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Abstract

Guastello’s polynomial regression method for solving cusp catastrophe model has been widely 

applied to analyze nonlinear behavior outcomes. However, no statistical power analysis for this 

modeling approach has been reported probably due to the complex nature of the cusp catastrophe 

model. Since statistical power analysis is essential for research design, we propose a novel method 

in this paper to fill in the gap. The method is simulation-based and can be used to calculate 

statistical power and sample size when Guastello’s polynomial regression method is used to cusp 

catastrophe modeling analysis. With this novel approach, a power curve is produced first to depict 

the relationship between statistical power and samples size under different model specifications. 

This power curve is then used to determine sample size required for specified statistical power. We 

verify the method first through four scenarios generated through Monte Carlo simulations, and 

followed by an application of the method with real published data in modeling early sexual 

initiation among young adolescents. Findings of our study suggest that this simulation-based 

power analysis method can be used to estimate sample size and statistical power for Guastello’s 

polynomial regression method in cusp catastrophe modeling.
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1. Introduction

Popularized in the 1970’s by Thom [1], Thom and Fowler [2], Cobb and Ragade [3], Cobb 

and Watson [4], and Cobb and Zack [5], catastrophe theory was proposed to understand a 

complicated set of behaviors including both gradual and continuous changes and sudden and 

discrete or catastrophical changes. Computationally, there are two directions to implement 

this theoretical catastrophe theory. One direction is operationalized by Guastello [6,7] with 

the implementation into a polynomial regression approach and another direction by a 

stochastic cusp catastrophe model from Cobb and his colleagues [5] with implementation in 

an R package in [8]. And this paper is to discuss the first direction on polynomial cusp 

catastrophe regression model due to its relative simplicity and easy for implementation as 

simple regression approach. This model has been used extensively in research. Typical 

examples include modeling of accident process [7], adolescent alcohol use [9], changes in 

adolescent substance use [10], binge drinking among college students [11], sexual initiation 

among young adolescents [12], nursing turnover [13], and effect of HIV prevention among 

adolescents [12,14].

Even though this polynomial regression method has been widely applied in behavioral 

studies to investigate the existence of cusp catastrophe, to the best of our knowledge, no 

reported research has addressed the determination of sample size and statistical power for 

this analytical approach. Statistical power analysis is an essential part for researchers to 

efficiently plan and design a research project as pointed out in [15,16,17]. To assist and 

enhance application of the polynomial regression method in behavioral research, this paper 

is aimed to fill this method gap by reporting the Monte-Carlo simulation-based method we 

developed to conduct power analysis and to determine sample size.

The structure of the paper is as follows. We start with a brief review of the cusp catastrophe 

model (Section 2), followed by reporting our development of the novel simulation-based 

approach to calculate the statistical power (Section 3). This approach is then verified through 

Monte Carlo simulations and is further illustrated with data derived from published study 

(Section 4). Conclusions and discussions are given at the end of the paper (Section 5).

2. Cusp Catastrophe Model

2.1. Overview

The cusp catastrophe model is proposed to model system outcomes which can incorporate 

the linear model with extension to nonlinear model along with discontinuous transitions in 

equilibrium states as control variables vary. According to the catastrophe systems theory 

[1,18,19,20], the dynamics for a cusp system outcome is expressed by the time derivative of 

its state variable (often called behavioral variable within the context of catastrophe theory) to 
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the potential function: V(z;x,y) = 1/4 z4 −1/2 z2y − zx. The first derivative of V will consist 

of the equilibrium plane of the cusp catastrophe:

(1)

where x is called asymmetry or normal control variable and y is called bifurcation or 

splitting control variable. In the model, the two control variables x and y co-vary to 

determine the behavior outcome variable z. Figure 1 depicts the equilibrium plane which 

reflects the response surface of the outcome measure (z) at various combinations of x and y. 

It can be seen from the figure that the dynamic changes in a behavior measure (z) has two 

stable regions (attractors), the lower area in the front left and the upper areas in the front 

right. Beyond these two regions, behavior z becomes unstable. This characteristic can be 

further revealed by projecting the unstable region to the x and y control plane as a cusp 

region. The cusp region is characterized by two lines, line O-Q (the ascending threshold) and 

line O-R (the descending threshold) of the equilibrium surface. In this region, the outcome 

measure becomes highly unstable, and sudden change or jumping in behavior status will 

occur, because a very small change in x or y or both will lead z to cross either the threshold 

line O-Q or O-R.

