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Abstract

Significant scientific and translational questions remain in auditory neuroscience surround-

ing the neural correlates of perception. Relating perceptual and neural data collected from

humans can be useful; however, human-based neural data are typically limited to evoked

far-field responses, which lack anatomical and physiological specificity. Laboratory-con-

trolled preclinical animal models offer the advantage of comparing single-unit and evoked

responses from the same animals. This ability provides opportunities to develop invaluable

insight into proper interpretations of evoked responses, which benefits both basic-science

studies of neural mechanisms and translational applications, e.g., diagnostic development.

However, these comparisons have been limited by a disconnect between the types of spec-

trotemporal analyses used with single-unit spike trains and evoked responses, which results

because these response types are fundamentally different (point-process versus continu-

ous-valued signals) even though the responses themselves are related. Here, we describe

a unifying framework to study temporal coding of complex sounds that allows spike-train

and evoked-response data to be analyzed and compared using the same advanced signal-

processing techniques. The framework uses a set of peristimulus-time histograms com-

puted from single-unit spike trains in response to polarity-alternating stimuli to allow

advanced spectral analyses of both slow (envelope) and rapid (temporal fine structure)

response components. Demonstrated benefits include: (1) novel spectrally specific tempo-

ral-coding measures that are less confounded by distortions due to hair-cell transduction,

synaptic rectification, and neural stochasticity compared to previous metrics, e.g., the corre-

logram peak-height, (2) spectrally specific analyses of spike-train modulation coding (mag-

nitude and phase), which can be directly compared to modern perceptually based models of

speech intelligibility (e.g., that depend on modulation filter banks), and (3) superior spectral

resolution in analyzing the neural representation of nonstationary sounds, such as speech

and music. This unifying framework significantly expands the potential of preclinical animal

models to advance our understanding of the physiological correlates of perceptual deficits in

real-world listening following sensorineural hearing loss.
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Author summary

Despite major technological and computational advances, we remain unable to match

human auditory perception using machines, or to restore normal-hearing communication

for those with sensorineural hearing loss. An overarching reason for these limitations is

that the neural correlates of auditory perception, particularly for complex everyday

sounds, remain largely unknown. Although neural responses can be measured in humans

noninvasively and compared with perception, these evoked responses lack the anatomical

and physiological specificity required to reveal underlying neural mechanisms. Single-

unit spike-train responses can be measured from preclinical animal models with well-

specified pathology; however, the disparate response types (point-process versus continu-

ous-valued signals) have limited application of the same advanced signal-processing anal-

yses to single-unit and evoked responses required for direct comparison. Here, we fill this

gap with a unifying framework for analyzing both spike-train and evoked neural

responses using advanced spectral analyses of both the slow and rapid response compo-

nents that are known to be perceptually relevant for speech and music, particularly in

challenging listening environments. Numerous benefits of this framework are demon-

strated here, which support its potential to advance the translation of spike-train data

from animal models to improve clinical diagnostics and technological development for

real-world listening.

This is a PLOS Computational BiologyMethods paper.

Introduction

Normal-hearing listeners demonstrate excellent acuity while communicating in complex envi-

ronments. In contrast, hearing-impaired listeners often struggle in noisy situations, even with

state-of-the-art intervention strategies (e.g., digital hearing aids). In addition to improving our

understanding of the auditory system, the clinical outcomes of these strategies can be

improved by studying how the neural representation of complex sounds relates to perception

in normal and impaired hearing. Numerous electrophysiological studies have explored the

neural representation of perceptually relevant sounds in humans using evoked far-field record-

ings, such as frequency following responses (FFRs) and electroencephalograms [1–3]. Note

that we use electrophysiology and neurophysiology to refer to evoked far-field responses and sin-

gle-unit responses, respectively (see S1 Table for glossary). While these evoked responses are

attractive because of their clinical viability, they lack anatomical and physiological specificity.

Moreover, the underlying sensorineural hearing loss pathophysiology is typically uncertain in

humans. In contrast, laboratory-controlled animal models of various pathologies can provide

specific neural correlates of perceptual deficits that humans experience, and thus hold great

scientific and translational (e.g., pharmacological) potential. In order to synergize the benefits

of both these approaches to advance basic-science and translational applications to real-world

listening, two major limitations need to be addressed.

First, there exists a significant gap in relating spike-train data recorded invasively from ani-

mals and evoked noninvasive far-field recordings feasible in humans (and animals) because

PLOS COMPUTATIONAL BIOLOGY Spectrally specific temporal analyses of auditory spike trains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008155 February 22, 2021 2 / 32

not play any role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008155


the two signals are fundamentally different in form (i.e., binary-valued point-process data ver-

sus continuous-valued signals). While the continuous nature of the evoked-response ampli-

tude allows for any of the advanced signal-processing techniques developed for continuous-

valued signals to be applied (e.g., multitaper approaches to robust spectral estimation [4]),

spike-train analyses have been much more limited (e.g., in their application to real-world sig-

nals, as reviewed in S1 Text). This is a critical gap because most perceptual deficits and

machine-hearing limits occur for speech in noise rather than for speech in quiet [5, 6]. For

example, classic neurophysiological studies have quantified the temporal coding of stationary

and periodic stimuli using metrics such as vector strength (VS [7–9], also see S1 Appendix),

whereas more recent correlogram analyses have provided temporal-coding metrics for non-

periodic stimuli, such as noise [10, 11]. However, as reviewed in S1 Text, these metrics can be

influenced by distortions from nonlinear cochlear processes [12, 13], and often ignore

response phase information that is likely to be perceptually relevant for simple tasks [14] as

well as for speech intelligibility [15, 16].

A second important gap exists because current spectrotemporal tools to evaluate temporal

coding in the auditory system are largely directed at processing of stationary signals by linear

and time-invariant systems. However, the auditory system exhibits an array of nonlinear (e.g.,

two-tone suppression, compressive gain, and rectification) and time-varying (e.g., adaptation

and efferent feedback) mechanisms [17, 18]. These mechanisms interact with nonstationary

stimulus features (e.g., frequency transitions and time-varying intensity fluctuations, Fig 1A

and 1B) to shape the neural coding and perception of these signals [19–21]. In fact, the

response of an auditory-nerve (AN) fiber to even a simple stationary tone shows nonstationary

features, such as a sharp onset and adaptation (Fig 1C), illustrating the need for nonstationary

analyses of temporal coding. However, the extensive single-unit speech coding studies using

classic spike-train metrics have typically been limited to synthesized and stationary speech

tokens, which has deferred the study of the rich kinematics present in natural speech [12, 22,

23]. Some windowing-based approaches have been used to study time-varying stimuli and

responses [24, 25], but the approaches used have imposed a limit on the temporal and spectral

resolution with which dynamics of the auditory system can be studied.

The present study focuses on developing spectrotemporal tools to characterize the neural

representation of kinematics naturally present in real-world signals, speech in particular, that

are appropriate for the nonlinear and time-varying auditory system. We describe a unifying

framework to study temporal coding in the auditory system, which allows direct comparison

of single-unit spike-train responses with evoked far-field recordings. In particular, we demon-

strate the unifying merit of using alternating-polarity peristimulus time histograms (apPSTHs,
Table 1), a collection of PSTHs obtained from responses to both positive and negative polari-

ties of the stimulus. By using both polarities, neural coding of natural sounds can be studied

using the common temporal dichotomy between the slowly varying envelope (ENV) and rap-

idly varying temporal fine structure (TFS) (Fig 1E and 1F), which has been especially relevant

for speech-perception studies [26, 27]. We derive explicit relations between apPSTHs and

existing metrics for quantifying temporal coding in auditory neurophysiology (reviewed in S1

Text), namely VS and correlograms, to show that no information is lost by using apPSTHs. In

fact, the use of apPSTHs is computationally more efficient, provides more precise spectral esti-

mators, and opens up new avenues for perceptually relevant analyses that are otherwise not

possible. Next, an apPSTH-based ENV/TFS taxonomy is presented, including existing and

new metrics. This taxonomy allows for spectrally specific analyses that avoid distortions due to

inner-hair-cell transduction and synaptic rectification processes, resulting in more accurate

characterizations of temporal coding than with previous metrics. Finally, these methods are

extended in novel ways to include the study of nonstationary signals at superior
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Table 1. apPSTH-taxonomy for ENV & TFS.

PSTH name Notation: (time,

frequency)

Definition ENV and/or TFS

representation

Rectifier

distortion

Comments

Positive p(t), P(f) Positive polarity TFS & ENV Large

Negative n(t), N(f) Negative polarity TFS & ENV Large

Difference d(t), D(f) pðtÞ � nðtÞ
2

TFS & ENV Small Includes both the carrier and sideband components (thus

not a clean representation of TFS)

Sum s(t), S(f) pðtÞ þ nðtÞ
2

ENV Large Consistent representation of spectrally specific modulation

strength but confounded by rectifier distortion at 2 × CF

Analytic a(t), A(f) dðtÞ þ ȷHfdðtÞg TFS & ENV Small Hf�g is the Hilbert transform operator

Hilbert

envelope

e(t), E(f) jaðtÞj=
ffiffiffi
2
p

ENV Small Polarity-sensitive ENV (subject to TFS phase locking)

Hilbert

phase

ϕ(t), F(f)
ffiffiffi
2
p
� rms½dðtÞ� � cos½ffaðtÞ� TFS Small Carrier TFS (subject to TFS phase locking)

We define apPSTHs as the collection of PSTHs derived using both polarities of the stimulus. The pair of PSTHs, p(t) and n(t), is a sufficient statistic for apPSTHs since

all other PSTHs in the group can be derived from the two. Alternatively, the pair, d(t) and s(t), is also a sufficient statistic for apPSTHs. Each PSTH (e.g., the positive

polarity PSTH) can be expressed in the time domain [p(t)] or in the frequency domain [P(f)]. A graphical illustration for these apPSTHs is in S1 Fig.

