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Lameness in dairy cows is an extremely painful multifactorial condition that affects the

welfare of animals and economically impacts the dairy industry worldwide. The aim of

this study was to determine the profile of cytokines in the spinal cord dorsal horn of

dairy cows with painful chronic inflammatory lameness. Concentrations of 10 cytokines

were measured in the spinal cord of seven adult dairy cows with chronic lameness

and seven adult dairy cows with no lameness. In all cows lameness was evaluated

using a mobility scoring system and registered accordingly. Immediately after euthanasia

the spinal cord was removed and 20 cm of lumbar segments (L2–L5) were obtained.

After dorsal horn removal and processing, cytokine quantification of tumor necrosis

factor-alpha (TNF-α), interleukin-1alpha (IL-1α), interleukin 13 (IL-13), chemokine-10

(CXCL10/IP-10), chemokine-9 (CXCL9/MIG), interferon-alpha (IFN-α), interferon-gamma

(IFN-γ), interleukin-21 (IL-21), interleukin-36ra (IL-36ra), and macrophage inflammatory

protein-1 beta (MIP-1β) was performed using a multiplex array. Lame cows had higher

concentrations of TNF-α, IL-1-α, IL-13, CXCL10, CXCL9, IFN-α, and IFN-γ in their

dorsal horn compared to non-lame cows, while IL-21 concentration was decreased.

No differences in IL-36ra and MIP-1β concentrations between lame and non-lame cows

were observed. Painful chronic inflammation of the hoof in dairy cows leads to a marked

increase in cytokine concentration in the dorsal horn of the spinal cord, which could

represent a state of neuroinflammation of the Central Nervous System (CNS).
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INTRODUCTION

Intensive dairy farming may lead to negative health and welfare outcomes, including chronic
painful lameness (1). Currently, chronic pain is recognized as a Central Nervous System (CNS)
disease (2), and although no objective evidence has linked chronic pain with suffering in animals,
we could not neglect the assumption that it may occur (3). Olsson et al. (4) indicate that animal
suffering can be originated by exposure to different external or internal events that threaten
biological functions. Chronic painful lameness significantly affects welfare (5) decreasing milk
production and reproductive indexes, thus increasing early culling (6–8).

Cows with mild to severe lameness develop mechanical hyperalgesia of the dorsal aspect of the
metatarsus (9), which is consistent with central sensitization, as secondary hyperalgesia is centrally
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and not peripherally mediated (10) and a positive association
between hyperalgesia and the type of hoof injury has been
reported (11). After injury, immune cells release pro-
inflammatory cytokines at the site of injury, decreasing
nociceptors threshold, leading to primary hyperalgesia (12–14).
Several chronic painful conditions have reported elevated
circulating levels of proinflammatory cytokines in humans (15).
In lame cows diagnosed with interdigital dermatitis, Nazifi
et al. (16) reported an increased in plasma TNF-α and IFN-γ.
Additionally, pro-inflammatory cytokines can intensify the
painful sensation acting directly in the CNS (17). Spinal cord
cytokines can increase synaptic transmission toward supraspinal
levels, enhancing pathological pain sensation and favoring
central sensitization (18) which is a key element in chronic
pain development and maintenance (19). Additionally, glial
cells in the CNS react to signals associated with nociceptive
transmission, morphologically changing into a reactive
phenotype (20). Reactive microglia and astrocytes release
cytokines, which in an autocrine and paracrine manner, facilitate
neurons to glia and glia to glia communication, maintaining a
state of neuroinflammation (21, 22). Moreover, the intrathecal
administration of cytokines induces pain behavior in non-painful
rodents (23); and the cerebrospinal concentration of cytokines
correlates positively with pain intensity in humans with chronic
pain (24). Although the role of proinflammatory cytokines
in chronic pain is well-known, the spinal concentration of
cytokines has not been reported in chronic lame cows. Here
we hypothesize that chronic inflammatory lameness promotes
persistent nociceptive input, which could induce changes in
cytokine synthesis in the spinal cord. Therefore, the aim of
this study was to determine the profile of cytokines in the
spinal cord dorsal horn of dairy cows with painful chronic
inflammatory lameness.