Furthermore, the paths A, B, and C in Figure 1 depict three typical but different pathways of 

change in the outcome measure (z). Path A shows that in any situations where y<O, there is 

a smooth relation between outcome measure (z) and the asymmetry variable (x); path B 

shows that in any situations where y>O, if the asymmetry variable x increases to reach and 

pass the ascending threshold link O-Q, outcome measure (z) will increase suddenly from the 

low stable region to the upper stable region of the equilibrium plane; and Path C shows a 

sudden drop in outcome measure (z) as x declines to reach and pass the descending 

threshold line O-R.

From the affirmative description, it is clearly that a cusp model differs from a linear model in 

that: (1) A cusp model allows the forward and backward progression follows different paths 

in the outcome measure and both processes can be modeled simultaneously (see Paths B and 

C in Figure 1) while a linear model only permits one type of relationship; (2) A cusp model 

covers both a discrete component and a continuous component of a behavior change while a 

linear model covers on continuous process (Path A). In this case a linear model can be 

considered as a special case of the cusp model; (3) A cusp model consists of two stable 

regions and two thresholds for sudden and discrete changes. Therefore, the application of the 

cusp modeling will advance the linear approach and better assist researchers to describe the 

behavior data while evidence obtained from such analysis, in turn, can be used to advance 

theories and models to better explain a behavior.

2.2. Guastello’s Cusp Catastrophe Polynomial Regression Model

To operationalize the cusp catastrophe model for behavior research, Guastello [6,7] 

developed the polynomial regression approach to implement the concept of cusp model. 

Since the first publication of this method, it has been widely used in analyzing real data as 

we described in the Introduction. In this study, we referred the method as Gastello’s 

polynomial cusp regression. According to Gustello, this approach is derived by inserting 
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regression β coefficients into the Equation (1), with change scores Δz = z2 − z1 (the 

differences in the measurement scores of a behavior assessed at time 1 and time 2) as a 

numerical approximation of dz:

(2)

where β0 is the intercept and ε is the normally distributed error term. Two additional term β2 

× z1
2 and β5 × y are added to capture potential deviations of the data from the equilibrium 

plane. When conducting modeling analysis, a cusp is indicated ONLY if the estimated β1 for 

the cubic term, plus β3 (for the interaction term) or β4 (for control variable x) in Equation 2 

are statistically significant.

To demonstrate the efficiency of the polynomial regression approach in describing 

behavioral changes that are cusp, Guastelly [7] recommended a comparative approach. In 

this approach, two types, four alternative linear models can be constructed and used in 

modeling the same variables:

1. Change scores linear models

(3)

(4)

2. Pre-and post- linear models

(5)

(6)

These alternative linear models add another analytical strategy to strength the polynomial 

regression method. A better data-model fitting (or a larger R2) of the cusp model (2) than the 

alternative linear models (3) through (6) is often used as additional evidence supporting the 

hypothesis that the dynamics of a study behavior follows the cusp catastrophe. Fitting 

Guastello’s cusp regression model and the four alternative models can all be conducted with 

commonly available statistical software, including SAS, SPSS, STATA and R. More recent 

discussions and applications of the cusp catastrophe modeling methods can be found in [21].

3. Simulation-Based Power Analysis Approach for Guastello’s Cusp 

Regression

3.1. A Brief Introduction to Statistical Power

In statistics, power is defined as the probability of correctly rejecting the null hypothesis. 

Stated in common language, power is the fraction of the times that the specified null-

hypothesis value will be rejected from statistical tests. Operationally based on this definition, 

if we specify an alternative hypothesis H1, a desired type-I error rate α, and a desired power 
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(1 − β), then we can calculate the required sample size n. Alternatively, we can calculate the 

statistical power (1 − β) as a function of sample size n under a specified alternative 

hypothesis H1 and a desired type-I error rate α. There are extensive literatures on sample 

size calculation as well as statistical power analysis, see the seminal books from [15,16,17] 

for power analysis for behavioral sciences.