https://doi.org/10.1371/journal.pcbi.1008155.t001

Fig 1. Neural responses of AN fibers are invariably nonstationary, even when the stimulus is not. (A, B) Spectrogram and waveform of a speech

segment (s4 described inMaterials and Methods). Formant trajectories (black lines in panel A) and short-term intensity (red line in panel B, computed over

20-ms windows with 80% overlap) vary with time, highlighting two nonstationary aspects of speech stimuli. (C) PSTH constructed using spike trains in

response to a tone at the AN-fiber’s characteristic frequency (CF, most-sensitive frequency; fiber had CF = 730 Hz and was high spontaneous rate or SR

[28]). Tone intensity = 40 dB SPL. Even though the stimulus is stationary, the response is nonstationary (i.e., sharp onset followed by adaptation). (D)

Period histogram, constructed from the data used in C, demonstrates the phase-locking ability of neurons to individual stimulus cycles. (E) PSTH

constructed using spike trains in response to a sinusoidally amplitude-modulated (SAM) CF-tone (50-Hz modulation frequency, 0-dB modulation depth,

35 dB SPL) from an AN fiber (CF = 1.4 kHz, medium SR). (F) Period histogram (for one modulation period) constructed from the data used in E. The

response to the SAM tone follows both the modulator (envelope, red, panels E and F) as well as the carrier (temporal fine structure), the rapid fluctuations

in the signal (blue, panel F). Bin width = 0.5 ms for histograms in C-F. Number of stimulus repetitions for C and E were 300 and 16, respectively.

https://doi.org/10.1371/journal.pcbi.1008155.g001
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spectrotemporal resolution compared to conventional windowing-based approaches, like the

spectrogram or wavelet analysis.

Results

A unified framework for quantifying temporal coding based on

alternating-polarity PSTHs (apPSTHs)
In this section, we first show that apPSTHs can be used to unify classic metrics, e.g., VS and

correlograms (reviewed in S1 Text), in a computationally efficient manner. Then, we show

that apPSTHs offer more precise spectral estimates compared to correlograms and allow for

perceptually relevant analyses that are not possible with classic metrics.

apPSTHs permit computationally efficient temporal analyses. Let us denote the PSTHs

in response to the positive and negative polarities of a stimulus as p(t) and n(t), respectively.

Then, the sum PSTH, s(t), which represents the polarity-tolerant component in the response, is

estimated as

sðtÞ ¼
pðtÞ þ nðtÞ

2
: ð1Þ

The difference PSTH, d(t), which represents the polarity-sensitive component in the

response, is estimated as

dðtÞ ¼
pðtÞ � nðtÞ

2
: ð2Þ

The difference PSTH has been previously described as the compound PSTH [29]. Here we

use the terms sum and difference for s(t) and d(t), respectively, for clarity. Compared to the

spectra of the single-polarity PSTHs [i.e., of p(t) or n(t)], the spectrum of the difference PSTH,

D(f), is substantially less confounded by rectifier-distortion artifacts ([23], also see S1 Fig pan-

els B and D). This improvement occurs because even-order distortions, which strongly con-

tribute to these artifacts, are effectively canceled out by subtracting PSTHs for opposite

polarities. A second way spectral peaks absent in the stimulus can arise in the p(t)-spectrum is

because of propagating combination tones of cochlear origin (e.g., distortion products) [30].

Unlike rectifier distortion, which is an artifact of analysis, combination tones are present in

the cochlea and can affect perception. As the phase of these combination tones depends on

stimulus polarity [30], these perceptually relevant combination tones are captured in the differ-

ence PSTH. These distinct sources are discussed in more detail by Young and Sachs with

respect to analyses of stationary synthesized-vowel responses from AN fibers [12].

The Fourier magnitude spectrum of the difference PSTH has been referred to as the syn-

chronized rate. We show that the synchronized rate relates to VS by

VSðf Þ ¼
jDðf Þj
N

; ð3Þ

where f is frequency in Hz, and N is the total number of spikes (S2 Appendix).

In addition, we demonstrate that the autocorrelogram and the shuffled autocorrelation

(SAC) function of the PSTH are related (S3 Appendix), which leads to important computa-

tional efficiencies. In particular the SAC for a set of M spike trains X ¼ fx1 ; x2 ; :::; xMg can be

estimated as

SACðXÞ ¼ RXðPSTHXÞ �
XM

i¼1

RXðxiÞ; ð4Þ
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where RX is the autocorrelation operator, and PSTHX is the PSTH constructed using X. Simi-

larly, the SCC for two sets of spike trains X ¼ fx1 ; x2 ; :::; xLg and Y ¼ fy1 ; y2 ; :::; yMg can be

estimated as

SCCðX;YÞ ¼ RXYðPSTHX; PSTHYÞ; ð5Þ

where PSTHX and PSTHY are PSTHs constructed using X and Y, respectively, and RXY is the

cross-correlation operator. Since SACs and SCCs can be computed using apPSTHs, it follows

that sumcor and difcor can also be computed using apPSTHs (S4 Appendix). As apPSTHs can

be used to compute correlograms, apPSTHs offer the same degree of smoothing as

correlograms.

Importantly, the use of apPSTHs to compute correlograms is computationally more effi-

cient compared to the existing correlogram-estimation method, i.e., by tallying all interspike

intervals. For a fixed stimulus duration and PSTH resolution, estimating the autocorrelation

function of the PSTH requires constant time complexity [Oð1Þ]. Thus, for N spikes, the SAC

and SCC can be computed with OðNÞ complexity that is needed for constructing the PSTH

using Eqs 4 and 5. This is substantially better than the OðN2Þ complexity needed to compute

the correlograms by tallying shuffled all-order interspike intervals. For example, consider a

spike-train dataset that consists of 50 repetitions of a stimulus with 100 spikes per repetition.

To compute the SAC using (all-order) ISIs, each spike time (5000 unique spikes) has to be

compared with spike times from all other repetitions (4900 spike times). This tallying method

requires 24.5 × 106 (i.e., 5000 × 4900) operations to compute the SAC, where one operation

consists of comparing two spike times and incrementing the corresponding SAC-bin by 1. In

contrast, only 5000 operations are needed to construct the PSTH for 5000 (50 × 100) total

spikes. The PSTH can then be used to estimate the SAC with constant time complexity. In

addition to their computational efficiency, apPSTHs offer additional benefits for relating sin-

gle-unit responses to far-field responses, for spectral estimation, and for speech-intelligibility

modeling, as discussed below.

apPSTHs unify single-unit and far-field analyses. The PSTH is particularly attractive

because the PSTH from single neurons or a population of neurons, by virtue of being a contin-

uous signal, can be directly compared to evoked potentials in response to the same stimulus

(e.g., Fig 2). In this example, the speech sentence s3 was used to record the frequency following

response (FFR) from one animal. The same stimulus was also used to record spike trains from

AN fibers (N = 246) from 13 animals. The mean d(t) and mean s(t) were computed by pooling

PSTHs across all neurons. The difference and sum FFRs were estimated by subtracting and

averaging FFRs to alternating polarities, respectively. This approach of estimating polarity-tol-

erant and polarity-sensitive FFR components is well established [31–33]. Qualitatively, the

periodicity information in the mean d(t) and the difference FFR were similar (Fig 2A); this is

expected because the difference FFR receives significant contributions from the auditory nerve

[34]. To compare the spectra for the two responses, a 100-ms segment was considered. The

first formant (F1) and the first few harmonics of the fundamental frequency (F0) were well cap-

tured in both spectra. F2 was also well captured in the difference FFR, and to a lesser extent, in

the mean d(t).
The mean s(t) and the sum FFR also show comparable temporal features in these nonsta-

tionary responses (Fig 2C). For example, both responses show sharp onsets for plosive and

fricative consonants. The segment considered in Fig 2B was used to compare the spectra for

the two sum responses. Both spectra show similar spectral peaks near the first two harmonics

of F0 (Fig 2D), which indicates that pitch-related periodicity is well captured in both the sum

FFR and mean s(t). However, there are some discrepancies between the relative heights of the
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first two F0-harmonics. These could arise because the average FFR primarily reflects activity of

high-frequency neurons from rostral generators (e.g., the inferior colliculus) [34], which show

stronger polarity-tolerant responses compared to the auditory nerve [35]. In contrast, the

mean s(t) is based on responses of AN fibers, which show strong polarity-sensitive responses

to F0 due to tuning-curve tail responses at high sound levels like that used here. These tail

responses contribute to power at 2F0 as rectifier distortion. Other potential sources that can

contribute to any far-field evoked response include receptor potentials (e.g., cochlear micro-

phonic, or the CM) and electrical interference. However, CM is substantially reduced in

summed mass responses (since odd harmonics cancel), although CM may not be completely

removed because even harmonics remain [36, 37]. In fact, destructive interference between the

auditory neurophonic and the CM has been seen previously in mass responses [37], which

could reduce the 2F0 component in the sum-FFR spectrum but not in the apPSTH for which

the CM is not present (Fig 2D). Electrical interference had insignificant effect on these FFR

data (Fig 2 in [38]). In general, these sources can substantially contribute to evoked responses,

such as the compound action potential, and thus should be considered when comparing these

evoked responses with invasive spike-train data [37]. In this regard, using the apPSTH-based

framework to analyze invasive spike-train recordings allows direct comparison of invasive sin-

gle-unit data with noninvasive continuous-valued evoked potentials and evaluation of the neu-

ral origins of evoked responses.