MATERIALS AND METHODS

The study and experimental protocol were reviewed and
approved by the Ethics Committee for Animal Research of the
Universidad Austral de Chile (N◦ 323/2018).

Animals and Lameness Assessment
Animals were selected prospectively. Seven lame cows (Lame
Group) were selected from a commercial dairy farm and seven
non-lame cows (Non-Lame Group) were selected from a local
slaughter-house. Selected animals included Holstein-Friesian (4)
and Kiwi cross (10), weighing between 350 and 450Kg with a
parity range between 2 and 6. Inclusion criteria for lame cows
included a history of chronic hind limb lameness caused by
one of the most prevalent inflammatory hoof lesions previously
described for Southern Chile, including white line disease, sole
hemorrhage, heel erosion, sole ulcer and digital dermatitis (25).
Animals were excluded if visible wounds, visible central or
peripheral ataxia and acute or chronic mastitis were diagnosed.
Lameness assessment was performed using a mobility scoring
scale previously reported (26). Concisely, MS 0 not lame; MS
1 imperfect mobility/uneven; MS 2 impaired mobility/mildly
lame; and MS 3 severely impaired/very lame. Only cows with

the highest lameness score (MS = 3) were included in the
lame group. Lame cows were euthanized at the dairy farm
after general intravenous anesthesia and an intrathecal lidocaine
injection at the atlanto-occipital foramen. Non-lame cows were
euthanized at the slaughter-house by mechanically stunning and
exsanguination following national regulations.

Spinal Cord Sampling and Protein
Extraction
Spinal cord samples were obtained immediately after euthanasia.
Several lumbar spinal cord segments (L2–L4) were aseptically
obtained after dissection of lumbar vertebrae. Bone tissue
and meninges were removed, and spinal cord segments were
thoroughly washed in cold phosphate-buffer saline (PBS), and
then snap frozen in liquid nitrogen and stored at −80◦C for
further analysis. After unfreezing, dorsal horn segments were
dissected, and 250mg of tissue were homogenized in 1mL of 4◦C
PBS using an Ultra Turrax tissue homogenizer at 4◦C and 16,000
rpc three times for 30 s each. Homogenates were centrifuged at
20,000 x g for 10min and supernatant was collected. Total protein
concentration was quantified using the BSA Assay kit (PierceTM

Thermo Scientific, Rochford USA).

Multiplex Cytokine Assay
Cytokine analysis was performed using the Quantibody R©

Bovine Cytokine Array 1 kit (Ray Biotech) with an intra-
assay coefficient of variation (CV) of <20%. The kit allows for
simultaneous analysis of tumor necrosis factor-alpha (TNF-α),
interleukin-1alpha (IL-1α), interleukin 13 (IL-13), chemokine-
10 (CXCL10/IP-10), chemokine-9 (CXCL9/MIG), interferon-
alpha (IFN-α), interferon-gamma (IFN-γ), interleukin-21 (IL-
21), interleukin-36ra (IL-36ra), and macrophage inflammatory
protein-1 beta (MIP-1β). A total of 150 µg of protein were
loaded into each well with standards loaded similarly. Signal
intensity was visualized using a laser scanner using a 532 nm
filter). Experiments were performed in duplicate. Each standard
curve of cytokine concentration was fitted using Graphpad
Prism software.

Statistical Analysis
Data are presented as mean ± SEM. Normality of the data
was checked using the Shapiro-Wilk test. Differences between
lame and non-lame cows for each cytokine were evaluated using
the t-test. Overall alpha was set to p < 0.05. All analyses were
performed using Graphpad Prism software (v7.0).

RESULTS

Spinal cord dorsal horn samples obtained from lame cows
had higher concentrations of TNF-α (p = 0.024), IL-1-α (p =

0.0339), IL-13 (p = 0.0204), CXCL10 (p = 0.025), CXCL9 (p =

0.0252), IFN-α (p = 0.0391), and IFN-γ (p = 0.0027) compared
to non-lame cows. IL-21 was the only cytokine with lower
concentration in the spinal cord of lame cows in comparison
to control cows (p= 0.0044). Spinal concentration of IL-36ra
was not significantly increased (p = 0.2505) in lame cows, while
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TABLE 1 | Spinal cord dorsal horn concentration of cytokines in Lame and

Non-Lame cows.

