no activity
whatsoever (for a sufficiently small q), or a no-leader activity-sustaining for a larger q. Another

Fig 4. Laissez-faire leadership. The same parameters as in Figs 1 and 3 Collective activitymðtÞ ¼PN
i¼1 miðtÞ versus time t, but for a weaker noise with magnitude η = 0.01.

doi:10.1371/journal.pone.0159301.g004
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essential aspect is the sufficiently fast adaptation, as quantified by the value of f[x] = const in
Eq (6). If for parameters of Figs 1–4 we take f = 0.25 (instead of f = 1), no activity above the
noise magnitude η is detected.

This scenario is similar to the laissez-faire leadership (as discussed e.g. in [1, 2, 12]): sub-
stantially autonomous followers, the existence of sub-leaders, no hierarchy between the leader
and sub-leader(s), irregular activity structure. And yet our model shows that this is a real lead-
ership: in contrast to what people sometimes think and say about laissez-faire leaders, our
model shows that when blocking the leader and sub-leader the activity of the system does
decrease. Moreover, it takes a long time to establish a laissez-faire leader and to replace it. We
stress however that the effect of the laissez-faire leadership is visible for sufficiently long times
and hence requires time-averaged indicators.

Thus the present model shows that the laissez-faire leadership scenario emerges in a noisy
(i.e. information rich) situation, where the inter-agent interaction is sizable, but it not so strong
that the activity is sustained without noise.

Participative leadership

Single participative leader
We solve dynamics with credibility scores Eqs (1), (2) and (6)–(9) for q > Q�; hence there is a
possibility for the sustaining activity. Noise is omitted, η = 0 in Eqs (18) and (19), because it is
irrelevant; see below. The parameters in Eqs (6) and (7) are

a ¼ b ¼ 1: ð22Þ
After’20 time-steps the system enters into a stationary state, where the activation frequencies
do not depend on time. There emerges a leader (L) that drives all the other agents (followers)
with the maximal weight τkL = 1 [cf. Eqs (1) and (2)], i.e. each follower is influenced only by L;
see Fig 5 for schematic representation. Hence L emergence in a much shorter time than the
laissez-faire leader, and L also influences the followers much strongly.

Credibility scores σk of followers and their influence weights τLk reach quasi-stationary val-
ues over a larger time [’100 for parameters of Eq (16)]. L has the largest final score (σL 	 1).
Followers have much lower scores and influence L via smaller weights tLk ¼ Oð1=NÞ < 1. Fol-
lowers do not influence each other (in contrast to the laissez-faire scenario) precisely because
the influence of L on its follower is maximal; see Eq (4). The activity of the leader (hence the
overall activity) is sustained due to cumulative feedback from followers to L. Hence this is a
participative leadership scenario.

The score distribution of followers is such that a follower with a higher score influences the
leader more; see Fig 6. In the noiseless situation the dynamics is strictly synchronized: only L
fires in one time-unit. In the next time-unit L is passive, while followers activate together. The
strict synchronization disappears after introducing a small noise; see Eqs (18) and (19) and

Fig 7, where the collective activitymðtÞ ¼ 1
N

PN
k¼1 mkðtÞ is monitored with and without noise.

Other characteristics of the scenario stay intact.
Initially, L had to be among activated agents:mL(0) = 1, and it was most probably having

the largest social capital [in the sense of Eq (12)] among the initially activated agents; this is the
case in’95% of (random) initial conditions. Hence the leader emerges due to the amplification
of its initially small advantages over other agents.

Comparing the laissez-faire leader with the present one, we see that introducing credibility
scores enforces a hierarchy, i.e. it eliminates connections between the followers and maximizes
the influence of the leader.
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Fig 5. Participative leadership. Emergent network structures according to Eqs Eqs (1)–(11) and (13).
Parameters are chosen from Eqs (16) and (17) and q > Q�. Single Participative leader: α = β = 1; see Eqs (6)
and (7). The leader L (red square) has the highest score (’500) and stimulates all other agents (followers,
green squares) with the maximal weight τiL = 1 (bold arrows). Followers (green squares) have different
credibilities si ¼ Oð1=NÞ; each of them stimulates the leader with weights tLi ¼ Oð1=NÞ: a follower with a
larger score influences the reader stronger.