Variance of apPSTH-based spectral estimates can be reduced relative to correlogram-

based spectral estimates. Temporal information in a signal can be studied not only in the

Fig 2. apPSTHs can be directly compared to evoked potentials in response to the same stimulus. (A) Time-domain

waveforms for the difference FFR (blue) and mean difference PSTH [d(t), red] in response to a Danish speech

stimulus, s3 (black). Mean d(t) was computed by taking the grand average of d(t)s from 246 AN fibers from 13 animals

(CFs: 0.2 to 11 kHz). The difference FFR was estimated by subtracting FFRs to alternating stimulus polarities. (B)

Spectra for the signals in A for a 100-ms segment (purple dashed lines in A). (C) Time-domain waveforms for the sum

FFR (blue) and mean sum PSTH [s(t), red] for the same stimulus. Both responses show sharp onsets for plosive (/d/

and /g/) and fricative (/s/) consonants. (D) Spectra for the responses in C for the same segment considered in B. The

mean s(t) was estimated as the grand average of s(t)s from 246 neurons. Sum FFR was estimated by halving the sum of

the FFRs to both polarities. Stimulus intensity = 65 dB SPL.

https://doi.org/10.1371/journal.pcbi.1008155.g002
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time domain (e.g., using correlograms) but also in the frequency domain (e.g., using the power

spectral density, PSD). The frequency-domain representation often provides a compact alter-

native compared to the time-domain counterpart. In the framework of spectral estimation, the

source (“true”) spectrum, which is unknown, is regarded as a parameter of a random process

that is to be estimated from the available data (i.e., from examples of the random process).

Spectral estimation is complicated by two factors: (1) finite response length, and (2) stochasti-

city of the system. The former introduces bias to the estimate, i.e., the PSD at a given frequency

can differ from the true value. This bias reflects the leakage due to power at nearby (narrow-

band bias) and far-away (broadband bias) frequencies (due to the inherent temporal window-

ing from the finite-duration response). Stochasticity of the system adds randomness to the

sampled data, which creates variance in the estimate. Desirable properties of PSD estimators

are minimized bias and variance. Bias can be reduced by multiplying the data (prior to spectral

estimation) with a taper that has a strong energy concentration near 0 Hz. Variance can be

reduced by using a greater number of tapers to estimate multiple (independent) PSD estimates,

which can be averaged to compute the final estimate. The multitaper approach optimally

reduces the bias and variance of the PSD estimate [4, 39]. In this approach, for a given data

length, a frequency resolution is chosen, based on which a set of orthogonal tapers are com-

puted. These tapers include both even and odd tapers, which can be used to obtain the inde-

pendent PSD estimates to be averaged. In contrast, for the same frequency resolution, only

even tapers can be used with correlograms as they are even sequences [40, 41]. Therefore, vari-

ance in the PSD estimate can be reduced by a factor of up to 2 by using apPSTHs instead of

correlograms.

For example, the benefit (in terms of spectral-estimation variance) of using the multitaper

spectrum of d(t), as opposed to the common approach of estimating the discrete Fourier trans-

form (DFT) of the difcor, can be quantified by comparing the two spectra at a single frequency

(Fig 3). Here, a 100-ms segment of the s3 speech stimulus was used as the analysis window.

The segment had an F0 of 98 Hz and F1 of 630 Hz (Fig 3A). Fig 3B shows example spectra esti-

mated using spike trains recorded from a low-frequency AN fiber [CF = 900 Hz, SR = 81

spikes/s]. The multitaper spectrum was estimated using the MATLAB function pmtm (two

tapers corresponding to a time-bandwidth product of 3, adaptive weights [4]). To compare

variances in the two estimated spectra, fractional power at the 6th harmonic was considered,

as this harmonic was closest to F1. This analysis was restricted to neurons (N = 10) for which

data was available for at least 75 repetitions per polarity and that had a CF between 0.3 and 2

kHz. For each neuron, 25 spike trains per polarity were chosen randomly 12 times to estimate

fractional power at the 6th harmonic. The same set of spike trains were used to estimate distri-

butions for both the difcor-spectrum and D(f). The ratio of difcor-based fractional power vari-

ance to the apPSTH-based fractional power variance at 6F0 was >1 for all 10 neurons

considered (Fig 3D), demonstrating the benefit of being able to compute a multitaper spec-

trum from d(t) compared to the difcor-spectrum in reducing variance. Overall, these results

indicate that less data are required to achieve the same level of precision in a spectral metric

based on the multitaper spectrum of an apPSTH compared to the same metric derived from

the DFT of the correlogram.

Benefits of apPSTHs for speech-intelligibility modeling. Speech-intelligibility (SI) mod-

els aim to predict the effects of acoustic manipulations of speech on perception. Thus, SI mod-

els allow for quantitative evaluation of the perceptually relevant features in speech. More

importantly, SI models can guide the development of optimal hearing-aid strategies for hear-

ing-impaired listeners. However, state-of-the-art SI models are largely based on the acoustic

signal, where there is no physiological basis to capture the various effects of sensorineural hear-

ing loss (SNHL) [16, 42–45]. In contrast, neurophysiological SI models (i.e., SI models based
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on neural data) are particularly important in this regard since spike-train data from preclinical

animal models of various forms of SNHL provide a direct way to evaluate the effects of SNHL

on speech-intelligibility modeling outcomes [46, 47].

A major advantage of PSTH-based approaches over correlogram-based approaches is that

they can be used to extend a wider variety of acoustic SI models to include neurophysiological

data. In particular, correlograms can be used to extend power-spectrum-based SI models [42–

45, 48] but not for the more recent SI models that require phase information of the response

[16, 49]. For example, the speech envelope-power-spectrum model (sEPSM) has been evalu-

ated using simulated spike trains since sEPSM only requires power in the response envelope,

which can be estimated from the sumcor spectrum [47]. However, sumcor cannot be used to

evaluate envelope-phase-based SI models since it discards phase information. Studies have

shown that the response phase can be important for speech intelligibility [15, 50]. In contrast

to the sumcor, the time-varying PSTH contains both phase and magnitude information, and

thus, can be used to evaluate both power-spectrum- and phase-spectrum-based SI models. For

example, because the PSTH p(t) [or n(t)] is already rectified, it can be filtered through a modu-

lation filter bank to estimate “internal representations” in the modulation domain (Fig 4).

These spike-train-derived “internal representations” are analogous to those used in phase-

Fig 3. Lower spectral-estimation variance can be achieved using apPSTHs (with multiple tapers) compared with

difcor correlograms. (A) Spectrum for the 100-ms segment in the speech sentence s3 (F0� 98 Hz, F1� 630 Hz) used

for analysis. (B) Example spectra for an AN fiber (CF = 900 Hz, high SR) with spikes from 25 randomly chosen

repetitions per polarity. The first two discrete-prolate spheroidal sequences were used as tapers corresponding to a

time-bandwidth product of 3 to estimateD(f), the spectrum of d(t). No taper (i.e., rectangular window) was used to

estimate the difcor spectrum. The AN fiber responded to the 6th, 7th and 8th harmonic of the fundamental frequency.

(C) Error-bar plots for fractional power (PowerFrac) at the frequency (green triangle) closest to the 6th harmonic. Error

bars were computed for 12 randomly and independently drawn sets of 25 repetitions per polarity. The same spikes

were used to compute the spectra for d(t) (blue) and difcor (red). (D) Diamonds denote the ratio of variances for the

difcor-based estimate to the d(t)-based estimate. This ratio was greater than 1 (i.e., above the dashed gray line) for all

units considered, which demonstrates that the variance for the multitaper-d(t) spectrum was lower than the difcor-
spectrum variance. AN fibers with CFs between 0.3 and 2 kHz and with at least 75 repetitions per polarity of the

stimulus were considered. Bin width = 0.1 ms for PSTHs. Sampling frequency = 10 kHz for FFRs. Stimulus

intensity = 65 dB SPL.

https://doi.org/10.1371/journal.pcbi.1008155.g003
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spectrum-based SI models [16, 49] and can be further processed by existing SI back-ends to

estimate SI values. This example demonstrates a proof of concept of using spike-train data to

evaluate a spectrally specific envelope-based SI model using apPSTHs. In general, SI models

that include a peripheral or modulation filter bank representation, which is the case for most

successful SI models (e.g., the speech transmission index [51], the spectrotemporal modulation

index [52], speech envelope power spectrum models [48, 53]), can be evaluated using spike-

train data recorded from peripheral (e.g., auditory-nerve fibers) or central (e.g., inferior colli-

culus) neurons, respectively, using apPSTHs. Therefore, these analyses allow for the evaluation

of a wider variety of acoustic-based SI models in the neural domain (magnitude and phase),

where translationally relevant data can be obtained from preclinical animal models of various

forms of SNHL.

Quantifying ENV and TFS using apPSTHs for stationary signals

In this subsection, we first describe existing and novel ENV and TFS components that can be

derived from apPSTHs. Next, we compare relative merits of the novel components over exist-

ing ENV and TFS components using simulated data. Finally, we apply apPSTHs to analyze

spike-train data recorded to speech and speech-like stimuli.

Several ENV and TFS components can be derived from apPSTHs with spectral specific-

ity. The neural response envelope can be obtained from apPSTHs in two orthogonal ways:

(1) the low-frequency signal, s(t), and (2) the Hilbert envelope of the high-frequency carrier-

related energy in d(t). s(t) is thought to represent the polarity-tolerant response component,

which has been defined as the envelope response [10, 35]. For a stimulus with harmonic spec-

trum, s(t) captures the envelope related to the beating between harmonics. In addition, onset

and offset responses (e.g., in response to high-frequency fricatives, Fig 2C) are also well cap-

tured in s(t). Although sumcor and s(t) are related, dynamic features like onset and offset

responses are captured in s(t), but not in the sumcor since the sumcor discards phase

Fig 4. Modulation-domain internal representations for speech coding can be obtained from PSTH-based

envelopes. PSTH response [p(t)] from one AN fiber (CF = 290 Hz, SR = 12 spikes/s) is shown. (A) Time-domain

waveforms for the stimulus (gray) and p(t) (blue). (B) Output of a modulation filter bank after the processing of p(t).
Modulation filters were zero-phase, fourth-order, and octave-wide IIR filters. Center frequencies (Fm) for these filters

ranged from 2 to 128 Hz (octave spacing), similar to those used in recent psychophysically based SI models (e.g., [16]).

PSTH bin width = 0.5 ms. 15 stimulus repetitions. Stimulus intensity = 60 dB SPL.

https://doi.org/10.1371/journal.pcbi.1008155.g004
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information by essentially averaging ENV coding across the whole stimulus duration. The use

of the sum envelope is popular in far-field responses [31–33] but not directly in auditory

neurophysiology studies. A major disadvantage of s(t) is that it is affected by rectifier distor-

tions if a neuron phase locks to low-frequency energy in the stimulus (e.g., Fig 5A; discussed

further below).