As detailed in Chapter 7 in [17], five factors related to research design interplay with each 

other to determine the statistical power and sample size for a simple t-test: 1) the rate of 

type-I error α, 2) the desired statistical power 1 − β, 3) the expected treatment effect size of 

δ, 4) the standard error s2 for the expected effect size, and 5) the sample size n. The 

mathematical formula can then be derived as n ≥ 2(s2/δ2)[z1−α+z1−β]2. Therefore, to 

determine the required sample size n, we would need to provide data for four of the five 

design characteristics. Typically, the type-I error α is set at 0.05 and the desired power (1 − 

β) is chosen to be 0.85 (or 0.80). The other two will be treatment effect size δ and its 

standard error s2. Depending on actual research questions, different values are often selected 

for these two characteristics.

Extending the same concept described above for Guastello’s polynomial cusp regression, we 

would need to specify the corresponding parameter effect size for all βs in Equation (2), the 

standard deviation of the error term ε. In addition, we need to specify the distribution of the 

two control variables, the asymmetry x and the bifurcation y; and the distribution of the 

outcome variable z at time 1 (i.e. z1). With these parameters and variables being specified, 

the required sample size for a significant Cuastello’s cusp regression model can be 

determined and statistical power can be analyzed.

3.2. Simulation-Based Approach for Power Analysis and Sample Size Determination

Power analysis and sample size determination can be developed for specific purpose. 

Typically, it is developed to detect treatment effect as in clinical trials or to detect the effect 

of specific risk factor as in regression. Similar development can be done to Guastello’s cusp 

regression model for specific repressor in asymmetry variable (x) or the bifurcation variable 

(y) if they are linked to multiple regressors or even to the overall goodness-of-fit index of 

R2. However, we aim to tackle a more complicated problem to determine whether we can 

detect a significant overall cusp model. The complexity of cusp catastrophe model makes it 

rather challenging, if not impossible to derive an analytical formula to determine the 

statistical power for Guastello’s cusp regression. To deal with this difficult, we propose a 

Monte-Carlo simulation-based approach. In this method the statistical power is calculated as 

the fraction of the times that the specified null-hypothesis of “no cusp” is rejected at the 

given level of type I error. Stated in another way, if there is a cusp, the statistical power will 

be, among 100 simulations, how many times can we detect the cusp given the sample size 

and type I error? The detailed steps of the simulation-based approach are outlined as 

follows:

1. Simulate data with sample size (n) (i.e. the number of observations for Guastello’s 

cusp regression modeling) for the asymmetry variable x, bifurcation variable y and 

outcome variable at time 1 (i.e. z1). Data are generated under required 

specifications for desired study, such as normal distribution with specific means and 
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standard deviations. Guastello’s cusp regression requires that all variables be 

standardized before data analysis and modeling. In this case, the standard normal 

distribution can be used to generate data for x, y and z1;

2. Specify model parameter effect size β = (β0, β1, β2, β3, β4, β5) and the standard 

deviation σ of the error term of ε (Equation 2) obtained from prior knowledge;

3. Calculate z2 = z1 + β0 + β1z1
3 + β2z1

2 + β3 y z1 + β4 x + β5 y + ε using the data 

obtained in the previous two Steps. Also generate Δz= z2 − z1;

4. Fit the Guastello’s cusp regression model (Equation 2) with least squares method 

using the data generated for Δz, x, y, and z1. After model fitting, a significant test is 

conducted to determine whether the data fit Guastello’s cusp regression model 

satisfactorily according to the decision rules proposed by Guastello (1982): (1) the 

estimated β1 for the cubic term and (2) β3 (for the y and z1 interaction term) or β4 

(for control variable x) must be are statistically significant;

5. Repeat Steps 1 to 4 a large number of times (typically 1,000) and calculate the 

proportion of simulations which satisfy the Guastello’s decision rules. This 

proportion then provides an estimate of the statistical power for the pre-specified 

sample size and the study specifications given in Steps 1 and 2;

6. With the above established five steps for power assessment, sample size is then 

determined to reach a pre-specified level of statistical power. This is carried out by 

running Steps 1 to 5 with a range of sample sizes (n) first to obtain the 

corresponding values of statistical power. Then a statistical power curve is 

constructed for these ranges of sample sizes. With this power curve, the sample size 

is determined through back-calculation for a pre-specified power, such as power = 

0.85.