Lame Non-lame P-value

TNF-α (pg/mL) 21.18 ± 5.41 5.02 ± 1.67 P = 0.0240

IL-1α (pg/mL) 4.78 ± 1.35 1.38 ± 0.45 P = 0.0339

IL-13 (pg/mL) 11.16 ± 1.35 5.06 ± 1.81 P = 0.0204

CXCL10 (pg/mL) 34.00 ± 5.61 16.54 ± 3.99 P = 0.0250

CXCL9 (pg/mL) 28.80 ± 6.69 9.04 ± 1.37 P = 0.0252

IFN-α (pg/mL) 69.14 ± 19.23 16.07 ± 4.39 P = 0.0391

IFN-γ (pg/mL) 3.10 ± 0.33 1.57 ± 0.09 P = 0.0027

IL-21 (pg/mL) 27.80 ± 4.47 55.78 ± 6.38 P = 0.0044

IL-36ra (pg/mL) 1.58 ± 0.53 0.90 ± 0.09 P = 0.2505

MIP-1β (pg/mL) 1.20 ± 0.14 1.23 ± 0.18 P = 0.9078

MIP-1β concentration remained unchanged between groups
(p= 0.9078). All results are summarized in Table 1.

DISCUSSION

In this study we describe the profile of several cytokines in
the dorsal horn of the spinal cord of dairy cows with chronic
inflammatory lameness. Peripheral and Central Nervous
(CNS) system cytokines contribute to central sensitization
during chronic pain (18, 27, 28). Persistent pain leads to
changes in the spinal cord including glial activation (21, 29).
Neuropathic, inflammatory and neoplasic models of pain,
and chronic opioid administration have shown to induce
glial activation, increasing cytokine release, thus initiating
and maintaining central sensitization (22). Additionally,
resting microglia and astrocytes can be induced into a reactive
state by pro-inflammatory cytokines. This cytokine-induced
change in glia phenotype reveals that cytokines may have an
autocrine/paracrine effect that facilitates neuron to glia or
glia to glia communication during central sensitization (30).
Moreover, cytokines are important modulators of neuronal
functions (18, 31).

Spinal concentration of TNF-α was increased in lame
cows. TNF-α is one of the most studied pro-inflammatory
cytokines in the field of pain (32) and several experimental
pain models have reported increased TNF-α expression in the
CNS (22). It plays an important role in the development of
central sensitization, mediating the expression and trafficking
to the membrane of the AMPA receptor (31, 33), the
phosphorylation of the NMDA receptor (34), and the increase
in the frequency of spontaneous excitatory postsynaptic currents
(EPSCs) (18). Zhang et al. (35) measured plasma TNF-α in
transition cows before clinical signs of lameness, describing
higher concentrations during the pre and postpartum, which
suggested a state of clinical inflammation during that period.
Similarly, Johnzon et al. (36) described an increased in TNF-
α concentration both in plasma and milk after induction of
mastitis in dairy cows. Although, the CSF concentration of
TNF-α has not been reported in cows, our results are similar
to those previously reported for human patients with chronic

pain. Rozen and Swidan (37) described a marked increase in
CSF and serum concentrations of TNF-α in human patients
with persistent headache and chronic migraine. These results
are in agreement with our finding in lame cows. Also, chronic
inflammatory and neuropathic painful conditions have been
associated with TNF-α secretion from reactive microglia (38,
39), which in turn promotes CXCL10 release from reactive
astrocytes (40). TNF-α can also act as an autocrine factor in
microglia, inducing the expression of several pro-inflammatory
mediators (30, 40, 41).