Fig 5. Envelope-coding metrics should be spectrally specific to avoid artifacts due to rectifier distortion and neural stochasticity. Simulated responses

for 24 AN fibers (log-spaced between 250 Hz and 8 kHz) were obtained using a computational model (parameters listed in S2 Table) using SAM tones at

CF (modulation frequency, Fm = 20 Hz; 0-dB (100%) modulation depth) as stimuli. Stimulus intensity� 65 dB SPL. S(f) (blue) and E(f) (red) for three

example model fibers with CFs = 1.0, 1.7, and 4 kHz (panels A-C) illustrate the relative merits of s(t) and e(t), and the potential for rectifier distortion to

corrupt envelope coding metrics. d(t) was band-limited to a 200-Hz band near Fc for each fiber prior to estimating e(t) from the Hilbert transform of d(t).
(A) For the 1-kHz fiber, S(f) and E(f) are nearly identical in the Fm band. S(f) is substantially affected by rectifier distortion at 2 × CF, which can be ignored

using spectrally specific analyses. (B) The two envelope spectra are largely similar near the Fm bands since phase-locking near the carrier (1.7 kHz) is still

strong (panel D). Rectifier distortion in S(f) is greatly reduced since phase-locking at twice the carrier frequency (3.4 kHz) is weak. (C) Fm-related power in

E(f) and rectifier distortion in S(f) are greatly reduced as the frequencies for the carrier and twice the carrier are both above the phase-locking roll-off. (D)

The strength of modulation coding was evaluated as the sum of the power near the first three harmonics of Fm (gray boxes in panels A-C) for S(f) (blue

squares) and E(f) (red circles). VSpp was also quantified to CF-tones for each fiber (black dashed line, right y-axis). (E) Rectifier distortion (RD) analysis was

limited to the second harmonic of the carrier (brown boxes in panels A-C). RD was quantified as the sum of power in 10-Hz bands around twice the carrier

frequency (2 × CF) and the adjacent sidebands (2 × CF ± Fm). RD for E(f) is not shown because E(f) was virtually free from RD. (F) Raw and adjusted

sumcor peak-heights across CFs. sumcors were adjusted by band-pass filtering them in the three Fm-related bands. Large differences between the two

metrics at low frequencies indicate that the raw sumcor peak-heights are confounded by rectifier distortion at these frequencies. (G) Relation between raw

and adjusted sumcor peak-heights with Fm-related power (from panel D) in S(f). Good correspondence between Fm-related power in S(f) and adjusted

sumcor peak-height supports the use of spectrally specific envelope analyses. (H) The difference between raw and adjusted sumcor peak-heights was largely

accounted for by RD power. However, this difference was always greater than zero, suggesting broadband metrics can also be biased because of noise

related to neural stochasticity.

https://doi.org/10.1371/journal.pcbi.1008155.g005
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A second way envelope information in the neural response can be quantified is by comput-

ing the envelope of the difference PSTH, d(t). This envelope, e(t), can be estimated as the mag-

nitude of the analytic signal, a(t), of the difference PSTH

eðtÞ ¼
jaðtÞj
ffiffiffi
2
p ; ð6Þ

where aðtÞ ¼ dðtÞ þ ȷHfdðtÞg, and Hf�g is the Hilbert transform operator. The factor
ffiffiffi
2
p

normalizes for the power difference after applying the Hilbert transform. d(t) is substantially

less affected by rectifier distortion [23], and thus, so is e(t). The use of e(t) parallels the proce-

dure followed by many computational models that extract envelopes from the output of

cochlear filter banks [48, 54, 55].

The TFS component can also be estimated in two ways: (1) d(t), and (2) cosine of the Hil-

bert phase of d(t). The difference PSTH has been traditionally called the TFS response because

it is the polarity-sensitive component. difcor and derived metrics relate to d(t) as the difcor is

related to the autocorrelation function of d(t) (S4 Appendix). However, d(t) does not represent

the response to only the carrier (phase) since it also contains envelope information in e(t). We

propose a novel representation of the TFS response component, ϕ(t), estimated as the cosine

phase of the analytic signal

�ðtÞ ¼
ffiffiffi
2
p
� rms½dðtÞ� � cos½ffaðtÞ�; ð7Þ

where normalization by
ffiffiffi
2
p
� rms½dðtÞ� is used to match the power in ϕ(t) with the power in d

(t) since cos[∠a(t)] is a constant-rms (rms ¼ 1=
ffiffiffi
2
p

) signal.

Relative merits of sum and Hilbert-envelope PSTHs in representing spike-train enve-

lope responses. The relative merits of the two envelope PSTHs, s(t) and e(t), were evaluated

based on simulated spike-train data generated using a computational model of AN responses

[56]. The model includes both cochlear-tuning and hair-cell transduction nonlinearities in the

auditory system. Modulation spectra for sinusoidally amplitude-modulated (SAM) tones were

estimated for s(t) and e(t) [denoted by S(f) and E(f), respectively] for individual-fiber responses

(Fig 5A–5C). d(t) was band-pass filtered near CF (200-Hz bandwidth, 2nd order filter) before

applying the Hilbert transform to minimize the spectral energy in d(t) that was not stimulus

related. The two envelopes were evaluated based on their representations of the modulator and

rectifier distortion. Rectifier distortions are expected to occur at even multiples of the carrier

and nearby sidebands (i.e., 2nFc, 2nFc − Fm, and 2nFc + Fm for integers n, Fig 5A). It is desirable

for an envelope metric to consistently represent envelope coding across CFs and be less

affected by rectifier-distortion artifacts. Modulation coding for the simulated responses was

quantified as the power in 10-Hz bands centered at the first three harmonics of Fm (i.e., 15 to

25 Hz, 35 to 45 Hz, and 55 to 65 Hz) for both s(t) and e(t) (Fig 5D). The need to include multi-

ple harmonics of Fm arises because the response during a stimulus cycle departs from sinusoi-

dal shape due to the saturating nonlinearity associated with inner-hair-cell transduction (S2

Fig). While Fm-related power was nearly constant across CF for s(t), it was nearly constant for

e(t) only up to 1.2 kHz, after which it rolled off. This roll-off for e(t) is not surprising since e(t)
relies on phase-locking near the carrier and the sidebands, as confirmed by the strong corre-

spondence between tonal phase-locking at the carrier frequency and Fm-related power in e(t)
(Fig 5D).

The analysis of rectifier distortion was limited to only the distortion components near the

second harmonic of the carrier (i.e., 2Fc, 2Fc − Fm, and 2Fc + Fm) since this harmonic is sub-

stantially stronger than higher harmonics (e.g., Fig 5A). Rectifier distortion was quantified as

the sum of power in 10-Hz bands centered at the three distortion frequency components.
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Because e(t) was estimated from spectrally specific d(t), which was band-limited to 200 Hz

near the carrier frequency, e(t) was virtually free from rectifier distortion. In contrast, s(t) was

substantially affected by rectifier distortion for simulated fibers with CFs below�2 kHz

(Fig 5E). Rectifier distortion in S(f) dropped for fibers with CF above�0.8 kHz because phase

locking at distortion frequencies (i.e., twice the carrier frequencies) was attenuated by the roll-

off in tonal phase locking. For example, the simulated AN fiber in Fig 5B (CF = 1.7 kHz) main-

tained comparable Fm-related power for both envelopes, but rectifier distortion for s(t) was

substantially diminished because the distortion frequency (3.4 kHz) is well above the phase-

locking roll-off. These results indicate that s(t) is substantially affected by rectifier distortion

(at twice the stimulus frequency) when the neuron responds to stimulus energy that is below

half the phase-locking cutoff.

Next, these spectral power metrics were compared with the correlogram-based metric, sum-
cor peak-height (Fig 5F–5H). The sumcor peak-height metric is defined as the maximum value

of the normalized time-domain sumcor function [10]. Prior to estimating the peak-height, the

sumcor is sometimes adjusted by adding an inverted triangular window to compensate for its

triangular shape [13]. Here, sumcors were compensated by subtracting a triangular window

from it so that the baseline sumcor is a flat function with a value of 0 (instead of 1) in the

absence of ENV coding. In S5 Appendix, we show that the sumcor peak-height is a broadband

metric and it is related to the total power in s(t), including rectifier distortions. When the sum-
cor is used to analyze responses of low-frequency AN fibers to broadband noise stimuli, the

sumcor-spectrum, and thus, the sumcor peak-height, are confounded by rectifier distortions

[13]. Similar to S(f) for low-frequency SAM tones (Fig 5A), these distortions show up at 2 × CF

in the sumcor-spectrum, whereas the difcor-spectrum has energy only near CF [13]. Heinz and

colleagues addressed these distortions by low-pass filtering the sumcor below CF to remove the

effects of rectifier distortion at 2 × CF. Here, we generalize this issue by comparing the sumcor
and spectrally specific ENV metrics for narrowband SAM-tone stimuli to demonstrate the lim-

itations of any broadband ENV metric. sumcors were adjusted by band-limiting them to 10-Hz

bands near the first three harmonics of Fm. As expected, the difference between the raw and

adjusted sumcor peak-heights was large at low CFs (Fig 5F), where rectifier distortion corrupts

the broadband sumcor peak-height metric. At high CFs (above 1.5 kHz), the difference

between raw and adjusted sumcor peak-heights was small but nonzero. These differences cor-

respond to power in S(f) at frequencies other than the modulation-related bands and reflect

the artifacts of neural stochasticity due to finite number of stimulus trials. As power is always

nonnegative, including power at frequencies unrelated to the target frequencies adds bias and

variance to any broadband metric. The adjusted sumcor peak-height, unlike the raw sumcor
peak-height, showed good agreement with spectrally specific Fm-related power in S(f)
(Fig 5G).