The simulation-based approach described above is implemented in free R package and the 

computer program is available up request from the authors.

4. Simulation Study and Real Example

4.1. Monte-Carlo Simulation Analysis

4.1.1. Rationale—To verify the novel approach proposed in Section 3, we simulated four 

scenarios with n = 100 observations for each using Guastello’s cusp polynomial regression 

model (2). The four scenarios represent four cases of σ with different measurement errors 

(i.e. σ =1, 2, 3, and 4). We hypothesized that data with smaller measurement errors will fit 

the cusp model better than the data with larger errors if the Guastello’s cusp polynomial 

regression method is used to detect cusp catastrophic changes. Consequently, a larger sample 

size would be needed to detect a cusp for data with greater measurement errors.

4.1.2. Data Generation—Data are generated with the asymmetry variable x, bifurcation 

variable y and outcome variable at time 1 (i.e. z1) being set as standard normal distribution. 

The parameter effect size vector is set as β = (β0, β1, β2, β3, β4, β5) = (0.5, 0.5, 0.5, 0.5, 0.5, 

0.5). To illustrate the impact of measurement errors on sample sizes, we generate the error 
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term ε following the normal distribution as ε ~ N(0, σ2) with increasing measurement error 

standard deviation of σ = 1, 2, 3, and 4 for each of the four scenarios.

With the generated x, y and z1 along with the input values of β and σ, Δz is generated using 

the Guastello’s polynomial regression model. This is achieved by plugging in all values of x, 

y, z1, β, σ and ε into the following equation:

Figure 2 illustrates one realization of the data generation with σ = 1 in a pair plot. It can be 

seen from the figure that the distributions for x, y and z1 are random (the upper left 3 by 3 

plots). Furthermore, Δz is linearly related to x as seen from the upper right plot. The second 

plot on the right-side illustrates the linear relationship between Δz and y under fixed z1 and 

the third plot on the right-side illustrates the cubic relationship between Δz and z1. For σ = 

2, 3, and 4 (data not shown in figure), the corresponding pair plots would have larger 

variations.

4.1.3. simulation Analysis—Four data sets for the four scenarios (e.g., σ = 1, 2, 3, and 4) 

are simulated first. The simulated data are then fitted with Guastello’s cusp regression model 

using least squares method. The summary statistics of the analyses are given in Table 1. It 

can be seen from the table that for the Scenario where σ = 1, all the parameters of the 

polynomial regression model are statistically highly significant (p < 0.001) with R2 = 0.763, 

indicating adequate data-cusp model fitting and F-statistic = 60.71 indicating highly 

significance of the polynomial regression model. The estimated σ̂ = 1.053, slightly greater 

than the true σ = 1. Since β1, β3 and β4 are all highly significant, we conclude that the 

Guastello’s polynomial regression method is sufficient to detect the specified cusp.

Results of other three scenarios in Table 1 indicate that as σ increases, the goodness of data-

model fitting declines. In the scenario where σ = 2, the R2 drops to 0.454, F-statistic drops to 

15.61 (still significant), and the estimated σ = 2.107, close to the true σ = 2. In this case, both 

β1 and β3 remain significant, indicating the existence of a cusp. With regard to Scenario 3 

where σ = 3, the R2 further drops to 0.278 and F-statistic to 7.227. The estimated σ = 3.160, 

again close to its true σ = 3. In this case, only β1 is highly significant and β3 marginally 

significant, indicating that a cusp is likely. In Scenario 4 where σ = 4, none of the estimated 

parameters required to support the cusp is statistically significant. Therefore, we could not 

be able to determine if the data contain a cusp. A power analysis is needed to assess if the 

sample size (n = 100) is adequate.

4.1.4. Sample Size Estimation—To demonstrate the proposed novel simulation method, 

we estimate sample sizes needed for each of the four scenarios to achieve 85% statistical 

power employing this method and the estimated parameter β = (β0, β1, β2, β3, β4, β5) and the 

estimated σ from Table 1 in the previous step. Figure 3 summarizes the results. Data in 

Figure 3 indicate that with 85% statistical power to detect the underlying cusp, the required 

sample sizes for Scenarios 1 through 4 are 36, 101, 195 and 293, respectively. The required 
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sample size varies proportionately with measurement errors. This result adds more evidence 

supporting the validity of the simulation-based approach we proposed for power analysis.