IL-1α was increased in the spinal cord of lame cows. The
role of IL-1α in inflammation has been extensively reported
and recognized as an early trigger of the inflammatory response
(42–45). Zhang et al. (35), described a state of subclinical
inflammation during the prepartum of transition cows, which
were characterized by lower concentrations of plasma IL-1α.
Similar to our findings, higher concentrations of IL-1α have
shown to occur in the spinal cord after dorsal root nerve
compression (28) and in dorsal root ganglion (DRG) after
peripheral nerve damage (46). Interestingly, both studies
reported significant analgesia after the intrathecal administration
of an IL-1α receptor antagonist. The potential role of IL-
1α during chronic inflammation has been associated with
the development of an inflammatory loop, triggered and
maintained by IL-1α continuous secretion from damaged cells;
which induces the autocrine and paracrine IL-1α expression
from migrating cells with the subsequent expression of
others cytokines and chemokines, including TNF-α, IL-
8, IL-13, IL-6, CXCL9, and CXCL10 (42, 47, 48). We
believe that the increased levels of cytokines detected in the
spinal cord of lame cows could be the consequence of an
inflammatory loop triggered by the augmented expression
of IL-1α.

The spinal concentration of the anti-inflammatory cytokine
IL-13 was increased in lame cows. IL-13 has been reported to
increase in plasma, synovial fluid and muscular micro dialysate
of patients with rheumatoid arthritis and jaw muscle pain,
respectively (49, 50). The intraperitoneal administration of IL-
13 induces marked analgesia in an inflammatory model of
osteoarthritis and peritonitis (51), which confirms its anti-
inflammatory properties. Similarly, the perineural injection of
IL-13 reduced the pain threshold in rats with neuropathic pain
(52). After injury and inflammation, neurons (53) and microglia
(54) upregulate IL-13 in response to high levels of TNF-α and
IFN-γ. This increase in IL-13 favors the downregulation of
TNF-α, IL-1-β, and IFN-γ by macrophages (51, 55). Moreover,
a neuroprotective role of IL-13 has been described (56).
IL-13 induces apoptosis of reactive pro-inflammatory (M1)
microglia (54, 57) or changes their phenotype into a protective
type (M2) in order to suppress inflammation and promote
healing (58).

Chemokines CXCL10 and CXCL9 were increased in the spinal
cord of lame cows. Both chemokines are synthesized by immune
cells in response to IFN-γ and TNF-α (59). IFN-γ-induced
CXCL10 and CXCL9 expression has been reported in many
inflammatory conditions of the CNS, including neuropathic
pain (60–62). Accordingly, the in vitro administration of
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IFN-γ promotes microglial synthesis and release of CXCL10
and CXCL9 and astrocyte expression of CXCL-10 (63, 64).
Therefore, the increased concentrations of spinal CXCL10
and CXCL9 in lame cows could indicate a response to high
levels of IFN-γ and TNF-α. Nerve damage increases the spinal
concentration of CXCL10 leading to hyperalgesia, which
was successfully reverted after pharmacologic antagonism
of its cognate receptor (CXC3R) (65). Also, the intrathecal
injection of CXCL10 increased EPSCs and hyperalgesic
behavior in rats (66). Recently, it has been proposed that
CXCL10 plays an important role in microglia/astrocyte
communication. In a bimodal inflammatory model in rats,
a positive correlation between allodynia and microglial
CXCL10/CXCR3 expression was followed by an increased
astrocyte expression of CXCL10/CXCR3 (67).