doi:10.1371/journal.pone.0159301.g005

Fig 6. Participative leadership: single emergent leader. Distribution of stationary credibilities σk (blue
points, upper curve) and weights τ1k (red points, lower curve) by which the agent with rank k (N� k� 2)
influences the leader (k = 1). The agents are ranked according to their final score: k = 1 is the highest-score
agent (leader), k = N is the lowest score agent. Eqs (1)–(9) and (13) are solved for Eq (16) and q = 2.5. The
dynamics was followed by 200 time-units.

doi:10.1371/journal.pone.0159301.g006
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Externally imposed versus emergent leadership
It is of clear importance to understand when and whether externally imposed leaders can
compete with those that emerged from within the group [1]. We model imposed leaders by
externally driving (sponsoring) the activity of certain agent(s). To this end, we add a term
(1 −mi(t))ri to the right-hand-side of Eq (2), where ri � 0 is the rate of potential generation
that does not depend on inter-agent interaction. In particular, ri can be an externally imposed
rate. Thus Eq (2) becomes

wiðt þ 1Þ ¼ ð1�miðtÞÞ
XN
j¼1

qijðtÞmjðtÞ þ ð1�miðtÞÞri: ð23Þ

We focus on the situation, where only one agent is externally driven:

r1 > 1; ri�2 ¼ 0; ð24Þ

i.e. the first agent activates with the maximal frequency 0.5; cf. Eqs (1) and (2).
Now for q < Q� the first agent becomes a leader. ForQ� < q < Qþ (and Eq (22)) it can—

depending on initial conditions—become a participative leader, and it generally does not
become a leader for q > Qþ: the emergent leader takes over the externally driven agent.

Hierarchy of leaders
If instead of Eq (22) we employ 1:5≲ a and β = 1, we get a hierarchic leadership scenario; see
Fig 8. There emerge one leader and few sub-leaders. The precise number of sub-leaders

Fig 7. Participative leadership. Single emergent leader. The collective activitymðtÞ ¼ 1
N

PN
k¼1 mkðtÞ as a

function of time t for q = 2.7 (other parameters are the same as in Fig 6). Black points (two straight lines): the
noiseless situation η = 0. Magenta points: η = 0.05; cf. Eqs (18) and (19). In the noiseless situationm(t) takes
only two values 0.01 (the leader is active) and 0.99 (followers are active). For the noisy situationm(t)
assumes two well-separated sets of values at*0.1 and*0.9, respectively.

doi:10.1371/journal.pone.0159301.g007
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depends on initial conditions. Each sub-leader has followers that are not directly influenced by
the leader. The latter influences only their sub-leader; see Fig 8. In a sense the leader delegates
some of its influence to the sub-leader(s). But the main feature of the participative leadership is
kept: only the top leader collects feedback from all other agents.

Note the difference with sub-leaders within the laissez-faire scenario: there �tLS ’ �tSL, i.e.
the leader and sub-leader influence each other with comparable weights. In contrast here
τLS � τSL = 1, i.e. the influence of the leader is maximal and is much larger than the influence
of the sub-leader on the leader. Thus the participative leadership is hierarchical, in contrast to
the laissez-faire scenario. This hierarchy is introduced by credibility scores that were absent in
the latter scenario.

Autocratic leadership

Single autocratic leader
We turn to studying Eqs (1), (2) and (6)–(9) with

a ¼ 1; b ¼ 0; ð25Þ

Fig 8. Participative leadership. Hierarchic leadership: α = 2, β = 1. (Other parameters are the same as in Fig
5.) The followers are divided into two groups, strongly driven by respectively leader (red) and sub-leader
(blue). The feedback is collected by the leader only.

doi:10.1371/journal.pone.0159301.g008
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and for q > Q�, i.e., for initial conditions where the activity can be sustained. We getQ� ¼
2:18 under Eqs (25) and (16); cf. Eq (17).