Overall, these results support the use of spectrally specific analyses to quantify ENV coding

in order to minimize artifacts due to rectifier distortion as well as the effects of neural stochas-

ticity. Of the two candidate apPSTHs to quantify response envelope, e(t) had the benefit of

minimizing rectifier distortion. However, e(t)’s reliance on carrier-related phase locking limits

the use of e(t) as a unifying ENV metric across the whole range of CFs. Instead, spectrally spe-

cific s(t) is more attractive because of its robustness in representing the response envelope

across CFs (Fig 5D).

Relative merits of difference and Hilbert-phase PSTHs in representing spike-train TFS

responses. In order to evaluate the relative merits of d(t) and ϕ(t) in representing the neural

TFS response, the same set of simulated AN spike-train responses were used as in Fig 5.

Although the stimulus has power at the carrier (Fc) and sidebands (Fc ± Fm; 6 dB lower), only

the carrier representation should be considered towards quantifying the TFS response because
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the energy at the sidebands arises due to the modulation of the carrier by the modulator

(ENV). As the carrier has energy at a single frequency (Fc) for a SAM tone, the desirable TFS

response should have maximum energy concentrated at the carrier frequency and not the side-

bands. Therefore, the merits of d(t) and ϕ(t) were evaluated based on how well they capture

the carrier and suppress the sidebands (Fig 6).

As mentioned previously, d(t) was band-limited to a 200-Hz bandwidth near the carrier fre-

quency before estimating ϕ(t). D(f) at low CFs contained substantial energy at both the carrier

and the sidebands (Fig 6A and 6B). This indicates that d(t) represents the complete neural cod-

ing of the SAM tone (both the envelope and the carrier) and not just the carrier. Furthermore,

D(f) has additional sidebands (Fc ± 2Fm) around the carrier frequency. These sidebands arise

as a result of the saturating nonlinearity associated with inner-hair-cell transduction (S2 Fig),

and thus, should not be considered towards TFS response. In contrast, F(f), the spectrum of

ϕ(t) had most of its power concentrated at the carrier frequency, with substantially less power

in the sidebands (Fig 6A and 6B). These results were consistent across a wide range of CFs and

for both sidebands (Fig 6D and 6E). Overall, these results show that ϕ(t) is a better PSTH com-

pared to d(t) in quantifying the response TFS since ϕ(t) emphasizes power at the carrier fre-

quency and not at the sidebands.

In the following, we apply apPSTH-based analyses on spike-train data recorded from chin-

chilla AN fibers in response to speech and speech-like stimuli. In these examples, we particu-

larly focus on certain ENV features, such as pitch coding for vowels and response onset for

consonants, and TFS features, such as formant coding for vowels.

Fig 6. Compared to the d(t), the apPSTH ϕ(t) provides a better TFS representation. (A-C) Spectra of d(t) and ϕ(t)
for the same three simulated AN fiber responses for which ENV spectra were shown in Fig 5.D(f) has substantial

power at CF (black triangle), as well as at lower (purple circle) and upper (purple square) sidebands.F(f), the spectrum

of ϕ(t), shows maximum power concentration at CF (carrier frequency), with greatly reduced sidebands. (D) Ratio of

power at CF (carrier, black triangle in panels A-C) to power at lower sideband (LSB, Fc − Fm, purple circles in panels

A-C). (E) Ratio of power at CF (carrier) to power at upper sideband (USB, Fc + Fm, purple squares in A-C). ϕ(t)
highlights the carrier and not the sidebands, and thus, compared to d(t), ϕ(t) is a better representation of the true TFS

response.

https://doi.org/10.1371/journal.pcbi.1008155.g006
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Neural characterization of ENV and TFS using apPSTHs for a natural speech seg-

ment. Most previous studies have used the period histogram to study speech coding in the

spectral domain [12, 57]. The period histogram is limited to stationary periodic stimuli, which

were employed in those studies. In contrast, the use of apPSTHs facilitates the spectral analysis

of neural responses to natural speech stimuli, which need not be stationary. Fig 7 shows the

response spectra obtained using various apPSTHs [p(t), s(t), d(t), and ϕ(t)] for a low-frequency

AN fiber in response to a natural speech segment (see S3 Fig for similar analyses for synthe-

sized speech demonstrating the well-known “synchrony-capture” phenomenon [12, 57]). In

this example, the response of a low-frequency AN fiber to a 100-ms vowel segment of the s3
natural speech sentence was considered. The CF (1.1 kHz) of this neuron is close to the second

formant (F2) of this segment (Fig 7B). P(f) shows peaks corresponding to F2 (�1.2 kHz) and F0

(�130 Hz, Fig 7C). Similar to S3 Fig, both D(f) and F(f) show substantial energy near the for-

mant closest to the neuron’s CF. In contrast to S3 Fig, S(f) [and E(f)] shows substantial energy

near the fundamental frequency (inconsistent with synchrony capture). A detailed discussion

of this discrepancy is beyond the scope of the present report, except to say that this lack of syn-

chrony capture for natural vowels is a consistent finding that will be reported in a future study.

The presence of substantial energy near F0 in E(f) indicates that d(t) is confounded by pitch-

related modulation in e(t). This is because, mathematically, D(f) is the convolution of the true

TFS spectrum [F(f)] and the Hilbert-envelope spectrum [E(f)]. Overall, these results

Fig 7. Spectral-domain application of various apPSTHs to spike trains recorded in response to natural speech.

Example of spectral analyses of spike trains recorded from an AN fiber (CF = 1.1 kHz, SR = 64 spikes/s) in response to

a vowel snippet of a speech stimulus (s3). (A) Time-domain representation of p(t), n(t), and the stimulus (Stim). n(t) is

reflected across the x-axis for display. Signals outside the analysis window are shown in gray. PSTH bin width = 0.1 ms.

Number of stimulus repetitions per polarity = 50. Stimulus intensity = 65 dB SPL. (B) Stimulus spectrum (blue, left

y-axis). In panels B-E, the frequency-threshold tuning curve (TC θ, black) of the neuron is plotted on the right y-axis.

(C) P(f), which shows comparable energy at F0 (130 Hz) and F2 (1.2 kHz). (D)D(f) and S(f). (E)F(f) and E(f). Both S(f)
and E(f) show peaks near F0. Similarly, bothD(f) andF(f) show good F2 representations, althoughD(f) is confounded

by the strong F0-related modulation in e(t) as d(t) = e(t) × ϕ(t). The significant representation of F0 in this near-F2 AN

fiber response to a natural vowel is inconsistent with the synchrony-capture phenomenon for synthetic stationary

vowels.

https://doi.org/10.1371/journal.pcbi.1008155.g007
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demonstrate the application of various apPSTHs to study the neural representation of natural

nonstationary speech stimuli in the spectral domain.

Onset envelope is well represented in the sum PSTH but not in the Hilbert-envelope

PSTH. In addition to analyzing spectral features, apPSTHs can also be used to analyze tem-

poral features in the neural response. An example temporal feature is the onset envelope,

which has been shown to be important for neural coding of consonants [22, 58], in particular

fricatives [59]. A diminished onset envelope in the peripheral representation of consonants is

hypothesized to be a contributing factor for perceptual deficits experienced by hearing-

impaired listeners [60], and thus is important to quantify. Fig 8 shows example onset responses

for a high-frequency AN fiber (CF = 5.8 kHz, SR = 70 spikes/s) for a fricative (/s/) portion of

the speech stimulus s3. The onset is well captured in single-polarity PSTHs [p(t) and n(t),
Fig 8A] and in the sum envelope [s(t), Fig 8B]. Since the onset is a polarity-tolerant feature, it

is greatly reduced by subtracting the PSTHs to opposite polarities. As a result, response onset

is poorly captured in d(t) (Fig 8C) and its Hilbert envelope, e(t) (Fig 8D).

Overall, these examples show that apPSTHs can be used to study various spectral and tem-

poral features in neural responses for natural stimuli in the ENV/TFS dichotomy. These

apPSTHs are summarized in Table 1 (and illustrated in S1 Fig).

Quantifying ENV and TFS using apPSTHs for nonstationary signals

In the discussion so far, we have argued for using spectrally specific metrics to analyze neural

responses to stationary stimuli. Another example where spectral specificity is needed is in eval-

uating the neural coding of nonstationary speech features (e.g., formant transitions). Speech is

a nonstationary signal and conveys substantial information in its dynamic spectral trajectories

Fig 8. p(t), n(t), and s(t) have robust representations of the onset response, whereas e(t) and d(t) do not. Response

of a high-frequency fiber (CF = 5.8 kHz, SR = 70 spikes/s) to a fricative portion (/s/) of the speech stimulus, s3. Stimulus

intensity = 65 dB SPL. (A) Stimulus (black, labeled Stim), p(t) (blue) and n(t) (red, reflected across the x-axis). PSTH

bin width = 0.5 ms. Number of stimulus repetitions per polarity = 50. (B) The sum envelope, s(t) (C) The difference

PSTH, d(t), and (D) the Hilbert-envelope PSTH, e(t). Since the onset envelope is a polarity-tolerant response, all

PSTHs capture the response onset except for d(t) and e(t).

https://doi.org/10.1371/journal.pcbi.1008155.g008
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(e.g., Fig 1A). A number of studies have investigated the robustness of the neural representa-

tion of dynamic spectral trajectories using frequency glides and frequency-modulated tones as

the stimulus [61–64]. These studies have usually employed a spectrogram analysis. While a

spectrogram is effective for analyzing responses to nonstationary signals with unknown

parameters, it does not explicitly incorporate information about the stimulus, which is often

designed by the experimenter. Since the spectrogram relies on a narrow moving temporal win-

dow, it offers poor spectral resolution due to the time-frequency uncertainty principle. The

same limitation applies to wavelet transforms that rely on segmenting the signal into shorter

windows, even though window length varies across frequency. Instead of using these window-

ing-based analyses, frequency demodulation and filtering can be used together to estimate

power along a spectrotemporal trajectory more accurately as described below. While this

demodulation-based method has been described previously for other signals [65], we apply

this method to natural speech and extend this approach to construct a new spectrally compact

time-frequency representation called the harmonicgram. These spectrally specific analyses will

facilitate more sensitive metrics to investigate the coding differences between nonstationary

features in natural speech and extensively studied stationary features in synthetic speech.