4.1.5. Reverse-Verification—If the novel simulation-based approach is valid, the sample 

size estimates for each of the four scenarios described in previous section will allow 

approximately 85% chance to detect the underlying cusp. Therefore, we took a reverse 

approach to compute statistical power by applying the calculated sample size as input for 

each of the four scenarios. Results in Figure 3 indicated that for Scenario 1, a sample size of 

36 observations will be adequate to detect the cusp with 85% statistical power.

To demonstrate this result, we make use Monte-Carlo procedure and randomly sample 36 

observations from the simulate data (n = 100) used for Scenario 1 (σ = 1). We then fit the 

data to the Guastello’s cusp regression model. We use the same criteria (significant β1, plus 

either β3 or β4) to assess the detection of a cusp. Among 1000 repeats of the Monte-Carlo 

simulations with sample size n=36, we found 833 times (83.3%) significant. This result 

indicates that the power analysis of the simulation method we proposed is close to 85%. In 

another word, the method we proposed is slightly conservative, which is good for research 

design. The template is designed so that author affiliations are not repeated each time for 

multiple authors of the same affiliation. Please keep your affiliations as succinct as possible 

(for example, do NOT post your job titles, positions, academic degrees, zip codes, names of 

building/street/district/province/state, etc.). This template was designed for two affiliations.

4.2. Verification with Published Data

The best approach to demonstrate the validity of the simulation approach would be to test it 

with observed data. To use our approach, we need two sets of data from any reported study: 

parameter estimates as effect size β = (β0, β1, β2, β3, β4, β5) and estimated mean error of 

model fitting σ̂. However, we experienced difficulties in finding such data from all the 

studies we accessed in the published literature database. For example, all β coefficients were 

reported by all studies but β0 was not; furthermore, data-model fitting error fitting σ̂ was 

never reported in any of the published studies using Guastelle’s cusp polynomial regression 

method. Fortunately, one author of this paper [12] published a study that modeled early 

sexual initiation among young adolescents using this polynomial regression approach.

Briefly, in Chen’s study participants were 469 virgins in the control group for a randomized 

controlled trial to assess the effect of an HIV behavioral prevention intervention program 

[22,23]. The participants in grade 6 in the Bahamian public schools were randomly assigned 

to receive either intervention or control conditions. They were followed every 6 months up 

to 24 months at the time when the analysis was conducted. A participant was categorized as 

having initiated sex if he or she had the first penile-vagina sexual intercourse during the 

follow-up period. In addition to sexual initiation, the likelihood to initiate sex was also 

assessed using a 5-point rating scale with 1 = very unlikely to have sex in the next 6 months 

and 5 = very likely to have sex. A sexual progression index (SPI) was thus created as the 

dependent variable for modeling analysis was defined as the first time. SPI = 1 for 

participants who never had sex and reported very unlikely to have sex; SPI = 2 for 

participants who never had sex but unsure if they are going to have sex in the next 6 months; 
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SPI = 3 for participants who never had sex but reported very like to have sex in the next 6 

months; and SPI = 4 for participants who initiated sex. In addition to SPI, age was used as 

the asymmetry variable x, and self-efficacy not to have sex (scale score based on 5 items) 

was used as the bifurcation y.

To verify the simulation-based method, the parameter effect size estimates were obtained 

from the paper with β = (β0, β1, β2, β3, β4, 

β5)=c(−0.0309,0.0726,−0.4819,−0.1236,0.0613,−0.2693), and the data-model fitting error σ̂ 

= 0.5033 was obtained by accessing to the original computing records. With these estimates, 

the simulation-based approach in Section 3.2 is applied. Figure 4 presents the sample size-

power curve. From the figure it can be seen that the estimated sample size is 153 to achieve 

85% power. This sample size is much smaller than the sample (n=469) in the original study.

5. Discussions

In the case where analytical solution to power analysis and sample size determination is 

difficult, simulation represents an ideal alternative as recommended in [16,17,24]. In this 

paper, we reported a novel simulation-based approach we developed to estimate the 

statistical power and to compute sample size for Gustello’s polynomial cusp catastrophe 

model. The method was developed based on statistical power theory and our understanding 

of Guastello’s cusp polynomial regression modeling approach. The computing method is 

programmed using the R software. Results from 1000 repeats of Monte Carlo simulation and 

empirical data analysis suggest that the method we proposed is valid and can be used in 

practice to conduct power analysis and to estimate sample size for Guastello polynomial 

cusp modeling method.