In’20 time-steps, there emerges a leader L that has the highest score and that influences all
other agents with the maximal weight τkL = 1; see Figs 9 and 10. However, it gets feedback only
from one agent H that emerges together with L, and that stimulates L with the maximal weight,
τLH = 1. Hence, H connects to no other agent. The only role of H is that it stimulates the leader;
see Figs 9 and 10. The long-time score of H is next to the largest, e.g., for q = 2.5 and Eq (16) we
get σL ’ 500, σH ’ 5, while σk ’ 0 for k 6¼ L,H.

For all other agents k (k 6¼ L,H), the influence on L, onH, and on each other (i.e., the mag-
nitude of τik for k 6¼ L and k 6¼ H) is negligible; they are completely passive followers. We have
here an autocratic leadership scenario, since no feedback is present from the followers to the
leader; see Figs 9 and 10.

A pertinent question is whether the autocratic L had to have (initially) a large social capital;
cf. Eq (12). The answer is definitely no. In’50% of initial conditions L did not have a large
social capital initially, although both L andH have to be among the initially active agents
mL(0) =mH(0) = 1; cf. Eqs (13) and (16). In contrast to the participative scenario, the selection
of the autocratic leader is not fully determined by its social capital.

Another difference with respect to the participative scenario is that now Q+ =1. For what-
ever the large value of q, there are initial states where the activity is not sustained; in particular,
it ceases before any leader emerges. In this sense the autocratic leadership is less stable. (How-
ever, the scenario is stable with respect to introducing the noise Eqs (18) and (19)). To illustrate
this point, note that the activity is not sustained—and hence no definite network structure
emerges—for regular initial conditions τij(0) = 1/(n − 1) (instead of Eq (11)). For the participa-
tive situation this homogeneous initial network structure only delayed (by an order of

Fig 9. Autocratic leadership. Single autocratic leader: α = 1, β = 0 and q > Q�; see Eqs (6), (7), (14) and
(15). Other parameters are chosen according to Eq (16). The leader (red square) stimulates others (green
squares) and is stimulated by the helper (blue square). All these stimulations have the maximal weight equal
to 1. All other agents are passive spectators with zero score.

doi:10.1371/journal.pone.0159301.g009
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magnitude) the convergence towards the stationary structure. Thus, the emergence of the auto-
cratic leader (and its helper) demands initial inhomogeneity of the network.

Another implication of Q+ =1 is that the externally driven agent (cf. Eq (24)) does always
have a chance to become an autocratic leader.

Hidden leadership
We continue to focus on β = 0, but now 1:5≲ a; cf. Table 2. Instead of a single helper H, we get
(depending on the initial conditions) a few agents H1,H2, . . .; see Fig 10. The agents act on
each other cyclically, and although they have lower credibility scores than L, the one with the
highest score (H1) drives L with the maximal weight τLH1

= 1. ThusH1, H2, . . . are hidden and

Fig 10. Autocratic leadership. Hidden leadership: α = 1.5, β = 0 (other parameters are those of Fig 9). The
highest-score agent (red square) is driven by a circle of agents that drive each other cyclically (grey squares).
The official leader (red square) has the largest number of followers (green squares), though each gray agent
can have its own followers. All followers are driven by the maximal weight, have neglegible credibilities and
do not feedback.

doi:10.1371/journal.pone.0159301.g010
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real leaders. They are hidden because their score is not large; it is smaller than the score of L,
but it is real because they influence each other strongly, and one of them influences L, which
has the maximal score. Importantly, the influence of H1 on L is one-way; H1 does not get any
feedback from L, in contrast to the previous scenario with the single helper. Thus, within the
group H1, H2, . . . the score is not important, since these agents drive each other cyclically.
However, L is still driven by the highest-score (amongH1, H2, . . .), agent H1.

Three further details can be present in this scenario, depending on initial conditions. First, it
is also possible that L belongs to the group of hidden leaders H1, H2, . . .. Second, the scenario
may be accompanied by a hierarchic structure, where the leader influences a sub-leader that
drives its own group of followers; see Fig 10. Third, some of Hk (most frequently H1) can have
their own followers, that are not the followers of L. Still, L has the largest number of followers
and thereby the largest credibility score; see Fig 10.