Frequency-demodulation-based spectrotemporal filtering. First, we describe the spec-

trotemporal filtering technique using an example stimulus with dynamic spectral components

(Fig 9). The 2-second-long stimulus consists of three spectrotemporal trajectories: (1) a sta-

tionary tone at 1.4 kHz, (2) a stationary tone at 2 kHz, and (3) a dynamic linear chirp that

moves from 400 to 800 Hz over the stimulus duration. We are interested in estimating the

Fig 9. More accurate estimates of power along a spectrotemporal trajectory can be obtained using frequency

demodulation. (A) Spectrogram of a synthesized example signal that mimics a single speech-formant transition. The

2-s signal consists of two stationary tones (1.4 and 2 kHz) and a linear frequency sweep (400 to 800 Hz). Red dashed

lines outline the spectrotemporal trajectory along which we want to compute the power. Both positive and negative

frequencies are shown for completeness. (B) Fourier-magnitude spectrum of the original signal. Energy related to the

target spectrotemporal trajectory is spread over a wide frequency range (400 to 800 Hz, red line). (C) Spectrogram of

the frequency-demodulated signal, where the target trajectory was used for demodulation (i.e., shifted down to 0 Hz).

(D) Magnitude-DFT of the frequency-demodulated signal. The desired trajectory is now centered at 0 Hz, with its

(spectral) energy spread limited only by the signal duration (i.e., equal to the inverse of signal duration), and hence, is

much narrower.

https://doi.org/10.1371/journal.pcbi.1008155.g009
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power of the nonstationary component, the linear chirp. In order to estimate the power of this

chirp, conventional spectrograms will employ one of the following two approaches. First, one

can use a long window (e.g., 2 seconds) and compute power over the 400-Hz bandwidth from

400 to 800 Hz. In the second approach, one can use moving windows that are shorter in dura-

tion (e.g., 50 ms) and compute power with a resolution of 30 Hz (20-Hz imposed by inverse of

the window duration and 10-Hz imposed by change in chirp frequency over 50 ms). As an

alternative to these conventional approaches, one can demodulate the spectral trajectory of the

linear chirp so that the chirp is demodulated to near 0 Hz (Fig 9C and 9D, see Materials and

Methods). Then, a low-pass filter with 0.5-Hz bandwidth (as determined by the reciprocal of

the 2-s stimulus duration) can be employed to estimate the time-varying power along the

chirp trajectory. This time-varying power is estimated at the stimulus sampling rate, similar to

the temporal sampling of the output of a band-pass filter applied on stationary signals. While

the same temporal sampling can be achieved using the spectrogram by sliding the window by

one sample and estimating the chirp-related power for each window, it will be computationally

much more expensive compared to the frequency-demodulation-based approach. Further-

more, the spectral resolution of 0.5 Hz is the same as that for a stationary signal, which demon-

strates a 60-fold improvement compared to the 50-ms window-based spectrogram approach.

The harmonicgram for synthesized nonstationary speech. As shown in Fig 9, combined

use of frequency demodulation and low-pass filtering can provide an alternative to the spectro-

gram for analyzing signals with time-varying frequency components. Such an approach can

also be used to study coding of dynamic stimuli that have harmonic spectrum with time-vary-

ing F0, such as music and voiced speech. At any given time, a stimulus with a harmonic spec-

trum has substantial energy only at multiples of the fundamental frequency, F0, which itself

can vary with time [i.e., F0(t)]. We take advantage of this spectral sparsity to introduce a new

compact representation, the harmonicgram. Consider the k-th harmonic of F0(t); power along

this trajectory [kF0(t)] can be estimated using the frequency-demodulation-based spectrotem-

poral filtering technique. One could estimate the time-varying power along all integer multi-

ples (k) of F0(t). This combined representation of the time-varying power across all harmonics

of F0 is the harmonicgram (see Materials and Methods). This name derives from the fact that

this representation uses harmonic number instead of frequency (or spectrum) as in the con-

ventional spectrogram.

Fig 10 shows harmonicgrams derived from apPSTHs in response to the nonstationary syn-

thesized vowel, s2. The first two formants are represented by their harmonic numbers, F1(t)/
F0(t) and F2(t)/F0(t), which are known a priori in this case. Two harmonicgrams were con-

structed using responses from two AN fiber pools: (1) AN fibers that had a low CF (CF < 1

kHz), and (2) AN fibers that had a medium CF (1 kHz < CF < 2.5 kHz). Previous neurophysi-

ological studies have shown that AN fibers with CF near and slightly above a formant strongly

synchronize to that formant, especially at moderate to high intensities [12, 57]. Therefore, the

low-CF pool was expected to capture F1, which changed from 630 Hz to 570 Hz. Similarly, the

medium-CF pool was expected to capture F2, which changed from 1200 Hz to 1500 Hz. The

harmonicgram for each pool was constructed by using the average Hilbert-phase PSTH, ϕ(t),
of all AN fibers in the pool. The harmonicgram is shown from 38 ms to 188 ms to optimize the

dynamic range to visually highlight the formant transitions by ignoring the onset response.

The dominant component in the neural response for F1 was expected at the harmonic number

closest to F1/F0. For this stimulus, F1/F0 started at a value of 6.3 (630/100) and reached 4.75

(570/120) at 188 ms crossing 5.5 at 88.5 ms (Fig 10A). This transition of F1/F0 was faithfully

represented in the harmonicgram where the dominant response switched from the 6th to the

5th harmonic near 90 ms. Similarly, F2/F0 started at 12, consistent with the dominant response

at the 12th harmonic before 100 ms (Fig 10B). Towards the end of the stimulus, F2/F0 reached
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12.5, which is consistent with the near-equal power in the 12th and the 13th harmonic in the

harmonicgram. In contrast to findings from previous studies, the harmonicgram for the

medium-CF pool indicates that these fibers respond to both the first and second formants [57,

66]. Such a complex response with components corresponding to multiple formants is likely

due to the steep slope of the vowel spectrum (S4 Fig).

The harmonicgram for natural speech. The harmonicgram analysis is not limited to syn-

thesized vowels, but can also be applied to natural speech (Fig 11). These harmonicgrams were

constructed for the natural speech stimulus, s3, using average ϕ(t) for the same low-CF and

medium-CF AN fiber pools used in Fig 10. Here, we consider a 500-ms segment of the stimu-

lus, which contains multiple phonemes. Qualitatively, similar to Fig 10, these harmonicgrams

capture formant contours across phonemes. The harmonicgram for the low-CF pool empha-

sizes the F1 contour, whereas the harmonicgram for the medium-CF pool primarily empha-

sizes the F2 contour, and to a lesser extent, the F1 contour. Compared to the spectrogram, the

harmonicgram representation is more compact and spectrally specific. Furthermore, from a

neural-coding perspective, quantifying how individual harmonics of F0 are represented in the

response is more appealing than the spectrogram since response energy is concentrated only at

these F0 harmonics.

The harmonicgram not only provides a compact representation for nonstationary signals

with harmonic spectra, it can also be used to quantify coding strength of time-varying features,

such as formants for speech (Fig 11E and 11F). In these examples, the strength of formant cod-

ing at each time point, t, was quantified as the sum of power in the three harmonics closest to

the F0-normalized formant frequency at that time [e.g., F1(t)/F0(t)]. As expected, power for the

harmonics near the first formant was substantially greater than for the second formant for the

low-CF pool (Fig 11E). For the medium-CF pool, F2 representation was robust over the whole

stimulus duration, although F1 representation was largely comparable (Fig 11F). These

Fig 10. The harmonicgram can be used to visualize formant tracking in synthesized nonstationary speech. Neural

harmonicgrams for fibers with a CF below 1 kHz (A, N = 16) and for fibers with a CF between 1 and 2.5 kHz (B,

N = 29) in response to the dynamic vowel, s2. Stimulus intensity = 65 dB SPL. The formant frequencies mimic formant

trajectories of a natural vowel [21]. A 20-Hz bandwidth was employed to low-pass filter the demodulated signal for

each harmonic. The harmonicgram for each AN-fiber pool was constructed by averaging the Hilbert-phase PSTHs of

all AN fibers within the pool. PSTH bin width = 50 μs. Data are from one chinchilla. The black, purple, and red lines

represent the fundamental frequency (F0/F0), the first formant (F1/F0) and the second formant (F2/F0) contours,

respectively. The time-varying formant frequencies were normalized by the time-varying F0 to convert the

spectrotemporal representation into a harmonicgram.

https://doi.org/10.1371/journal.pcbi.1008155.g010
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examples demonstrate novel analyses using the apPSTH-based harmonicgram to quantify

time-varying stimulus features in single-unit neural responses at high spectrotemporal resolu-

tion, which is not possible with conventional windowing-based approaches.