With this approach, researchers can compute statistical power and estimate sample size if 

they plan to conduct cusp modeling analysis using Gustallo’s polynomial regression method. 

A detailed introduction to the method can be found in [6,7,21]. Data needed for our methods 

included parameter effect size estimates for the intercept and five model parameters (β0, β1, 

β2, β3, β4, β5) and a data-model fitting error σ or its estimate. With the specification of these 

data, power can be computed for any given sample sizes. In addition to computer power, the 

commonly used sample size - power curve can be generated to provide a visual presentation 

between sample size and statistical power. With such power curve, sample size can be 

estimated for specified power in design and analysis data from cusp catastrophe model.

To make the presentation easier, we confined this novel simulation approach to the situation 

of one regressor for each control variable in the cusp model. This approach can be easily 

adopted and extended to multiple regressors for each of the asymmetric (x) and bifurcation 

(y) variables where the Guastello’s cusp polynomial regression model would need to be 

extended.

More and more data suggest the utility of cusp modeling approach in characterizing a 

number of human behaviors, particularly health risk behaviors, such as tobacco smoking, 

alcohol consumption, hardcore drug use, dating violence, and unprotected sex 

[10,11,14,21,25,26]. The method we reported in this paper provide an useful tool for 
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researchers to more effectively design their research to investigate these risk behaviors and 

to assess intervention programs for risk reduction.

By conducting this study, we also noted that previous studies published in the literature do 

not report adequate information for power analysis. We highly recommend that journal 

editors ask authors to report all parameter estimates, including β0, and data-model fitting 

error (mean square of error). In addition to power analysis and sample size estimation, such 

data are also useful for readers to statistically assess appropriateness of the reported results.

There are a number of strengths with the method we presented in this study. The principle 

and the computing process are not difficult to follow; the data used for the computing can be 

obtained; the computing software is written with R, available from the authors by request for 

collaboration; and the computing does not require much time (several seconds to half 

minutes). We are encouraged on the results from this research and work on extend the results 

in to stochastic catastrophe model in [4,19]. Despite many advantages, further application of 

the method in practice is needed.
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Figure 1. 
Cusp catastrophe model for outcome measures (Z) in the equilibrium plane with asymmetry 

control variable (X) and bifurcation control variable (Y). (Annotated by the authors with the 

original graph produced by Grasman’s R package “cusp”)
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Figure 2. 
Example of simulated data when σ =1 where the distributions of x, y, z1 are standard normal 

(the upper left 3 by 3 plots) and the relationships between Δz to x (as linear), to y (as linear) 

and to z1 (as cubic).
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Figure 3. 
Statistical power curves corresponding to σ = 1 in plot a), σ = 2 in plot b), σ = 3 in plot c) 

and σ = 4 in plot d). The arrows illustrate the sample size determination from power of 0.85 

to calculate the sample size required.
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Figure 4. 
Power curve for Chen et al (2010). The estimated sample size for power of 0.85 is 153
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Table 1

Parameter estimates, R2, Estimated σ2 and F-Statistic from four simulations with σ=1, 2, 3 and 4. The rows 

bolded are corresponding to the cusp determination.

σ = 1 σ = 2 σ =3 σ = 4

β0 (Intercept) 0.487*** 0.473․ 0.459 0.446

β1 (z1
3) 0.540*** 0.581*** 0.621*** 0.661***

β2 (z1
2) 0.456*** 0.411* 0.367 0.323

β3 (y*z1) 0.360** 0.221 0.081 −0.058

β4 (x) 0.563*** 0.626** 0.689* 0.753

β5 (y) 0.468*** 0.435․ 0.403 0.371

R2 0.763 0.454 0.278 0.1856

Estimated σ2 1.053 2.107 3.160 4.214

F-Statistic with df = (5, 94) 60.71*** 15.61*** 7.227*** 4.286*

Significant codes:

***
p-value <0.00001,

**
p-value <0.001),

*
p-value <0.01,

․
p-value<0.05
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