Coalition of autocratic leaders (duumvirate)
If for β = 1, α decreases from α = 1, then around α = 0.75 (for parameters of Eq (16)) there is a
change in the final network structure. For α< 0.75 this structure is such that there emerge two
leaders (L1 and L2), whose scores are approximately equal and much larger than the scores of
all other agents; see Fig 11. They strongly drive each other (in the final state): τL1 L2 = τL2 L1 =
1). They drive by turns all other agents k; if τkL1(t)’ 1 and tkL2ðtÞ ¼ Oð1=NÞ, then after a few

time-steps δ, L1 and L2 interchange their roles: τkL2(t+δ)’ 1 and tkL1ðt þ dÞ ¼ Oð1=NÞ. For
the noiseless situation (η = 0 in Eqs (18) and (19)) we get δ = 1, 2. If a weak noise is present see
Eqs (18) and (19), δ becomes a random number.

All the other agents besides L1 and L2 are passive spectators without influence on anyone.
The transition from a single autocratic leader to the successive leadership takes place also

for β = 0, but for α< 0.6 for parameters of Eq (16).
If α is close to zero (e.g., α� 0.1 for β = 1 or β = 0), the relaxation to the stationary network

structure is slow. For times t* 30 − 40 there emerges a small (up to 10 agents for the overall
number of agents 100) group of high-score leaders that influence each other and drive the
remaining majority of agents without getting any sizable feedback from this majority. Only on
much longer times, t* 1000 − 2000, two leaders with the symmetric interaction emerge from
within this group. Other agents from the high-score group move to the zero-score majority.
Thus, there can be a larger group of leaders (more than two agents), but it is metastable.

Conclusion
Leadership has been at the focus of many disciplines: history (many biographies are about lead-
ers), political science (governance structure and function), philosophy (principles of good ver-
sus bad leadership), management science (leadership practices), social psychology (influence),
communication research (leadership frequently goes via—and is about—communication), and
complex systems [1, 2]. But we lacked a tractable model that can provide a theoretical labora-
tory for describing and studying leadership scenarios.

Table 2. Leadership scenarios for different parameters of Eq (7) and f[x] given by Eq (8). For intermediate values of the parameters (e.g. 1 < α < 1.5) we
get mixtures of the corresponding scenarios, or one of the scenarios is selected depending on initial conditions.

α≳1:5 α’ 1 α≲ 0:5

β = 1 hierarchy (participative) single leader (participative) succession of leaders (autocratic)

β = 0 hidden leaders (autocratic) leader + helper (autocratic) succession of leaders (autocratic)

doi:10.1371/journal.pone.0159301.t002
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We studied a formal, mathematical model for the emergence of opinion leader in a collec-
tive of agents that are modeled via threshold elements (neurons) living on a network. Agents
can activate and influence their neighbors via the network possibly making them active as well.
Weights of the network links are dynamic. They account for the importance given by the agent
to a specific link. The behavior rules of the agents are summarized as follows; cf. Table 1.

– The overall influence on an agent from its neighbors (i.e. its attention) is limited.

– An agent re-distributes its attention via changing the link weights such that more active
agents get more attention. The conservatism of the agent during this process is described by
a parameter α� 0; see Eq (6). For α! 0 the agent tends to revise even those links that were
once deemed to be unimportant.

– There is a possibility of involving into the model an agent’s credibility score, a dynamic vari-
able that grows whenever the agent actively influences its neighbors; otherwise the score
decays. The score couples to attention such that agents tend to be influences by their higher-
score neighbors. The extent to which they account for their existing score is modeled by a
parameter β = 0, 1; see Eq (7). For β = 0 an agent does not compare its own score with the
score of its neighbors.

– Agents may be subject to noise, i.e. they activate or deactivate randomly.

For this model we uncovered several types of leadership—depending on α, β, the noise, and
the importance of credibility scores (see Table 2)—that do correspond to basic scenarios
known from social psychology and from real life.