The harmonicgram can also be used to analyze FFRs in response to natural speech. As

mentioned earlier, a major benefit of using apPSTHs to analyze spike trains is that the same

analyses can also be applied to evoked far-field potentials. In Fig 12, the harmonicgram analy-

sis was applied to the difference FFR recorded in response to the same speech sentence (s3)

that was used in Fig 11. In fact, these FFR data and spike-train data used in Fig 11 were col-

lected from the same chinchilla. The difference FFR was computed as the difference between

FFRs to opposite polarities of the stimulus. The spectrogram and harmonicgram can also be

constructed using the Hilbert-phase FFR to highlight the TFS component of the response (S5

Fig 11. The harmonicgram can be used to quantify the coding of time-varying stimulus features at superior

spectrotemporal resolution compared to the spectrogram. Harmonicgrams were constructed using ϕ(t) for the same

two AN-fiber pools described in Fig 10. PSTH bin width = 50 μs. A 9-Hz bandwidth was employed to low-pass filter

the demodulated signal for each harmonic. The data were collected from one chinchilla in response to the speech

stimulus, s3. Stimulus intensity = 65 dB SPL. A 500-ms segment corresponding to the voiced phrase “amle” was

considered. (A, B) Spectrograms constructed from the average ϕ(t) for the low-CF pool (A) and from the medium-CF

pool (B). (C, D) Average harmonicgrams for the same set of fibers as in A and B, respectively. Warm (cool) colors

represent regions of high (low) power. The first-formant contour (F1 in A and B, F1/F0 in C and D) is highlighted in

purple. The second-formant contour (F2 in A and B, F2/F0 in C and D) is highlighted in red. Trajectories of the

fundamental frequency (black in A and B, right y-axis) and the formants were obtained using Praat [67]. (E, F)

Harmonicgram power near the first formant (purple) and the second formant (red) for the low-CF pool (E) and the

medium-CF pool (F). Harmonicgram power for each formant at any given time (t) was computed by summing the

power in the three closest F0 harmonics adjacent to the normalized formant contour [e.g., F1(t)/F0(t)] at that time. The

noise floor (NF) for power was estimated as the sum of power for the 29th, 30th, and 31st harmonics of F0 because the

frequencies corresponding to these harmonics were well above the CFs of both fiber pools. These time-varying

harmonicgram power metrics are spectrally specific to F0 harmonics and are computed with high temporal sampling

rate (same as the original signal). This spectrotemporal resolution is much better than the spectrotemporal resolution

that can be obtained using spectrograms.

https://doi.org/10.1371/journal.pcbi.1008155.g011
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Fig). Unlike the apPSTHs for AN fibers, the FFR cannot be used to construct two sets of har-

monicgrams corresponding to different populations of neurons because the FFR lacks tonoto-

pic specificity. Nevertheless, this FFR-harmonicgram is strikingly similar to the medium-CF

pool harmonicgram in Fig 11D. The dynamic representations of the first two formants are

robust in both the representations. In fact, the FFR representations seem more robust in for-

mant tracking compared to PSTH-derived representations, qualitatively, especially for the har-

monicgram. A more uniform sample of neurons contribute to evoked responses compared to

the AN fiber sample corresponding to Fig 11, which could be a factor for the robustness of the

FFR representations. Overall, these results reinforce the idea that using apPSTHs to analyze

spike trains offers the same spectrally specific analyses that can be applied to evoked far-field

potentials, e.g., the FFR, thus allowing a unifying framework to study temporal coding for both

stationary and nonstationary signals in the auditory system.

Discussion

Use of apPSTHs underlies a unifying framework to study temporal coding

in the auditory system

A better understanding of the neural correlates of perception requires the integration of

electrophysiological, psychophysical, and neurophysiological analyses in the same framework.

Fig 12. The harmonicgram of the FFR to natural speech shows robust dynamic tracking of formant trajectories,

similar to the AN-fiber harmonicgram. Comparison of the spectrogram (A) and the harmonicgram (B) for the FFR

recorded in response to the same stimulus, s3 that was used to analyze apPSTHs in Fig 11. Stimulus intensity = 65 dB

SPL. Lines and colormap are the same as in Fig 11. These plots were constructed using the difference FFR, which

reflects the neural coding of both stimulus TFS and ENV. To highlight the coding of stimulus TFS, Hilbert-phase [ϕ(t)]
FFR can be used instead of the difference FFR (S5 Fig). The FFR harmonicgram (A) is strikingly similar to the AN-

fiber harmonicgrams in Fig 11C and 11D in that the representations of the first two formants are robust. The FFR data

here and spike-train data used in Fig 11 were obtained from the same animal.

https://doi.org/10.1371/journal.pcbi.1008155.g012
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Although extensive literature exists in both electrophysiology and neurophysiology on the

neural correlates of perception, the analyses employed in these studies have diverged. This dis-

connect is largely because the forms of the neural data are different (i.e., continuous-valued

waveforms versus point-process spike trains). The present report provides a unifying frame-

work for analyzing spike trains using apPSTHs, which offers numerous benefits over previous

neurophysiological analyses. Specifically, the use of apPSTHs incorporates many of the previ-

ous ad-hoc approaches, such as VS and correlograms (Eqs 3 to 5). In fact, correlograms and

metrics derived from them can be estimated using apPSTHs in a computationally efficient

way. The apPSTHs essentially convert the naturally rectified neurophysiological point-process

data into a continuous-valued signal, which allows advanced signal processing tools designed

for continuous-valued signals to be applied to spike-train data. For example, apPSTHs can be

used to derive spectrally specific TFS components [e.g., ϕ(t), Fig 6], multitaper spectra (Fig 3),

modulation-domain representations (Fig 4), and harmonicgrams (Figs 10 and 11). apPSTHs
can also be directly compared to evoked far-field responses for both stationary and nonstation-

ary stimuli (e.g., Figs 11 and 12).

Temporal coding metrics should be spectrally specific

The various analyses explored here advocate for spectral specificity of temporal coding metrics.

The need for spectrally specific analyses arises for two reasons: (1) neural data is finite and sto-

chastic, and (2) spike-train data are rectified. Neural stochasticity exacerbates spectral-estimate

variance at all frequencies; therefore, time-domain (equivalently broadband) metrics will be

noisier compared to narrowband metrics. Similarly, the rectified nature of spike-train data

introduces harmonic distortions in the response spectrum, which can corrupt broadband met-

rics (e.g., TFS distortion at two times the carrier frequency corrupting estimates of ENV coding,

Fig 5A and 5B).

These issues requiring spectral specificity are not unique to the apPSTH analyses but also

apply to classic metrics, e.g., correlograms. For example, the broadband correlation index (CI)

metric is appropriate to analyze responses of neurons with high CFs, but the CI metric is con-

founded by rectifier distortions for neurons with low CFs [11, 13]. Studies have previously

tried to avoid these distortions in the sumcor by restricting the response bandwidth to below

the CF because, for a given filter, the envelope bandwidth cannot be greater than the filter

bandwidth [13, 68].

Here, we have extended and generalized the analysis of these issues using narrowband sti-

muli. In particular, when a neuron responds to low-frequency stimulus energy that is below

half the phase-locking cutoff, responses that contain any polarity-tolerant component [e.g.,

p(t), n(t), s(t), SAC, and sumcor] will be confounded by rectifier distortion of the polarity-sen-

sitive component (Fig 5E). Any broadband metric of temporal coding should exclude these

distortions at twice the carrier frequency. Beyond avoiding rectifier distortion, limiting the

bandwidth of a metric to only the desired bands will lead to more precise analyses by minimiz-

ing the effects of neural stochasticity (Fig 5H). For example, envelope coding metrics for SAM-

tone stimuli should consider the spectrum power only at Fm and its harmonics [69], rather

than the simple approach of always low-pass filtering at CF [13].

Similar to envelope-based metrics, metrics that quantify TFS coding should also be spec-

trally specific to the carrier frequency. Previous metrics of TFS coding, such as d(t) and difcor,
are not specific to the carrier frequency but rather include modulation sidebands as well as

additional sidebands due to transduction nonlinearities (Fig 6). In contrast, ϕ(t) introduced

here emphasizes the carrier and suppresses the sidebands (Fig 6). Thus, the spectrally specific
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ϕ(t) is a better TFS response, which relates to the zero-crossing signal used in the signal pro-

cessing literature [70–72].

Spectral-estimation benefits of using apPSTHs
Neurophysiological studies have usually favored the DFT to estimate the response spectrum.

For example, the DFT has been applied to the period histogram [12, 57], the single-polarity

PSTH [73, 74], the difference PSTH [23], and correlograms [10]. Since spike-train data are sto-

chastic and usually sparse and finite, there is great scope for spectral estimates, including the

DFT spectrum, to suffer from bias and variance issues. The multitaper approach optimally

uses the available data to minimize the bias and variance of the spectral estimate [4, 39, 75].

The multitaper approach can be used with both apPSTHs and correlograms, but using

apPSTHs offers additional variance improvement up to a factor of 2 (Fig 3). This improvement

is because twice as many tapers (both odd and even) can be used with an apPSTH compared to

a correlogram, which is an even sequence and limits analyses to only using even tapers. Addi-

tional benefits may be achievable by combining the Lomb-Scargle approach, which is well-

suited for estimating the spectrum of unevenly sampled data (e.g., spike trains), with apPSTHs
in the multitaper framework [76].

Benefits of spectrotemporal filtering

Analysis of neural responses to nonstationary signals has been traditionally carried out using

windowing-based approaches, such as the spectrogram. Shorter windows help with tracking

rapid temporal structures, but they offer poorer spectral resolution. On the other hand,

larger windows allow better spectral resolution at the cost of smearing rapid dynamic fea-

tures. As an alternative to windowing-based approaches, spectrotemporal filtering can

improve the spectral resolution of analyses by taking advantage of stimulus parameters that

are known a priori (Fig 9). This approach is particularly efficient to analyze spectrally sparse

signals (i.e., signals with instantaneous line spectra, such as voiced speech). In particular, the

spectral resolution is substantially improved compared to the spectrogram. In addition,

while the same temporal sampling can be obtained using the spectrogram, it will be much

more computationally expensive compared to the spectrotemporal filtering approach, as dis-

cussed in the following example.

The benefits of spectrotemporal filtering extend to other spectrally sparse signals, like har-

monic complexes. A priori knowledge of the fundamental frequency can be used to construct

the harmonicgram, which takes advantage of power concentration at harmonics of F0. This

approach contrasts with the spectrogram, which computes power at all frequencies uniformly.