In the present study, INF-α, a type I interferon member,
was significantly upregulated in the spinal cord of lame
cows. Its main role in the CNS is to be an important
neuroprotective mechanism against viral infections (68). It
is well-known that painful lameness in dairy cows is a
consequence of peripheral inflammation (69). During peripheral
inflammation, a marked increase in INF-α and its receptor
in astrocytes and primary terminals afferents occurs (70).
Interestingly, a significant interaction between INF-α and µ-
opioids receptors has been documented, promoting analgesic
properties of INF-α, which could explain some of its analgesic
properties (71). Similarly, INF-α administered into the lateral
ventricles in rats significantly reduced pain threshold (72)
and its intrathecal administration attenuated hyperalgesic
behavior in rats after hind paw injection of complete Freund’s
adjuvant (70). This analgesic INF-α dose was higher than
the spinal concentration in lame and non-lame cows here
reported, higher than the CSF concentration of human
patients with CNS infection (73) and higher than those
measured after traumatic brain injury (74). Prolonged INF-
α therapy negatively impacts serotonin and monoamine
function, stimulating excitatory transmission in rats (75, 76)
and humans (77). According to Delgado (78), serotonergic
and monoaminergic dysregulation have been proposed as a
mechanism of chronic pain maintenance, reason why serotonin
reuptake inhibitor drugs are frequently prescribed for treatment
of chronic pain. Nonetheless, the INF-α effects over serotonergic
transmission have not been studied thoroughly in chronic pain
states. Although the increased spinal IFN-α concentration in
lame cows here presented could be associated to an endogenous
mechanism to control nociceptive transmission, a serotonergic
dysregulation contributing to increased pain transmission cannot
be completely ruled out.

IFN-γ is a type II pro-inflammatory cytokine that was
increased in the spinal cord of lame cows. This result is similar
to that described by Cuellar et al. (79), in which increased
levels of IFN-γ were found in vertebral disc lavage samples
from patients with chronic low back pain. It is known that
neurons and astrocytes synthetize IFN-γ after nerve damage (80).
Similarly, intrathecal administration of IFN-γ induces chronic
pain behavior in rats (81) and systemic IFN-γ therapy in cancer

patients induced spontaneous pain (82). Rats lacking the IFN-
γ receptor did not express hyperalgesic behavior after nerve
injury (81, 83).

IL-21 was the only downregulated cytokine in the spinal
cord of lame cows. CD4+ T cells and natural killer T
(NKT) cells produce IL-21, and augmented concentrations
of brain IL-21 following experimental ischemia occurs after
lymphocyte infiltration (84). A potential proinflammatory role
of IL-21 in auto-immune and neurodegenerative diseases has
been discussed (85). Interestingly, brain samples obtained
from human patients with multiple sclerosis showed higher
expression of IL-21 and its receptor, supporting a potential
role of IL-21 in neurodegenerative diseases (86). Similarly,
neuroinflammation promotes IL-21 expression by astrocytes
(87). Although the role of IL-21 during chronic pain has not
been thoroughly studied, Xue et al. (23) demonstrated that
lumbar disc herniation induced an increased expression of IL-
21, which positively correlated with pain intensity. Moreover,
serum and synovial fluid from patients with rheumatoid arthritis
showed high levels of IL-21 (88). In contrast, downregulation
of IL-21 conferred resistance and neuroprotection against
experimental brain ischemia in rats (84). According to this, it is
possible that IL-21 downregulation in lame cows could reflect
a protective response against neuroinflammation. However,
more studies need to be performed in order to confirm
this assumption.

Limitations of this study include the small sample size and
a potential individual variability considering the multifactorial
origin of bovine lameness. These aspects should be taken
into account before results extrapolation. In this study, we
were able to demonstrate that peripheral inflammation led
to an increased concentration of cytokines in the dorsal
horn of the spinal cord of chronically lame dairy cows. We
believe that, as in humans, this state of neuroinflammation
could have been initiated by sustained peripheral nociceptive
transmission (89, 90). According to our results the impact of
lameness in dairy cows is far beyond a local inflammation
of the hoof, but also comprises inflammation of the CNS;
with notorious and complex inflammatory events, involving
IFN-γ, TNF-α, CXCL9, and CXCL10. The possible alteration
in the spinal cytokine profile could indicate an orchestrated
and self-perpetuated process in which IL-1α signaling pathway
may play an important role. Additionally, the increased
expression of anti-inflammatory cytokine IL-13, as well as the
downregulation of IL-21 could indicate a physiological response
in order to counteract the negative effects that prolonged
inflammation of the spinal cord might exert on neurons
and glia.

CONCLUSION

We conclude that painful chronic inflammation of the hoof
in dairy cows leads to a marked increase in cytokine
concentration in the dorsal horn of the spinal cord, which
could represent a state of neuroinflammation of the Central
Nervous System.
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