Fig 11. Coalition of two leaders.Here α = 0.25, β = 1 and Eq (16). The red (blue) agent has the highest (one
but highest) score. However, the real leader is now the blue agent, since it stimulates all other agents with the
weight equal to 1. The red agent stimulates the blue one with the weight 1, and all other agents with the
weight’1/N. All green agents are passive spectators with score close to zero.

doi:10.1371/journal.pone.0159301.g011
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• The laissez-faire leader emerges under weakly-noisy dynamics without scores. Here, the
overall activity is irregular, followers are influenced weakly, their mutual interaction is not
suppressed, and autonomous sub-leaders with their followers are allowed. Some followers
are shared between the leader and sub-leader. The leader and sub-leader(s) influence each
other with comparable weights. The emergence of the laissez-faire leader takes a lengthy
time, but it is a real leadership, since the overall activity decays (though not completely) after
suppressing the leader. The replacement of the laissez-faire leader occurs spontaneously and
also takes a lengthy time. An important aspect of the laissez-faire leadership is that its pres-
ence and its effect is visible only for sufficiently long times. We uncovered this scenario by
looking at time-averages.
Other leadership scenarios emerge after introducing the scores. This emergence takes much
shorter time.

• A participative (democratic) leader does influence all agents strongly, hence it suppresses
inter-follower interactions. Still this leader accepts feedback from the followers: it is active
precisely due this feedback. If sub-leaders are allowed, they are delegates of the leader. The
latter does not influence followers of the sub-leader, but strongly drives the sub-leader,
whose back-influence on the leader is weak. The leader emerges due to its social capital (well-
connectedness in the network). Initially its social capital is only slightly larger than for the
others, but it is amplified dynamically due to credibility scores, and finally leads this agent to
leadership. Within this scenario, no leader can be imposed externally, if the inter-agent cou-
pling is sufficiently strong.

• The autocratic leadership scenario is realized for β = 0 (see Table 2), i.e. when the agents do
not respect their credibility scores when re-distributing their attention. This point is some-
what unexpected, naively one would think that the neglect of one’s own score is a route to
democracy. An autocratic leader (i.e., the highest score leader with the most followers) does
not accept feedback from its followers; they are completely passive. Instead, the activity of
the leader is supported either by symmetric interaction with a single agent (helper), or by
one-way driving from a group of hidden (i.e., lower-score) agents. Hence, these agents are
the real leaders. No simple criteria was found for predicting the autocratic leader from the
initial state. In a sense, this leader is selected for random reasons—a point that is anticipated
to be one of the main dangers of autocratic organizations [10]. The autocratic scenario is sus-
ceptible to perturbations of the initial state (in contrast to the participative leadership); i.e.
for certain initial states the activity of the system ceases because no leader is established. One
aspect of this susceptibility is that an autocratic leader may be always imposed externally,
again in contrast to the participative leader. For non-conservative agents (α! 0), the model
predicts a coalition of autocratic leaders. However, the coalition is meta-stable; for long times
it reduces to a pair of autocratic leaders that symmetrically interact with each other, and by
turn drive the remaining agents.

The above scenarios were established under concrete dynamic rules for the behavior of
agents, but it is likely that they will emerge more generally, i.e., for other rules. A detailed
understanding of this premise, as well as empiric validations of the model, are left for future
work. Here we only stress that there are several directions via which such a validation can prog-
ress. Within the main direction, one can check possible leadership scenarios in various exam-
ples of social media. Here the main problem is that normally the real network of influences
between agents is not known. However, several methods were developed recently to resolve
this problem [25–29], and since all the ingredients of our model (e.g. the attention restriction
etc) have their analogues for agents of social media, one can hope to find a reasonable
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classification of social media leaders that does resemble the one studied here (i.e. laissez-faire,
participative, autocratic, weak and strong forms of hierarchy and of influence sharing, duumvi-
rate etc).

There are few other directions along which one can attempt to validate the present model.
Recently, there was an interesting discussion on the emergence of leaders in collective of robots
[84]. Once it is understood from our model that rather complex leadership scenarios can
emerge from simple behavioral rules, one can model these rules for robots and look at their
emergent leadership behavior. Next, there is a large body of work devoted to various situations
of decentralized control; see e.g. [85]. By their very definition such scenarios imply the absence
of any leadership. However, our results hint that claims on the absence of leadership may in
fact be overstated, and that laissez-faire leaders may be hidden in (at least) some scenarios of
decentralized control.

Supporting Information
S1 Data. The file S1_Data.nb provides a simple numerical code (written in Mathematica)
for simulating one of the leadership scenarios discussed in the main text.
(NB)
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