The harmonicgram can be used to analyze both kinematic synthesized vowels (Fig 10) as well

as natural speech (Fig 11). The harmonicgram is particularly useful in quantifying dominant

harmonics at high temporal sampling and is thus applicable to nonstationary signals. The har-

monicgram can also be applied to evoked far-field potentials (e.g., the FFR in Fig 12). While

alternatives exist to analyze spike-train data in response to time-varying stimuli [77], the pres-

ent spectrotemporal technique is simpler and can be directly applied to both spike-train data

and far-field responses. Overall, these results support the idea that using apPSTHs to analyze

spike trains provides a unifying framework to study temporal coding in the auditory system

across modalities. Furthermore, this framework facilitates the study of dynamic-stimulus cod-

ing by the nonlinear and time-varying auditory system.
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apPSTHs allow animal models of sensorineural hearing loss to be linked to

psychophysical speech-intelligibility models

Speech-intelligibility models not only improve our understanding of perceptually relevant

speech features, but they can also be used to optimize hearing-aid and cochlear-implant strate-

gies. However, existing SI models work well for normal-hearing listeners but have not been

widely extended for hearing-impaired listeners. This gap is largely because of the fact that

most SI models are based on signal-processing algorithms in the acoustic domain, where indi-

vidual differences in the physiological effects of various forms of sensorineural hearing loss on

speech coding are difficult to evaluate. This gap can be addressed by extending acoustic SI

models to the neural spike-train domain. In particular, spike-train data obtained from preclin-

ical animal models of sensorineural hearing loss can be used to explore the neural correlates of

perceptual deficits faced by hearing-impaired listeners [78]. These insights will be crucial for

developing accurate SI models for hearing-impaired listeners.

apPSTHs offer a straightforward means to study various speech features in the neural spike-

train domain. As apPSTHs are in the same discrete-time continuous-valued form as acoustic

signals, acoustic SI models can be directly translated to the neural domain. Many successful SI

models are based on the representation of the temporal envelope [16, 48], although the role of

TFS remains a matter of controversy [79]. In fact, recent studies suggest that the peripheral

representation of TFS can shape central envelope representations, and thereby alter speech per-

ception outcomes [80, 81]. apPSTHs can be used to derive modulation-domain representations

so that envelope-based SI models can be evaluated in the neural domain (Fig 4). Similarly, the

Hilbert-phase PSTH, ϕ(t), can be used to evaluate the neural representation of TFS features.

These TFS results will be particularly insightful for cochlear-implant stimulation strategies that

rely on the zero-crossing component of the stimulus, which closely relates to ϕ(t) [82, 83].

Translational benefits of animal models

A key motivation of this paper was to develop a framework so that insights and findings from

animal models can ultimately improve our understanding of how the human auditory system

processes real-life sounds, like speech. Experiments involving human subjects are typically lim-

ited to far-field responses, such as compound action potentials, frequency-following responses,

and auditory brainstem responses. However, these evoked responses include contributions

from multiple sources such as the cochlear microphonic, electrical interferences, and

responses from several neural substrates [34, 37]; these contributions are not clearly under-

stood. The apPSTH-based framework offers a straightforward way to study these contributions

by comparing anatomically specific spike-train responses with clinically viable noninvasive

responses.

This framework is also beneficial to develop and validate noninvasive metrics using animal

models and apply these metrics to humans. For example, we demonstrated the applicability of

the new spectrally compact harmonicgram approach on both spike-train data and FFR data

recorded from chinchillas to evaluate speech coding. This harmonicgram analysis can also be

applied to FFR data recorded from humans to study natural speech coding in both normal and

impaired auditory systems. Similarly, the representation of other important response features,

such as the onset and adaptation, can also be linked between invasive and noninvasive data

using preclinical animal models of different forms of SNHL. Overall, these insights will be

informative for estimating the anatomical and physiological states of humans using noninva-

sive measures, and how these states relate to individual differences in speech perception that

currently challenge audiological rehabilitation.
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Limitations

Biological feasibility. The analyses proposed here aim to rigorously quantify the dichoto-

mous ENV/TFS information in the neural response and bridge the definitions between the

audio and neural spike-train domains. Methods discussed here may not all be biologically fea-

sible. For example, the brain does not have access to both polarities of the stimulus. Thus, the

PSTHs that require two polarities to be estimated, e.g., s(t), d(t), and ϕ(t), may not have an

“internal representation” in the brain. This limitation also applies to correlogram metrics

based on sumcor and difcor, which require two polarities of the stimulus. Thus, the use of the

single-polarity PSTH [p(t)] to derive the central “internal representations” is more appropriate

from a biological feasibility perspective (e.g., Fig 4). However, these various ENV/TFS compo-

nents allow a thorough characterization of the processing of spectrotemporally complex sig-

nals by the nonlinear auditory system and can guide the development of more accurate

speech-intelligibility models and help improve signal processing strategies for hearing-

impaired listeners.

Alternating-polarity stimuli. Use of two polarities may not be sufficient to separate out

all components underlying neural responses when more than two components contribute to

neural responses at a given frequency. In particular, it may be intractable to separate out recti-

fier distortion when the bandwidths of ENV and TFS responses overlap. For example, consider

the response of a broadly tuned AN fiber to a vowel, which has a fundamental frequency of F0.

The energy at 2F0 in S(f) may reflect one or more of the following sources: (1) rectifier distor-

tion to carrier energy at F0, (2) beating between (carrier) harmonics that are separated by 2F0,

and (3) effects of transduction nonlinearities on the beating between (carrier) harmonics that

are separated by F0. In these special cases, additional stimulus phase variations can be used to

separate out these components [84, 85].

The harmonicgram. A key drawback of applying the harmonicgram to natural speech is

the requirement of knowing the F0 trajectory. F0 estimation is a difficult problem, especially in

degraded speech. Thus, the harmonicgram could be inaccurate unless the F0 trajectory is

known, or at least the original stimulus is known so that F0 can be estimated. A second con-

found is the unknown stimulus-to-response latency for different systems. Latencies for differ-

ent neurons vary with their CF, stimulus frequency, and stimulus intensity. Thus, even if the

acoustic spectrotemporal trajectory is known precisely, errors may accumulate if latencies are

not properly accounted for. This issue will likely be minor for spectrotemporal trajectories

with slow dynamics. For stimuli with faster dynamics, latency confounds can be easily mini-

mized by estimating stimulus-to-response latency by cross-correlation and using a larger cut-

off frequency for low-pass filtering.

Materials and methods

Ethics statement

All procedures followed NIH-issued guidelines and were approved by the Purdue Animal

Care and Use Committee (Protocol No: 1111000123).

Experimental procedures

Spike trains were recorded from single AN fibers of anesthetized chinchillas using standard

procedures in our laboratory [68, 86]. Anesthesia was induced with xylazine (2 to 3 mg/kg,

subcutaneous) and ketamine (30 to 40 mg/kg, intraperitoneal), and supplemented with

sodium pentobarbital (�7.5 mg/kg/hour, intraperitoneal). FFRs were recorded using subder-

mal electrodes in a vertical montage (mastoid to vertex with common ground near the nose)
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under the same ketamine/xylazine anesthesia induction protocol described above using stan-

dard procedures in our laboratory [87]. Spike times were stored with 10-μs resolution. FFRs

were stored with 48-kHz sampling rate. Stimulus presentation and data acquisition were con-

trolled by custom MATLAB-based (The MathWorks, Natick, MA) software that interfaced

with hardware modules from Tucker-Davis Technologies (TDT, Alachua, FL) and National

Instruments (NI, Austin, TX).

Speech stimuli

The following four stimuli were used in these experiments. (s1) Stationary vowel, ^ (as in cup;

S1 Audio): F0 was 100 Hz. The first three formants were placed at F1 = 600, F2 = 1200, and F3 =

2500 Hz. The vowel was 188 ms in duration. (s2) Nonstationary vowel, ^ (S2 Audio): F0

increased linearly from 100 to 120 Hz over its 188-ms duration. The first two formants moved

as well (F1: 630! 570 Hz; F2: 1200! 1500 Hz; see S4 Fig). F3 was fixed at 2500 Hz. The for-

mant frequencies for both s1 and s2 were chosen based on natural formant contours of the

vowel ^ in American English [21, 88]. s1 and s2 were synthesized using a MATLAB instantia-

tion of the Klatt synthesizer (courtesy of Dr. Michael Kiefte, Dalhousie University, Canada).

(s3) A naturally uttered Danish sentence (list #1, sentence #3 in the CLUE Danish speech

intelligibility test, [89]). (s4) A naturally uttered English sentence (Sentence #2, List #1 in the

Harvard Corpus, [90]). All speech and speech-like stimuli were played at an overall intensity of

60 to 65 dB SPL.

Power along a spectro-temporal trajectory

Consider a known frequency trajectory, ftraj(t), along which we need to estimate power in a sig-

nal, x(t). The phase trajectory, Ftraj(t), can be computed as

FtrajðtÞ ¼
Z t

0

ftrajðtÞdt: ð8Þ

For discrete-time signals, the phase trajectory can be estimated as

Ftraj½n� ¼
1

fs

Xn

m¼1

ftraj½m�: ð9Þ

The phase trajectory can be demodulated from x(t) by multiplying a complex exponential

with phase = −Ftraj(t) [65]

xdemodðtÞ ¼ xðtÞ e
� ȷ2pFtrajðtÞ: ð10Þ

The power along ftraj(t) in x(t) can be estimated as the power in xdemod(t) within the spec-

tral-resolution bandwidth (W) near 0 Hz in the spectral estimate, Pxdemodðf Þ.

Ptraj ¼ 2

Z W=2

� W=2

Pxdemodðf Þdf : ð11Þ

The scaling factor 2 is required because the integral in Eq 11 only represents the original posi-

tive-frequency band of the real signal, x(t); the equal amount of power within the original neg-

ative-frequency band, which is shifted further away from 0 Hz byFtraj(t), should also be

included (see Fig 9).
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The harmonicgram

Consider a harmonic complex, x(t), with a time-varying (instantaneous) fundamental fre-

quency, F0(t). For a well-behaved and smooth F0(t), energy in x(t) will be concentrated at mul-

tiples of the instantaneous fundamental frequency, i.e., kF0(t). Thus, x(t) can be represented by

the energy distributed across the harmonics of the fundamental. The time-varying power

along the k-th harmonic of F0(t) can be estimated by first demodulating x(t) with the kF0(t) tra-

jectory using Eq 10, and then using an appropriate low-pass filter to limit energy near 0 Hz

(say within ±W/2). We define the harmonicgram as the matrix of time-varying power along all

harmonics of the fundamental frequency. Thus, the harmonicgram is

harmonicgramðk; tÞ ¼ LPF ½� W=2;W=2�fxðtÞ e� ȷ2pkF0ðtÞg: ð12Þ
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